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I. A BSTRACT

Current server architectures have started to move away from
traditional memory buses that do not scale and towards point-
to-point interconnects for communication among processors,
memories, and I/O devices. As a result, memory modules are
not equidistant from all cores leading to significant differences
in memory access performance from different cores. Similar
to memory modules, I/O devices are connected today to
processor sockets in a NUMA manner. This results in NUMA
effects for transfers between I/O devices and memory banks,as
well as processor I/O (PIO) accesses to I/O devices. This trend
towards NUMA architectures increases complexity for buffer
placement, device data transfers, and code execution, creating
a complex affinity space. In this paper, we discuss problems
that arise when performing I/O and present a preliminary
evaluation of the impact of different types of affinity. We
use a server-type system with two Intel Xeon processors,
four storage controllers, and24 solid-state-disks (SSDs). Our
experiments with various machine configurations show that
compared to local transfers between devices and memory,
remote transfers have the potential to reduce maximum achiev-
able throughput from8% up to40%. Further, for I/O-intensive
applications, remote transfers can potentially increase I/O-
completion time up to130%.

II. I NTRODUCTION

A predominant number of servers deployed in data-centres
today use multiple processors on a single motherboard. The
processors, memory modules, and the I/O devices are con-
nected together by a cache-coherent, point-to-point intercon-
nect [26], [4]. Such architectures result in non-uniform com-
munication overheads between different devices and memory
modules. A known problem in this direction has been the non-
uniform latency of memory accesses by a processor to a local
or remote memory module. Each processor has faster access to
memory modules connected locally to it and slower access to
the rest of the (remote) memory modules. In addition, today,
accesses from one processor to a remote memory module
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need to traverse other processors’ sockets (also called NUMA
domains), interfering with local traffic. Given the currenttrend
towards increasing number of cores in each processor and
also the number of sockets, we expect that this non-uniformity
will become more diverse with multiple crossings from other
processors’ sockets for memory accesses. Solutions have been
proposed to deal with this problem at the Operating System
(OS) layer [13], [8] mainly using various memory management
techniques as well as hardware caching approaches. However,
these approaches alone are inadequate to deal with affinity
issues that arise during transfers between I/O devices and
memory. The affinity that a transfer of data exhibits, e.g. from
a local memory module to a local I/O device can impact
performance.

Figure 1 shows a typical modern server architecture based
on a point-to-point interconnect. Note that the number of
processors in NUMA architectures has been increasing [12]
and the trend is projected to continue. In this paper, we
quantify the impact of affinity in non-uniform architectures
(NUMA) on storage I/O throughput. Our initial evaluation
of a server-class machine with an architecture similar to the
one shown in Figure 1 shows that the maximum achievable
storage throughput degrades significantly if communication
is done without considering proper affinity. In particular,we
observe that the maximum achievable throughput can reduce
significantly if processor (A) reads data from storage devices
connected to chipset (b) compared to reading from devices
connected to chipset (a).

The main objective of this paper is to give an initial
evaluation of the impact of affinity on storage throughput. In
particular, we present the impact of remote buffer placement
(improper affinity) on application throughput, device through-
put, time taken for completion of OS tasks (system time) and
time taken for completion of I/O requests (iowait time). We
quantify this impact by placing buffers and scheduling threads
manually. We use a simple classification scheme to build four
configurations with different approaches to buffer placement
and scheduling threads. We evaluate the performance of vari-
ous applications using these configurations.

Typically in real applications, buffers are allocated in mem-
ory modules closest to the processor. However, systems try
to balance the use of memory across modules to allow for
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Fig. 1. The top-level architecture of a server machine with non-uniformity.

higher throughput. In addition, the system scheduler may move
threads around resulting in the initiation of transfers between
devices and memory modules with improper affinity: Data
requested by a processor could be located on a device that is
either closer to the processor or remote, as shown in Figure 1,
whereas the buffers used for the transfer can have different
affinity to the processor, resulting in significant variations in
the observed performance.

Our work shows that compared to the configuration where
transfers between devices and memory are local :

• I/O-intensive workloads suffer from69% up to 130%
increase in I/O-completion time due to remote transfers.

• Filesystem-intensive workloads suffer from40% up to
57% increase in system time (time for performing OS-
related activities) due to remote transfers.

• Throughput-oriented workloads such as state checkpoint-
ing or data-streaming suffer up to20% drop in read/write
throughput due to remote transfers.

The rest of the paper is organized as follows. Section III
describes a taxonomy of NUMA affinity in modern servers in-
volving memory and devices. In the same section, we describe
four configurations with different policies for buffer placement
and thread scheduling Section IV describes our methodology
for evaluation and in Section V we discuss the results of our
evaluation. We provide a discussion of the shortcomings of our
work in Section V. We conclude this work in Section VIII.

III. I/O A FFINITY TAXONOMY

In real applications, when a processor accesses a block
device for a file, it first allocates a buffer in memory for
reading a block from the block device. For instance, consider
a worst-case scenario (Figure 1 where a process running on
processor (A) allocates a buffer in memory module closer to
processor (B) and requests a block of file to be read from
the devices connected to the chipset (b). The three high-level
operations are 1) issuing the I/O operation, 2) serving the I/O
request, and 3) using the data that is returned. We ignore the
first operation because unlike the other two operations, issuing

an I/O request does not depend on the size of data. The second
operation is the type of transfer (local or remote) and the third
operation is the usage of data (local or remote). We further
differentiate based on the type of transfer (read or write) and
the type of usage (load or store).

Table I presents our taxonomy. The best case is when a
transfer occurs with proper affinity between a memory module
and an I/O controller that are located close to the same CPU
socket. Conversely, the worst case is when the transfer buffer
and the I/O controller are located in different sockets (also
called NUMA domains). An even worse case is when not only
the transfers are remote but the subsequent use of the data is
by a processor that is located remotely to where the memory
module is located. Some typical scenarios for real applications
include:

• TLORP0I0 : I/O transfers are local, the transfer operation
is read, and data is not used by the processor.

• TRORP0I0 : I/O transfers are remote, the transfer oper-
ation is read, and data not used by processor.

• TRORPRIR : I/O transfers are remote, transfer operation
is read, and the data that is returned is accessed by remote
processor.

• TLORPRIR : I/O transfers are local, transfer operation is
read, and the data is used by a remote processor.

• TRORPRIR : I/O transfers are remote, transfer operation
is read, and data usage is by remote processor (load).

• TLORPLIR : I/O transfers are local, transfer operation
is read, and data is used by the same (local) processor,
where data is returned.

The last three cases are depicted in Figure 2: circles denote
CPUs or devices involved in the I/O operation. Arrows denote
the transfer path taken by an I/O request. The first transfer
is from chipset to memory DIMM. Next, we discuss buffer
management and thread scheduling taking NUMA effects into
account. Proper buffer management involves placing data in
the same memory module that is connected to the socket
as the storage controller responsible for the I/O operation.
Thread scheduling involves running threads on the CPU that
is connected to the memory module containing data needed by
the CPU. In this paper, we do not propose new algorithms for
scheduling and buffer placement. Instead, we place threadsand
buffers manually and build five configurations for evaluating
the possible range in performance degradation. In order to
understand the configurations, we first describe the copies
that take place when data is transfered from from a device
to application memory.

The I/O stack of a typical OS today is shown in Figure 3. For
each I/O request made, there are two buffers involved in the
transfer from the device to the application: One buffer in the
application address space and one in the kernel. The placement
of the application buffer is controlled in our experiments via
numactl that is able to pin threads and buffers to specific
sockets. Kernel-buffer placement cannot be controlled; I/O
buffers in the kernel are part of the buffer cache and are shared
by all contexts performing I/O in the kernel. Thus, a context



TABLE I
TRANSFER AFFINITY TAXONOMY.

Transfer (T) Transfer Operation (O) Core access (P) Access type (I)
Local (L) Read (R) Local (L) Load (R)
Remote (R) Write (W) Remote (R) Store (W)

None (0)

CPUMEM CPU MEM
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CS baCS
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Fig. 2. Pictorial representation of three cases derived from the taxonomy described in Table I.
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Fig. 3. I/O Stack in Modern Operating Systems.

might use a buffer that is located in any memory module.
Creating different buffer pools for each socket could allow
proper kernel buffer placement and use, however, requires
extensive kernel modifications. In our experiments, buffer
allocations are initiated by user contexts entering the kernel
(we always start experiments with a clean buffer cache). This
results in (properly) placing buffers initially in the socket
where the user context is running. Although during each
experiment buffers can be reused by other contexts performing
I/O resulting in degraded affinity, this is not very pronounced
due to the large memory size in our setup.

Based upon buffer placement and thread scheduling, we use
five configurations shown in Table II. The axis for classifica-
tion are: (1) local versus remote transfers between I/O device
and memory and (2) local versus remote copy operation.
This copy operation is between the application buffers and

TABLE II
CONFIGURATIONS.

Transfer (TR) Copy Operation (CP) Configuration
Local(L) Local(L) TRLCPL
Remote(R) Remote(R) TRRCPR
Remote(R) Local(L) TRRCPR
Local(L) Remote(R) TRRCPR

the buffers of the OS-managed cache. We manually control
the source and destination of each copy operation by placing
threads and their buffers appropriately vianumactl.

IV. EVALUATION METHODOLOGY

In this section, we describe our experimental platform, ap-
plications for evaluation, and our methodology for evaluation.

A. Testbed for Evaluation

The top-level diagram of our evaluation platform is similar
to the one shown in Figure 1. The server uses Intel Xeon
Quadcore processors with four cores and eight hardware
threads (two-way hyperthreaded). The server is equipped with
two chipsets also from Intel (Tylersburg5520). We populate
the three memory slots with three DDR3 DIMMs. Each DIMM
occupy a separate physical channel. We use four storage
controllers (two per chipset). The storage controllers areform
LSI (Megasas 9260). We use a total of24 SSDs (Intel X-
25 SLC). Each storage controller is connected to six SSDs.
We create a software RAID device on top of six SSDs
connected to each storage controller. Therefore, each processor
has two software RAID devices that are local to it with better
affinity and two that are remote with worst affinity. We use
CentOS release 5.5 OS distribution with 2.6.18-194.32.1.el5
kernel (64-bit). For placing buffers and contexts, we use the
numactl library for Linux (version 2.0.7).



B. Bandwidth Characterization of System Components

In this section, we describe the bandwidth of individual
system components in order to understand the peak limitations
in our system. The bandwidth of the QPI links (labeled Q1,
Q2, Q3, Q4) is24 GBytes/s. Each storage controller from
LSI is able to achieve1.6 GBytes/s. The SSDs can sustain a
throughput of about200 MBytes/s for sequential writes and
270 MBytes/s for sequential (or random) reads. To measure
the memory bandwidth in our system, we use a in-house
benchmark modeled after STREAM [14] called mstress. We
run multiple instances of mstress and measure the memory
throughput with local and remote affinity. Figure 4(a) shows
our results. The peak bandwidth of storage controllers is much
less than the memory subsystem and the QPI interconnect,
neither of these is a potential bottleneck when performing I/O.

C. Methodology

To evaluate the impact of wrong buffer placement on
application performance, we use the following benchmarks
and applications:

1) zmIO: is an in-house benchmark that fully stresses the
storage sub-system of our high-end server machines (4 storage
controllers each capable of doing1.6 GB/s). zmIO uses the
asynchronous API of Linux for performing I/O operations [1].
zmIO issues multiple (user-defined parameter) I/O operations
and keep track of the status of each of the operation in a
queue called status queue. When the status queue is full, zmIO
performs a blocking operation and waits for an I/O operation
to complete. A new operation is issued after completing a
pending operation. The completion of I/O operations by CPU
and the completion of outstanding I/O operations by the
storage devices happens in parallel. We run zmIO in direct
mode. Note that in direct mode, zmIO performs I/O access to
storage devices that does not go through the page cache in the
kernel.

2) fsmark: is a filesystem stress benchmark that stresses
various features of the filesystem. fsmark runs a sequence
of operations on filesystem layer. In particular, we use it to
perform the operation sequence create,open,write,read, and
close. We run fsmark using128 threads with each thread
creating a single directory and128 files within each directory.
Each thread chooses a random directory and performs the
specified sequence of operations on any of the files within
the directory.

3) IOR: simulates checkpointing support in compute- in-
tensive applications [18]. We use the MPI API for performing
I/O operations. We run IOR on top of the XFS filesystem.
We use32 processes that checkpoint a2 GB state to a shared
file (aggregate file size is64 GB). Each process works with a
single file using sequential offsets within the single file.

4) Stream: is a synthetic application that simulates the
end-to-end datapath of data streaming systems [11]. The
application consists of a consumer thread that reads64 KB
records in a buffer. The consumer thread enqueues the pointer
to buffers in a list of descriptors. The list has128K entries. The
producer thread reads the buffer from the list of descriptors,

performs some conditioning on the buffer, updates the list of
descriptors and stores the record to storage device.

5) Psearchy: is a file indexing benchmark in the MOS-
BENCH [10] suite. File indexing is mainly done as a backend
job in data centres and web hosting facilities. We run Psearchy
using multiple processes. Each processes picks a file from a
shared queue of file names. Each process has a hash table for
storing in-memory BDB indices. The hash tables are written
to storage devices once they reach a particular size. We use32

processes,128 MB hash tables per process, and2 KB reads
and character oriented writes. We use100 GB corpus,10 MB
file size,100 files in each directory and100 directories.

For evaluating NUMA effects, we run a workload consisting
of four instances of the same application or benchmark. We
assign one RAID 0 device consisting of six SSDs to each
instance. Next, we define various metrics for our evaluation.

To project results to future systems with more components,
it is important to use appropriate metrics for evaluation and
observe how various components of the system are stressed
instead of merely observing the application throughput. For
this reason we use:

• Application Throughput (GB/s): The application through-
put refers to the aggregate bytes accessed by the appli-
cation divided by the execution time. Usually, read and
write throughput is reported separately based upon the
total bytes read or written during the execution time.

• Cycles per I/O (CPIO): In this work, we define and use
CPIO as a new metric for characterizing behavior of
applications that mainly process I/Os. We define CPIO
as the total cycles spent by the application divided by
the total sectors read and written by the device. We
believe that CPIO is particularly important for data-
centric applications that perform a one-pass over the
dataset as it gives an estimate of the work performed
per I/O sector. Ideally, as the number of cores increase,
CPIO should remain the same. Thus, it is a measure of
how well the applications scale on new generations of
systems.

• Throughput per socket: For one application, we report
the results in terms of throughput per socket. Because of
non-uniformity in the server systems, it is important to
maintain similar throughput across the entire system. We
show that for one of the applications, the throughput is
different for each socket depending upon the scheduling
scheme.

Since CPIO is a new metric we use in this paper, we discuss
it in detail below. We calculate cpio for each application by
running each application in ameaningfulconfiguration; ap-
plications when run, should generate I/O traffic. For instance,
cases where the workload fits in the available memory and ex-
hibit low I/O are probably not typical of future configurations
since the demand for data grows faster than DRAM capacity.
For this purpose, we select datasets that are big enough to not
fit in memory and generate I/O throughout execution.

To calculate CPIO, we measure the average execution time
breakdown as reported by the OS and consisting of user,



system, idle, and wait time. We also note the number of
I/Os that occurred during the same interval. There are two
issues related to the cpio calculation. First, what each of the
components means and second which ones should be taken
into account to come up with a meaningful metric. We next
briefly explain what each component of the breakdown means.

user timerefers to the time an application spends executing
code in the user space. When the user application request
services by the OS, the time spent is classified assystem time.
The time an application spends waiting for I/Os to complete
is classified aswait time. idle time refers to the time that the
application either has no more work to perform within the
current quantum or because it is waiting for resources that
are not available, for instance, locks. We use the modified
terms calledCPIOiowandCPIOsysrespectively to describe
the two components in terms ofCPIO. In our evaluation, we
use sector-size I/Os, with each sector being512 bytes. Note
that since CPU cycles proportionate to power [15], and given
the increasing emphasis on energy efficiency in data centres,
CPIO is an important metric.

V. RESULTS

In this section, we describe the results of our evaluation.

A. zmIO

We run zmIO indirect mode, and therefore, I/O accesses
do not go through the page cache in the kernel. Hence, there
is no distinction between local and remote copies. For DMA
transfers between devices and memory, the buffer provided by
the application is used instead. Note that this buffer is aligned
across the page boundary. In order to evaluate the impact of
affinity on throughput of zmIO, we use the affinity taxonomy
listed in Table I for describing our results. We mainly focus
on three issues:

• The impact of affinity between source and destination of
a transfer operation on storage throughput. Effectively,
this shows how much better or worse I/O transfers can
become by employing the wrong affinity.

• The impact of processor memory accesses on data trans-
fers, in combination with affinity. Typically, programs
that perform I/O also use CPU cycles to process data.
We examine the impact of accessing memory from the
processor to I/O transfer throughput.

• The impact of contention between processor and I/O
memory accesses on maximum achievable memory
throughput. Although this issues is similar to above,
in this case we are interested in whether simultaneous
accesses from processors and I/O devices to memory
result in a degradation of the maximum throughput, rather
than the impact on I/O throughput.

To evaluate the impact of affinity between source and
destination on storage bandwidth, we run multiple instances
of zmIO and measure the throughput. Figure 4(b) shows the
throughput of zmIO with up to eight instances. The reduction
in throughput with more than two instances and remote affinity
is up to40%.

At this point, it should be mentioned that we measured
throughput of zmIO using different machine configurations.
We observed that NUMA effects on throughput of zmIO
depend on a number of factors including OS distribution, the
version of Linux kernel, version ofnumactl library, and even
the type of motherboard. We observed that while Figure 4(b)
shows a40% drop in throughput, one of the machine config-
uration with a newer OS distribution and kernel, we observed
8% drop in throughput due to remote transfers. We believe that
the range of degradation that an application can potentially
suffer due to remote transfers is important to quantify and
improve.

Next, we optionally perform a summation operation over all
the bytes returned by the I/O read to observe the impact of
TLORPRIL and TRORPRIL. The variable that stores the sum
of the bytes is pinned in memory. The size of each transfer
is 1 MByte. Figure 4(b) shows results with zmIO touching
the data. Note that the absolute throughput for local transfers
and local use (TLORPLIR) is lower to that of TLORP0I0 be-
cause both the outstanding I/Os and the summation operation
accesses memory simultaneously. The reduction in throughput
for TLORPRIR when the data is used by a remote processor
is 5% with four instances of the benchmark. Beyond four
instances, TLORPRIL and TLORPLIL behave similarly. We
do not show results for TRORPLIR as it is also bounded by the
bandwidth of remote transfer operation and behaves similarto
the second case (TRORPRIR).

Next, we show how memory contention can hurt the per-
formance of storage I/O throughput in case of TLORPLIR in
Figure 4(c). We run instances of zmIO and mstress together.
We run up to eight instances of zmIO. Neither mstress nor
zmIO is bottlenecked by the CPU in this experiment. We run
zmIO in TLORPLIR mode. The absolute throughput of zmIO
drops by23% for eight instances when there is contention
for memory throughput i.e., mstress is running. The sum of
memory bandwidth used by zmIO and mstress together is
never greater than22 GBytes/s which is the maximum memory
bandwidth in the system.

B. fsmark

We discuss the results for fsmark in terms of cycles per
I/O. Since fsmark mostly perform operations related to the
filesystem, the system time is high. Also, due to contention
from multiple threads for I/O devices, iowait time is high. Fig-
ure 5(a) shows the breakdown of CPIO in terms ofCPIOsys

andCPIOiow. Remote transfers (TRRCPR) result in a40%
increase inCPIOsys compared to local transfers (TRLCPL).
Also if transfers are local, remote memory copy operation
(TRLCPR) result in a15% increase inCPIOsys compared
to TRLCPL. There is a130% increase inCPIOiow due to
remote transfers. The difference inCPIOiow due to remote
copies is not noticeable.

C. Psearchy

The results for Psearchy are shown in Figure 5(b). Again,
we discuss the results in terms of the cycles per I/O metric.
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Fig. 5. NUMA affinity results for benchmarks and real applications.

First, we observe that remote transfers result in an increase in
CPIOsys andCPIOiow. However, remote copies does not
show a noticeable difference. In particular, TRRCPR results
in a 57% and 69% increase inCPIOsys and CPIOiow

respectively relative to TRRCPL.

D. IOR

We report read and write throughput of IOR for differ-
ent configurations in Figure 5(c). Note that for IOR, read
operations can potentially complete in memory and thus the
aggregate throughput in Figure 5(c) goes up to7 GB/s. We
observe that the read throughput decreases by16% for the
worst case (TRRCPR) compared to the best case (TRLCPL).
Similarly, write throughput decreases by19% due to remote
transfers.

E. Stream

Figure 5(d) shows the results for the streaming workload.
We show the throughput observed on each of the two sets
of SSDs. Note that one set of12 SSDs is connected to two
storage controllers. Compared to TRLCPL, we observe a14%
and 27% drop in throughput respectively for the two set of
SSDs in case of TRRCPR.

VI. SUMMARY AND DISCUSSION

In this section, we first summarize the results of our
evaluation. We then provide implications of our results for

other important data-centric applications. We also discuss the
shortcomings of our methodology for evaluation.

A. Summary of Results

We summarize our results as follows:
• Applications that are I/O-intensive suffer from70% up to
130% increase in iowait time and from40% up to 57%
increase in system time due to remote transfers.

• For streaming workloads, remote transfers can potentially
result in asymmetric throughput across the system i.e.,
some (NUMA) domains can provide more throughput
compared to other domains.

• Checkpointing applications can potentially suffer a20%
degradation in write throughput due to remote transfers.

• Finally, raw device throughput, as measured by mi-
crobenchmarks such as zmIO, can drop from8% up to
40% depending upon the machine configuration.

B. Discussion

Our main purpose is to discuss the I/O behavior of many
emerging data-centric applications. In particular, we arein-
terested in NUMA affinity effects on the performance of
these applications. The applications we collected for evaluation
comes from various domains. In particular, these applications
are part of various benchmark suites including PARSEC [6],
MOSBENCH [10], two OLTP workloads from the TPC foun-
dation, and emerging data stores. A brief description of the



TABLE III
APPLICATIONS AND DATA SETS FOREVALUATION .

Application Description
zmIO I/O subsystem stress test:

direct mode (D) or through VFS.
fs mark File system stress test.
IOR Application checkpointing.
Psearchy File indexing:

Directories (D) can be small (L)
or large (L); files (F) can be
small (L) or large (L).

Dedup File compression:
Files can be small (S) or Large (L).

Ferret Content similarity search:
Files could be Small (S) or Large(L).

Metis Mapredce library:
Word Count (C) or Linear Regression (LR).

Borealis Data streaming:
Record size could be 64 KB (Bor64),
128 bytes (Bor128), or 1 KB (Bor1024)

HBase Non-relational database.
BDB Key-value data store.
TPC-C OLTP workload (Warehouse).
TPC-E OLTP workload (Stock broker).
Tarrif Profiling of Call Detail Records.

applications along with the type of data sets is given in
Table III.

In terms of I/O behavior, most applications in Table III
does not have high system or iowait times. Further, most
applications does not stress the storage subsystem in a manner
similar to applications we evaluate in Section V. For this
reason, using different configurations do not show a noticeable
difference in application throughput, CPIO, or physical device
throughput. We suspect two potential reasons for this behavior
as follows:

Figure 6 shows the breakdown of execution time of the
applications in Table III in terms of user, system, idle, and
iowait time. The breakdown is collected by running one
instance of each application on top of a software RAID device
consisting of24 SSD devices. We note from the figure that
most applications exhibit neither a significant component of
system time nor iowait time. This lead us to the conclusion that
in current NUMA systems, transfers from remotely located
devices are detrimental to performance only if the application
exhibit significant system or iowait time.

Finally, our experimental results, performed under con-
trolled circumstances, strongly suggest that the kernel allocates
buffers for paging purposes locally. Nevertheless, we can
not manually control the placement of kernel buffers. Most
applications in Table III have complex runtime layers and
a large user-level application code base. Therefore, proper
placement of kernel buffers can not be guaranteed.

VII. R ELATED WORK

Much work has been done for NUMA-aware process
scheduling and memory management in the context of shared
memory multiple processors [24], [16], [23]. Here, we discuss
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Fig. 6. Breakdown of time spent by various applications in terms of user,
system, idle, iowait, serving hardware interrupts (IRQ) and serving software
interrupts (SIRQ).

recent work for modern server machines with multiple sockets
on a single motherboard.

With the trend towards multiple cores on a single processor
chip in commodity desktop and server machines, there is no
longer a one-to-one mapping between I/O devices (network
interface cards (NIC) or storage controllers) and process-
ing resources (cores, virtual threads or even processors in
motherboards with multiple sockets). For instance, a network
interface card (NIC) can route the incoming traffic pertaining
to a particular socket to a specific core and the rest of
traffic to some other core. Recent10 GBit/s Ethernet NICs
from Intel (IX10GBE) provide multiple hardware queues and
mechanisms to associate each queue in hardware to a particular
software queue (which in turn is bind to a single core) [3], [2].

NUMA memory management is the problem of assigning
memory in a NUMA processor such that threads use memory
located next to the processor that they mostly run. These
issues are discussed in the realm of traditional multiprocessor
systems in [9], [17]. Recently, with multiple cores becoming
commonplace, commodity OS developers have started to in-
vest efforts to provide a NUMA API for programmers [5].

The authors in [20], [19] quantify NUMA effects in the
memory subsystem of Xeon 5520 processor from Intel. The
authors report that current memory controllers favor remote
memory accesses to local memory accesses which implies that
scheduling for data locality is not always a good idea. Also,
they show that throughput of remote memory accesses are
limited by QPI bandwidth. In this work, we show that along
with remote memory accesses, accessing remote I/O devices



can also hurt performance of realistic workloads.
Recently, there is a surge in literature dealing with thread

scheduling for modern servers. The authors in [25], [7] discuss
scheduling policies that address shared resource contention.
Their scheduling policies are built on a classification scheme
for threads and addresses contention in the memory sub-
system. In this paper, we use the transfer path from I/O devices
to physical memory and the processor that subsequently uses
the data to classify our scheduling policies.

Finally, energy efficiency in data centres is becoming more
and more important. In [21], [22], the authors discuss the
issues of co-scheduling processes considering both memory
bandwidth and potential of frequency scaling.

VIII. C ONCLUSIONS

In this paper, we described a problem in modern server ma-
chines that use point-to-point interconnects to connect CPUs,
memory and devices. We discuss the performance degradation
on applications if processes access data from memory modules
or devices that are located remotely to the processor. As
systems are built with more CPUs and sockets, with each CPU
having many cores and various memory modules, the perfor-
mance degradation due to the presence of NUMA affinity in
the system will increase. We propose a taxonomy based upon
the transfers from storage devices to memory modules and the
use of data by the process running on the local or the remote
socket. We describe four configurations with different buffer
placement and process scheduling policies. We classify the
configurations based upon how the transfers occur between the
storage devices and the kernel memory, and from the kernel
memory to the buffer reserved by the application. Our results
show that NUMA effects are particularly degrading for I/O-
intensive applications. As systems become more and more
heterogeneous, a more general solution to the placement and
scheduling problem will become essential for NUMA servers.
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