

TeraCache: Efficient Caching over Fast Storage Devices

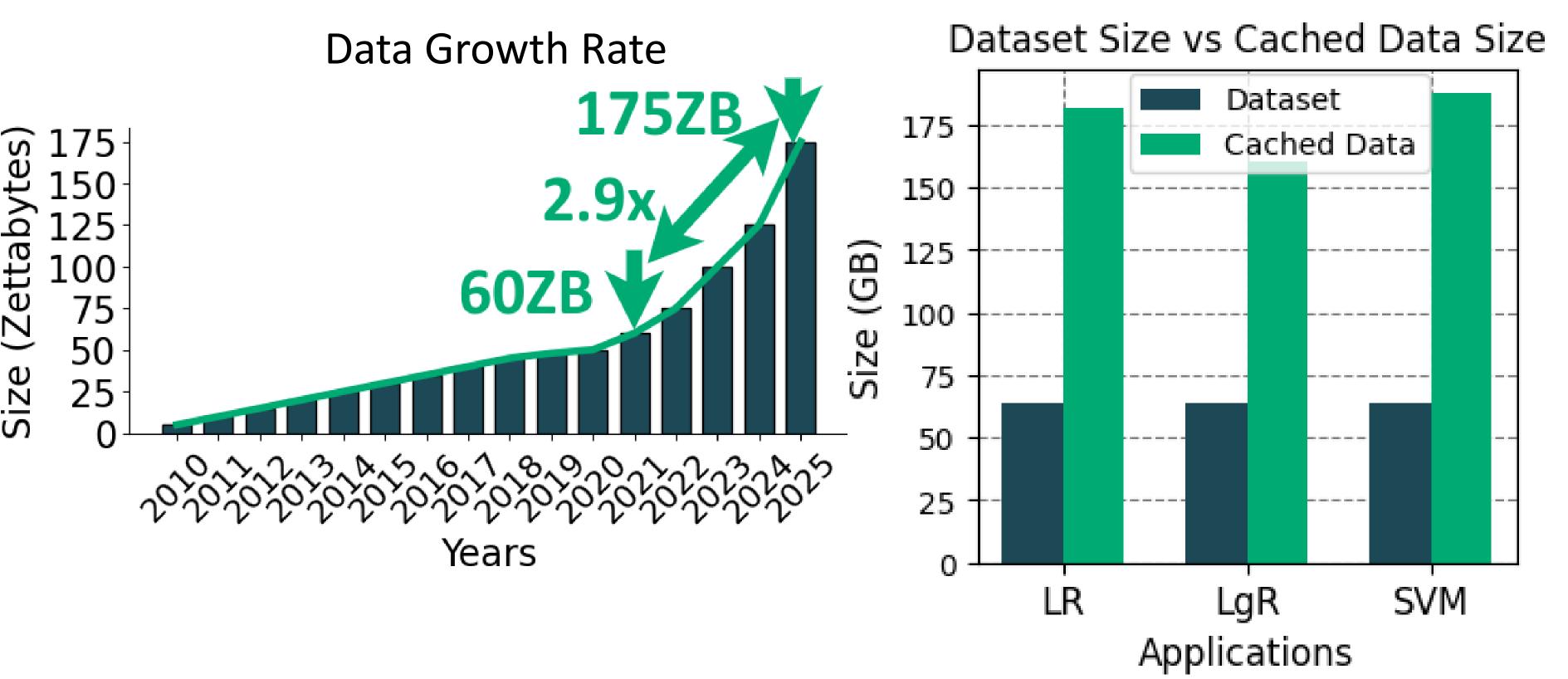
lacovos G. Kolokasis^{1,2}, Anastasios Papagiannis^{1,2}, Foivos Zakkak³, Shoaib Akram⁴, Christos Kozanitis¹, Polyvios Pratikakis^{1,2}, and Angelos Bilas^{1,2}

¹Foundation for Research and Technology – Hellas GR, ²University of Crete GR, ³Red Hat Inc., ⁴Australian National University AU

Fast Storage Devices Available but Analytic Stacks Not Ready

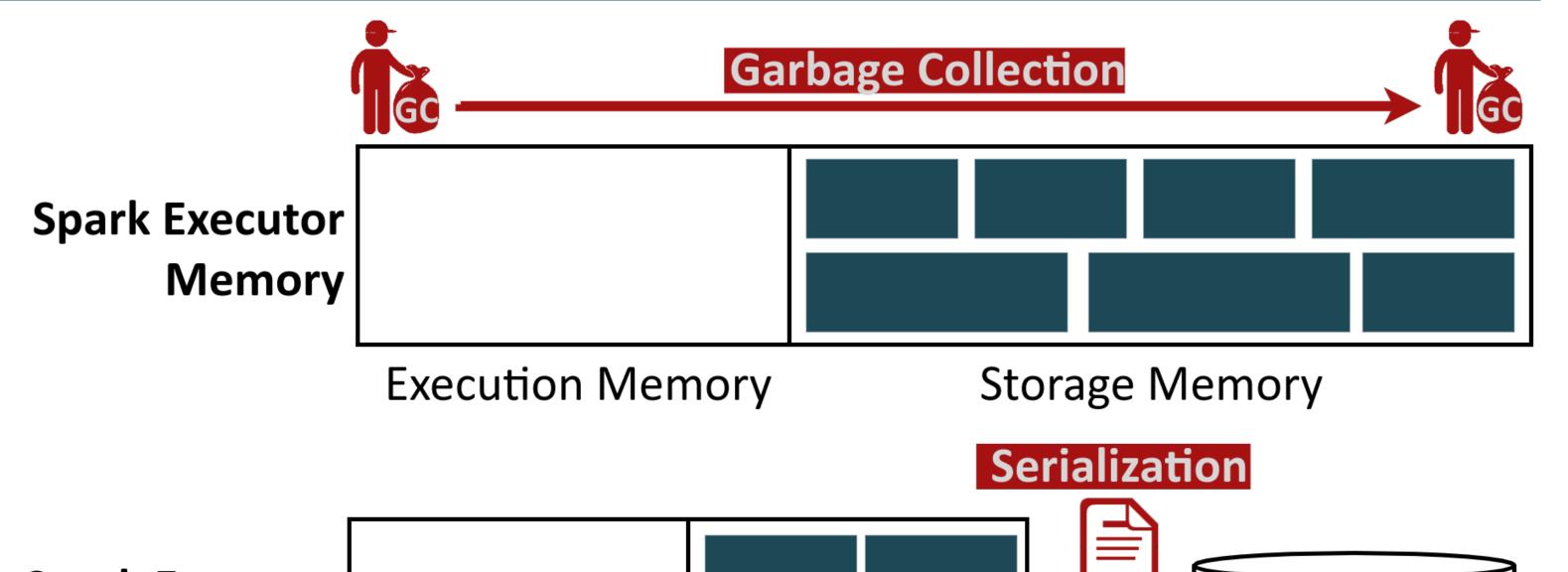
Increasing Memory Demands for Analytics

- Analytic servers use caches for avoiding recomputation (compute caches)
- etta • Cache size is often several times the input dataset size Size



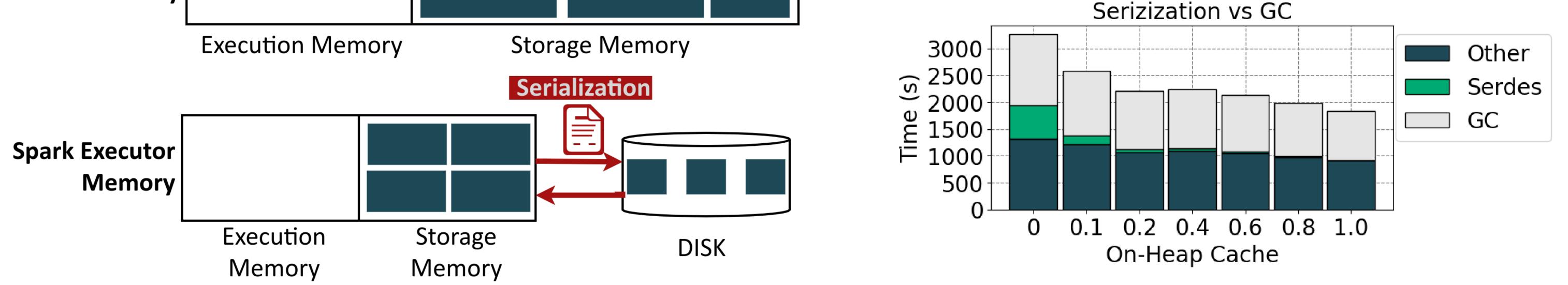
- DRAM scaling is limited (more \$ per GB)
- Analytics resort to high capacity, fast storage devices, such as NVMe

Spark Offers On-Heap and Off-Heap Caching

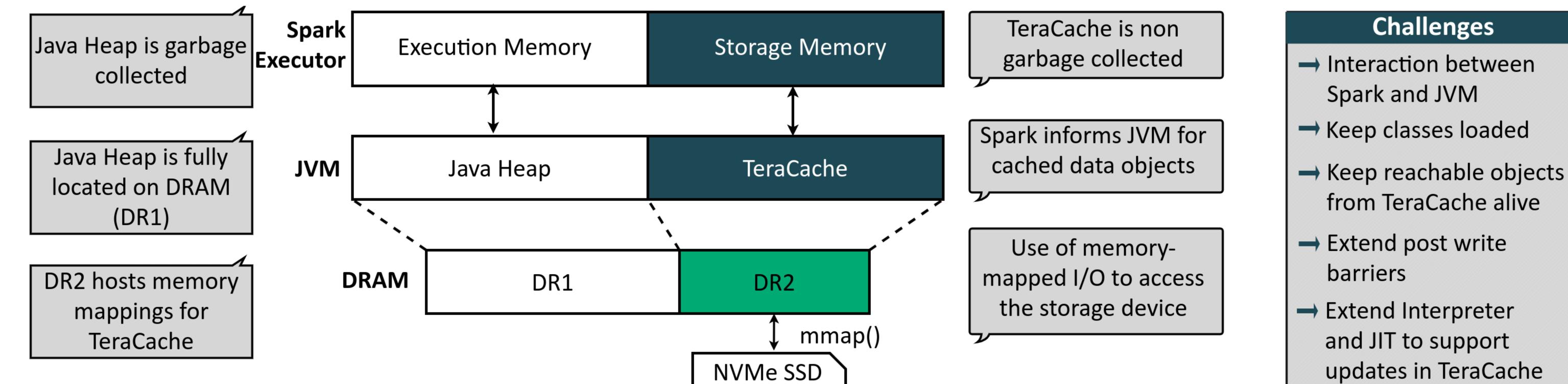


Merging On-Heap and Off-Heap Benefits

	Pros	Cons
On-heap	No Serialization	High GC Time
Off-heap	Low GC Time	High Serialization



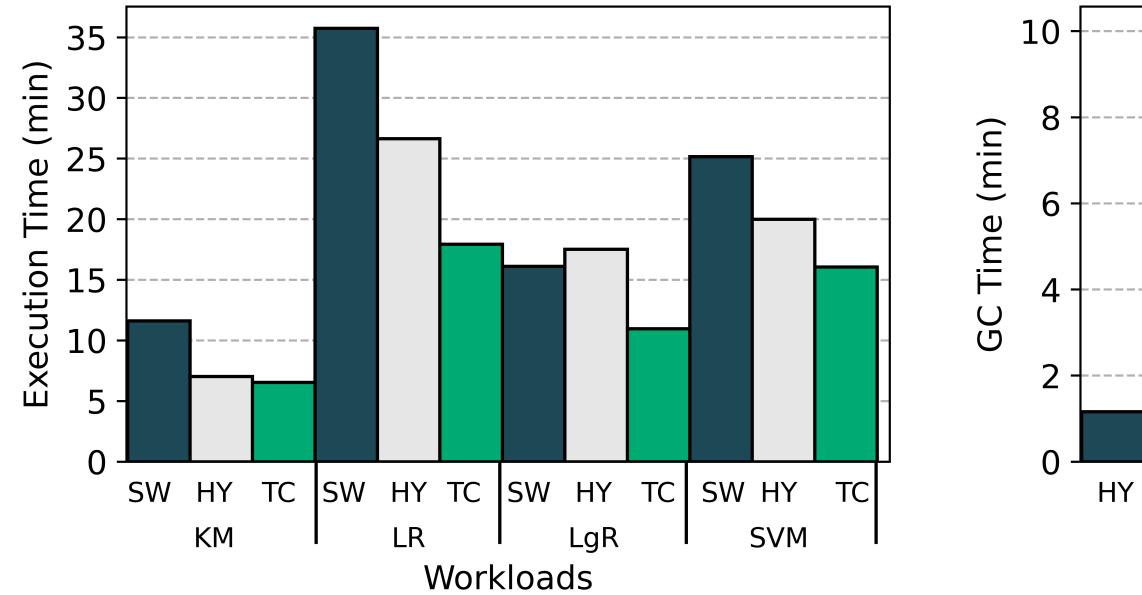
TeraCache: Best of Both Worlds!



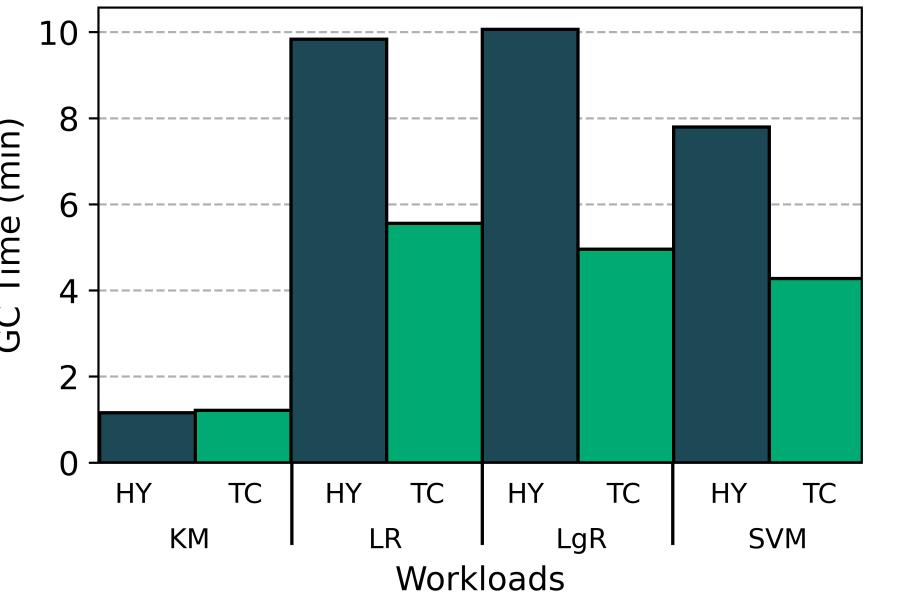
Machine Learning Workloads

Key Takeaways

Swap vs Hybrid vs TeraCache



GC Time in Hybrid and TeraCache



• RDD caching is critical in Spark GC and serialization introduce significant overhead

 TeraCache improves ML workloads performance by 25% over the state-of-the-art

