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need to traverse other processors’ sockets (also called AUM
domains), interfering with local traffic. Given the currérgnd
towards increasing number of cores in each processor and
Current server architectures have started to move away framo the number of sockets, we expect that this non-unitgrmi
traditional memory buses that do not scale and towards Poifil become more diverse with multiple crossings from other
to-point interconnects for communication among processoprocessors’ sockets for memory accesses. Solutions have be
memories, and 1/O devices. As a result, memory modules Rposed to deal with this problem at the Operating System
not equidistant from all cores |eading to Signiﬁcant diffieces (OS) |ayer [13], [8] main|y using various memory management
in memory access performance from different cores. Similgschniques as well as hardware caching approaches. Hawever
to memory modules, I/O devices are connected today #fese approaches alone are inadequate to deal with affinity
processor sockets in a NUMA manner. This results in NUMfssyes that arise during transfers between 1/0 devices and
effects for transfers between 1/O devices and memory basks memory. The affinity that a transfer of data exhibits, e.gnfr

well as processor I/0 (P1O) accesses to 1/0O devices. Thisltreg |ocal memory module to a local /O device can impact
towards NUMA architectures increases complexity for buffeyerformance.
placement, device data transfers, and code executiortirea Figure 1 shows a typical modern server architecture based
a complex affinity space. In this paper, we discuss probleyg a point-to-point interconnect. Note that the number of
that arise when performing I/O and present a preliminaptocessors in NUMA architectures has been increasing [12]
evaluation of the impact of different types of affinity. Weand the trend is projected to continue. In this paper, we
use a server-type system with two Intel Xeon processogfyantify the impact of affinity in non-uniform architectsre
four storage controllers, aritlt solid-state-disks (SSDs). Our(NUMA) on storage /O throughput. Our initial evaluation
experiments with various machine configurations show thgf a server-class machine with an architecture similar ® th
compared to local transfers between devices and memajfife shown in Figure 1 shows that the maximum achievable
remote transfers have the potential to reduce maximum\achigtorage throughput degrades significantly if communicatio
able throughput fron8% up to40%. Further, for I/O-intensive js done without considering proper affinity. In particulee
applications, remote transfers can potentially incred&® | gbserve that the maximum achievable throughput can reduce
completion time up ta 30%. significantly if processor (A) reads data from storage devic

Il. INTRODUCTION connected to chipset (b) compared to reading from devices

. . connected to chipset (a).
A predominant number of servers deployed in data-centre pset (a)

I. ABSTRACT

(improper affinity) on application throughput, device thgh-
Sut, time taken for completion of OS tasks (system time) and
ime taken for completion of 1/O requests (iowait time). We

nect [26], [4]. Such architectures result in non-uniformmeo
munication overheads between different devices and mem

mq;julesl. A know? problem in this dlret?tlon has been the r;o uantify this impact by placing buffers and scheduling #u=
uniform latency of memory accesses by a processor to a lo nually. We use a simple classification scheme to build four

or remote memory module. Each processor has faster acces@otﬁ)ﬁgurations with different approaches to buffer placetme

memory modules connected locally to it and SIOW?T access {0y scheduling threads. We evaluate the performance of vari
the rest of the (remote) memory modules. In addition, toda(y s applications using these configurations

accesses from one processor to a remote memory modu %ypically in real applications, buffers are allocated inmme

tAlso, with the Department of Computer Science, UniversitCrete, P.O. ory modules closest to the processor. However, systems try
Box 2208, Heraklion, GR-71409, Greece. to balance the use of memory across modules to allow for



=1 Intel Xeon 04 Intel Xeon [+~ an I/O request does not depend on the size of data. The second
~— Processor Processor [*+—*™ . . .
-~ ® ®) - operation is the type of transfer (local or remote) and tlive th
DDR3 DDR3 . .
Channels Channels operation is the usage of data (local or remote). We further
differentiate based on the type of transfer (read or write) a
the type of usage (load or store).

Table | presents our taxonomy. The best case is when a
'ntilagihipset 'HI?L)CNPSG transfer occurs with proper affinity between a memory module

@ and an 1/O controller that are located close to the same CPU

PCI PCI socket. Conversely, the worst case is when the transfeebuff

e L and the 1/0O controller are located in different socketsqals
Storage Controllers Storage Controllers called NUMA domains). An even worse case is when not only
i i the transfers are remote but the subsequent use of the data is
(5 (5 (5 (5 (5 O é O (5 é by a processor that is located remotely to where the memory

SSD Array SSD Array module is located. Some typical scenarios for real apjdinat
include:

Q2 Intel Quickpath Interconnect Q3

Fig. 1. The top-level architecture of a server machine with-aoniformity. .
« TLORPOIO : I/O transfers are local, the transfer operation

is read, and data is not used by the processor.

higher throughput. In addition, the system scheduler mayemo + TRORPOIO : I/O transfers are remote, the transfer oper-
threads around resulting in the initiation of transfersnsemn ation is read, and data not used by processor.

devices and memory modules with improper affinity: Data + TRORPRIR : I/O transfers are remote, transfer operation
requested by a processor could be located on a device that is is read, and the data that is returned is accessed by remote
either closer to the processor or remote, as shown in Figure 1 Processor.

whereas the buffers used for the transfer can have different TLORPRIR : I/O transfers are local, transfer operation is

affinity to the processor, resulting in significant variasoin read, and the data is used by a remote processor.

the observed performance. « TRORPRIR : I/O transfers are remote, transfer operation
Our work shows that compared to the configuration where is read, and data usage is by remote processor (load).

transfers between devices and memory are local : e TLORPLIR : I/O transfers are |Ocal, transfer Operation

is read, and data is used by the same (local) processor,

« |/O-intensive workloads suffer fron69% up to 130% ,
where data is returned.

increase in I/O-completion time due to remote transfers.
« Filesystem-intensive workloads suffer fro% up to The last three cases are depicted in Figure 2: circles denote
57% increase in system time (time for performing OSEPUs or devices involved in the I/O operation. Arrows denote
related activities) due to remote transfers. the transfer path taken by an I/O request. The first transfer
« Throughput-oriented workloads such as state checkpoiig-from chipset to memory DIMM. Next, we discuss buffer
ing or data-streaming suffer up 9% drop in read/write management and thread scheduling taking NUMA effects into
throughput due to remote transfers. account. Proper buffer management involves placing data in

The rest of the paper is organized as follows. Section fihe same memory module that is connected to the socket
describes a taxonomy of NUMA affinity in modern servers in@S the storage controller responsible for the 1/O operation
volving memory and devices. In the same section, we describ@read scheduling involves running threads on the CPU that
four configurations with different policies for buffer perment  is connected to the memory module containing data needed by
and thread scheduling Section IV describes our methodolo§g CPU. In this paper, we do not propose new algorithms for
for evaluation and in Section V we discuss the results of o§¢heduling and buffer placement. Instead, we place thraadis
evaluation. We provide a discussion of the shortcomingsiof douffers manually and build five configurations for evalugtin

work in Section V. We conclude this work in Section VIII. the possible range in performance degradation. In order to
understand the configurations, we first describe the copies

I11. 1/O AFFINITY TAXONOMY that take place when data is transfered from from a device
In real applications, when a processor accesses a bldekapplication memory.

device for a file, it first allocates a buffer in memory for The I/O stack of a typical OS today is shown in Figure 3. For
reading a block from the block device. For instance, comsideach I/O request made, there are two buffers involved in the
a worst-case scenario (Figure 1 where a process runningtansfer from the device to the application: One buffer ia th
processor (A) allocates a buffer in memory module closer &pplication address space and one in the kernel. The plademe
processor (B) and requests a block of file to be read froofi the application buffer is controlled in our experimenta v
the devices connected to the chipset (b). The three high-lemunmact | that is able to pin threads and buffers to specific
operations are 1) issuing the 1/0O operation, 2) serving f®e |sockets. Kernel-buffer placement cannot be controlle®; I/
request, and 3) using the data that is returned. We ignore thdfers in the kernel are part of the buffer cache and areeshar
first operation because unlike the other two operationsirigs by all contexts performing I/O in the kernel. Thus, a context



TABLE |
TRANSFER AFFINITY TAXONOMY.

| Transfer (T)| Transfer Operation (O] Core access (P) Access type (1)

Local (L) Read (R) Local (L) Load (R)
Remote (R) | Write (W) Remote (R) Store (W)
None (0)
MEM MEM MEM MEM MEM CPU CPU MEM
A 03 B [
Q2 Q4
csa| Q1 |csb csa| Q1 |cshb csa| Q1 |cshb
(1) TLORPRIR (2) TRORPRIR (3) TLORPLIR

Fig. 2. Pictorial representation of three cases derivenh filee taxonomy described in Table I.

— TABLE Il
Application Buffer CONFIGURATIONS.

| Transfer (TR)] Copy Operation (CP) Configuration|

Virtual File System Local(D) Local(D) TRLCPL
[ Remote(R) Remote(R) TRRCPR

i Remote(R) Local(L) TRRCPR
File System (XFS) Cocal(l) Remote(R) TRRCPR

[
Buffer Cache

‘ the buffers of the OS-managed cache. We manually control
Block Device Layer the source and destination of each copy operation by placing
[ threads and their buffers appropriately vianact | .

SCSI Layer
\

Storage Device In this section, we describe our experimental platform, ap-
plications for evaluation, and our methodology for evahat

IV. EVALUATION METHODOLOGY

Fig. 3. 1/O Stack in Modern Operating Systems. )
A. Testbed for Evaluation

The top-level diagram of our evaluation platform is similar
might use a buffer that is located in any memory modulé the one shown in Figure 1. The server uses Intel Xeon
Creating different buffer pools for each socket could allo@uadcore processors with four cores and eight hardware
proper kernel buffer placement and use, however, requitgseads (two-way hyperthreaded). The server is equippttd wi
extensive kernel modifications. In our experiments, bufféfo chipsets also from Intel (Tylersbufg20). We populate
allocations are initiated by user contexts entering thenéler the three memory slots with three DBRIMMs. Each DIMM
(we always start experiments with a clean buffer cache)s Thiccupy a separate physical channel. We use four storage
results in (properly) placing buffers initially in the sak controllers (two per chipset). The storage controllersfarm
where the user context is running. Although during eagls| (Megasas 9260). We use a total 2f SSDs (Intel X-
experiment buffers can be reused by other contexts pemigrmp5 SLC). Each storage controller is connected to six SSDs.
I/O resulting in degraded affinity, this is not very pronoadc We create a software RAID device on top of six SSDs
due to the large memory size in our setup. connected to each storage controller. Therefore, eaclegsoc

Based upon buffer placement and thread scheduling, we bses two software RAID devices that are local to it with better
five configurations shown in Table Il. The axis for classificaaffinity and two that are remote with worst affinity. We use
tion are: (1) local versus remote transfers between I/OageviCentOS release 5.5 OS distribution with 2.6.18-194.3/k1.e
and memory and (2) local versus remote copy operatidternel (64-bit). For placing buffers and contexts, we use th
This copy operation is between the application buffers amimact | library for Linux (version 2.0.7).



B. Bandwidth Characterization of System Components  performs some conditioning on the buffer, updates the fist o

In this section, we describe the bandwidth of individudl€Scriptors and stores the record to storage device.
system components in order to understand the peak limigatio ©) Psearchy:is a file indexing benchmark in the MOS-
in our system. The bandwidth of the QP! links (labeled QBENCH [10] suite. File indexing is mainly done as a backend
Q2, Q3, Q4) is24 GBytes/s. Each storage controller frorﬁob in data_centres and web hosting facilities. We run _Pd;tyarc
LSl is able to achieve.6 GBytes/s. The SSDs can sustain 4Sing multiple processes. Each processes picks a file from a
throughput of abou200 MBytes/s for sequential writes angShared queue of file names. Each process has a hash table for
270 MBytes/s for sequential (or random) reads. To measufEring in-memory BDB indices. The hash tables are written
the memory bandwidth in our system, we use a in-houlQ storage devices once they reach a particular size. Waise
benchmark modeled after STREAM [14] called mstress. W80Cesses}28 MB hash tables per process, aaB reads
run multiple instances of mstress and measure the mem@RA character oriented writes. We use) GB corpus,10 MB
throughput with local and remote affinity. Figure 4(a) showi€ Size, 100 files in each directory and00 directories.
our results. The peak bandwidth of storage controllers istmu 7O €valuating NUMA effects, we run a workload consisting
less than the memory subsystem and the QP! interconn&@fifour instances of the same application or benchmark. We

neither of these is a potential bottleneck when performieg | @SSign one RAID 0 device consisting of six SSDs to each
instance. Next, we define various metrics for our evaluation

C. Methodology To project results to future systems with more components,
To evaluate the impact of wrong buffer placement oft is important to use appropriate metrics for evaluationd an
application performance, we use the following benchmarR¥serve how various components of the system are stressed
and applications: instead of merely observing the application throughput. Fo

1) zmlO: is an in-house benchmark that fully stresses tHBis reason we use:
storage sub-system of our high-end server machifistofage « Application Throughput (GB/s): The application through-
controllers each capable of doirigé GB/s). zmlO uses the put refers to the aggregate bytes accessed by the appli-
asynchronous API of Linux for performing I/O operations.[1] cation divided by the execution time. Usually, read and
zmlO issues multiple (user-defined parameter) 1/0O operatio ~ write throughput is reported separately based upon the
and keep track of the status of each of the operation in a total bytes read or written during the execution time.
gueue called status queue. When the status queue is ful) zml « Cycles per I/O (CPIO): In this work, we define and use
performs a blocking operation and waits for an 1/0 operation CPIO as a new metric for characterizing behavior of
to complete. A new operation is issued after completing a applications that mainly process 1/Os. We define CPIO
pending operation. The completion of 1/O operations by CPU as the total cycles spent by the application divided by
and the completion of outstanding I/O operations by the the total sectors read and written by the device. We
storage devices happens in parallel. We run zmlO in direct believe that CPIO is particularly important for data-
mode. Note that in direct mode, zmlO performs I/O access to centric applications that perform a one-pass over the
storage devices that does not go through the page cache in the dataset as it gives an estimate of the work performed
kernel. per 1/O sector. Ideally, as the number of cores increase,
2) fsmark: is a filesystem stress benchmark that stresses CPIO should remain the same. Thus, it is a measure of
various features of the filesystem,_ fsark runs a sequence how well the applications scale on new generations of
of operations on filesystem layer. In particular, we use it to systems.
perform the operation sequence create,open,write,rgadl, a « Throughput per socket: For one application, we report
close. We run fsmark using128 threads with each thread the results in terms of throughput per socket. Because of
creating a single directory an®s files within each directory. non-uniformity in the server systems, it is important to
Each thread chooses a random directory and performs the maintain similar throughput across the entire system. We
specified sequence of operations on any of the files within show that for one of the applications, the throughput is
the directory. different for each socket depending upon the scheduling
3) IOR: simulates checkpointing support in compute- in-  scheme.
tensive applications [18]. We use the MPI API for performin@ince CPIO is a new metric we use in this paper, we discuss
I/O operations. We run IOR on top of the XFS filesystenit in detail below. We calculate cpio for each application by
We use32 processes that checkpoinRaGB state to a shared running each application in eeaningfulconfiguration; ap-
file (aggregate file size i84 GB). Each process works with aplications when run, should generate 1/O traffic. For ins&an
single file using sequential offsets within the single file.  cases where the workload fits in the available memory and ex-
4) Stream: is a synthetic application that simulates théibit low I/O are probably not typical of future configurati®
end-to-end datapath of data streaming systems [11]. Téiace the demand for data grows faster than DRAM capacity.
application consists of a consumer thread that re&d&B For this purpose, we select datasets that are big enougtt to no
records in a buffer. The consumer thread enqueues the poiritein memory and generate 1/0 throughout execution.
to buffers in a list of descriptors. The list ha23K entries. The  To calculate CPIO, we measure the average execution time
producer thread reads the buffer from the list of descrigtobreakdown as reported by the OS and consisting of user,



system, idle, and wait time. We also note the number of At this point, it should be mentioned that we measured
I/Os that occurred during the same interval. There are twlaroughput of zmlO using different machine configurations.
issues related to the cpio calculation. First, what eachhef tWe observed that NUMA effects on throughput of zmIO
components means and second which ones should be tattepend on a number of factors including OS distribution, the
into account to come up with a meaningful metric. We nextersion of Linux kernel, version afurmact | library, and even
briefly explain what each component of the breakdown meattise type of motherboard. We observed that while Figure 4(b)
user timerefers to the time an application spends executirghows a40% drop in throughput, one of the machine config-
code in the user space. When the user application requasttion with a newer OS distribution and kernel, we observed
services by the OS, the time spent is classifiedyastem time 8% drop in throughput due to remote transfers. We believe that
The time an application spends waiting for 1/0s to completbe range of degradation that an application can poteptiall
is classified asvait time idle timerefers to the time that the suffer due to remote transfers is important to quantify and
application either has no more work to perform within themprove.
current quantum or because it is waiting for resources thatNext, we optionally perform a summation operation over all
are not available, for instance, locks. We use the modifitide bytes returned by the 1/0 read to observe the impact of
terms calledCPI0;,,and CPIO,,respectively to describe TLORPRIL and TRORPRIL. The variable that stores the sum
the two components in terms 6fP7O. In our evaluation, we of the bytes is pinned in memory. The size of each transfer
use sector-size I/Os, with each sector beiig bytes. Note is 1 MByte. Figure 4(b) shows results with zmlO touching
that since CPU cycles proportionate to power [15], and givéhe data. Note that the absolute throughput for local texssf
the increasing emphasis on energy efficiency in data centrasd local use (TLORPLIR) is lower to that of TLORPOIO be-
CPIO is an important metric. cause both the outstanding 1/0s and the summation operation
accesses memory simultaneously. The reduction in thrattghp
for TLORPRIR when the data is used by a remote processor
In this section, we describe the results of our evaluation.js 59 with four instances of the benchmark. Beyond four
A. zmIO instances, TLORPRIL and TLORPLIL behave similarly. We
do not show results for TRORPLIR as it is also bounded by the

We run zmiO indirect mode, and therefore, 1/O accesseg,nqgyidth of remote transfer operation and behaves sittailar
do not go through the page cache in the kernel. Hence, thetg <acond case (TRORPRIR).

is no distinction between local and remote copies. For DMA \jaxt we show how memory contention can hurt the per-

transfers between devices and memory, the buffer provigedfy .\, ance of storage 1/0 throughput in case of TLORPLIR in
the application is used instead. Note that this buffer sl g re 4(c). We run instances of zmlO and mstress together.
across the page boundary. In order to evaluate the impacwg run up to eight instances of zmlO. Neither mstress nor
affinity on throughput of zmlO, we use the affinity taxonomy 5 is pottlenecked by the CPU in this experiment. We run
listed in Table I for describing our results. We mainly focus,i5 in TLORPLIR mode. The absolute throughput of zmIO
on three issues: drops by23% for eight instances when there is contention
« The impact of affinity between source and destination &y memory throughput i.e., mstress is running. The sum of
a transfer operation on storage throughput. Effectivelfyemory bandwidth used by zmlO and mstress together is
this shows how much better or worse 1/O transfers Ca{ever greater tha22 GBytes/s which is the maximum memory

become by employing the wrong affinity. bandwidth in the system.
« The impact of processor memory accesses on data trans-

fers, in combination with affinity. Typically, programsB. fsmark
that perform I/O also use CPU cycles to process data.we discuss the results for fsmark in terms of cycles per
We examine the impact of accessing memory from thg. Since fsmark mostly perform operations related to the
processor to I/O transfer throughput. filesystem, the system time is high. Also, due to contention
« The impact of contention between processor and I/flom multiple threads for I/O devices, iowait time is highgF
memory accesses on maximum achievable memajye 5(a) shows the breakdown of CPIO in termstPI0,,,
throughput. Although this issues is similar to abovexnd CP10;,,,. Remote transfers (TRRCPR) result int@%
in this case we are interested in whether simultaneoygrease iNCPI0,,, compared to local transfers (TRLCPL).
accesses from processors and I/O devices to mem@¥o if transfers are local, remote memory copy operation
result in a degradation of the maximum throughput, ratherRLCPR) result in al5% increase inCPI0,,, compared
than the impact on 1/O throughput. to TRLCPL. There is a30% increase inCPI10;,, due to
To evaluate the impact of affinity between source am@mote transfers. The difference #WPI10;,, due to remote
destination on storage bandwidth, we run multiple instanceopies is not noticeable.
of zmlO and measure the throughput. Figure 4(b) shows the
throughput of zmIO with up to eight instances. The reductidn- Psearchy
in throughput with more than two instances and remote affinit The results for Psearchy are shown in Figure 5(b). Again,
is up t040%. we discuss the results in terms of the cycles per I/O metric.

V. RESULTS
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Fig. 5. NUMA affinity results for benchmarks and real appiicas.

First, we observe that remote transfers result in an ineréas other important data-centric applications. We also disdhe
CPIO4ys and CPIO;,,. However, remote copies does noshortcomings of our methodology for evaluation.

show a noticeable difference. In particular, TRRCPR resuIA
in a 57% and 69% increase INCPIO0,,, and CPIO;, )
respectively relative to TRRCPL.

Summary of Results

We summarize our results as follows:
« Applications that are 1/0-intensive suffer frofd% up to
D. IOR 130% increase in iowait time and from0% up to57%
We report read and write throughput of IOR for differ- increase in system time due to remote transfers.
ent configurations in Figure 5(c). Note that for IOR, read « For streaming workloads, remote transfers can potentially
operations can potentially complete in memory and thus the result in asymmetric throughput across the system i.e.,

aggregate throughput in Figure 5(c) goes uprt®B/s. We some (NUMA) domains can provide more throughput

observe that the read throughput decreasedd@® for the compared to other domains.

worst case (TRRCPR) compared to the best case (TRLCPL). Checkpointing applications can potentially suffe2@%6

Similarly, write throughput decreases 9% due to remote degradation in write throughput due to remote transfers.

transfers. « Finally, raw device throughput, as measured by mi-
crobenchmarks such as zmlO, can drop freé% up to

E. Stream 40% depending upon the machine configuration.

Figure 5(d) shows the results for the streaming workload.
We show the throughput observed on each of the two séts
of SSDs. Note that one set a2 SSDs is connected to two Our main purpose is to discuss the I/O behavior of many
storage controllers. Compared to TRLCPL, we observé% emerging data-centric applications. In particular, we are
and 27% drop in throughput respectively for the two set oferested in NUMA affinity effects on the performance of

Discussion

SSDs in case of TRRCPR. these applications. The applications we collected fonatan
comes from various domains. In particular, these apptioati
VI. SUMMARY AND DiscuUssION are part of various benchmark suites including PARSEC [6],

In this section, we first summarize the results of oUMOSBENCH [10], two OLTP workloads from the TPC foun-
evaluation. We then provide implications of our results fadation, and emerging data stores. A brief description of the



TABLE Il — User

APPLICATIONS AND DATA SETS FOREVALUATION . ] %I/stem
- e
Application | Description : :/F({)Qwalt
zmlO I/O subsystem stress test:  SIRQ
direct mode (D) or through VFS.
fs_mark File system stress test. 100+ 1] I 1 ]
IOR Application checkpointing. 90 I II I I
Psearchy File indexing:
Directories (D) can be small (L) 807 Q \} \ \\ \
or large (L); files (F) can be @ 70- \\ N§ \ & \
small (L) or large (L). F g0l Q\ \ \\ A\ |
Dedup File compression: § s 5
Files can be small (S) or Large (L). ‘g 50 N\
Ferret Content similarity search: B 40 7 i \
Files could be Small (S) or Large(L). 5 / / A § \
Metis Mapredce library: R 30- V/ / A / &
Word Count (C) or Linear Regression (LR). 20 / / / / /
Borealis Data streaming: / 7 / / / 1/ /
Record size could be 64 KB (Bor64), 10- A//// / \ '/ / 94/
HBase ﬁzo?\ ?ggjo%Z?réstsa)l;;srel <L (Borl02Y o 2 ” wo T /‘ g ¢
- . P00V O00C0L2SELY t s %
BDB Key-value data store. EEggaaggggggggﬂi’ggg
TPC-C OLTP workload (Warehouse). SS5o D R
TPC-E OLTP workioad (Stock broker). §28¢
Tarrif Profiling of Call Detail Records. & 8a0  applcation

Fig. 6. Breakdown of time spent by various applications imte of user,
o ] ] ) system, idle, iowait, serving hardware interrupts (IRQJl @erving software
applications along with the type of data sets is given interrupts (SIRQ).

Table 111,
In terms of 1/O behavior, most applications in Table IlI
does not have high system or iowait times. Further, masicent work for modern server machines with multiple sogket
applications does not stress the storage subsystem in aemaim a single motherboard.
similar to applications we evaluate in Section V. For this With the trend towards multiple cores on a single processor
reason, using different configurations do not show a natieea chip in commodity desktop and server machines, there is no
difference in application throughput, CPIO, or physicalide |onger a one-to-one mapping between /O devices (network
throughput. We suspect two potential reasons for this iehavinterface cards (NIC) or storage controllers) and process-
as follows: ing resources (cores, virtual threads or even processors in
Figure 6 shows the breakdown of execution time of th@otherboards with multiple sockets). For instance, a netwo
applications in Table Il in terms of user, system, idle, anghterface card (NIC) can route the incoming traffic pertagni
iowait time. The breakdown is collected by running oneo a particular socket to a specific core and the rest of
instance of each application on top of a software RAID devigeaffic to some other core. Receh® GBit/s Ethernet NICs
consisting of24 SSD devices. We note from the figure thafrom Intel (IX10GBE) provide multiple hardware queues and
most applications exhibit neither a significant component gnechanisms to associate each queue in hardware to a particul
system time nor iowait time. This lead us to the conclusi@n thsoftware queue (which in turn is bind to a single core) [3], [2
in current NUMA systems, transfers from remotely located NUMA memory management is the problem of assigning
devices are detrimental to performance only if the appbeat memory in a NUMA processor such that threads use memory
exhibit significant system or iowait time. located next to the processor that they mostly run. These
Finally, our experimental results, performed under cofssues are discussed in the realm of traditional multipssce
trolled circumstances, strongly suggest that the kerh@tates systems in [9], [17]. Recently, with multiple cores becogin
buffers for paging purposes locally. Nevertheless, we caBmmonplace, commodity OS developers have started to in-
not manually control the placement of kernel buffers. Moslest efforts to provide a NUMA API for programmers [5].
applications in Table Ill have complex runtime layers and The guthors in [20], [19] quantify NUMA effects in the
a large user-level application code base. Therefore, propgemory subsystem of Xeon 5520 processor from Intel. The
placement of kernel buffers can not be guaranteed. authors report that current memory controllers favor remot
memory accesses to local memory accesses which implies that
scheduling for data locality is not always a good idea. Also,
Much work has been done for NUMA-aware procesthey show that throughput of remote memory accesses are
scheduling and memory management in the context of shatigdited by QPI bandwidth. In this work, we show that along
memory multiple processors [24], [16], [23]. Here, we dsku with remote memory accesses, accessing remote 1/0O devices
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can also hurt performance of realistic workloads.

scheduling for modern servers. The authors in [25], [7]uksc

scheduling policies that address shared resource comtenti

Their scheduling policies are built on a classification scae (8l
for threads and addresses contention in the memory su
system. In this paper, we use the transfer path from 1/0 dsvic
to physical memory and the processor that subsequently uses

the data to classify our scheduling policies.

Finally, energy efficiency in data centres is becoming more
and more important. In [21], [22], the authors discuss the
issues of co-scheduling processes considering both memory

bandwidth and potential of frequency scaling.

In this paper, we described a problem in modern server m[a—
chines that use point-to-point interconnects to connedi ;P
memory and devices. We discuss the performance degradaﬁtﬂ'n
on applications if processes access data from memory medule
or devices that are located remotely to the processor. B8]
systems are built with more CPUs and sockets, with each CP1%‘] R.P. LaRowe, Jr., C. S. Ellis, and L. S. Kaplan. The rabess of numa
having many cores and various memory modules, the perfor-
mance degradation due to the presence of NUMA affinity in
the system will increase. We propose a taxonomy based u
the transfers from storage devices to memory modules and thé
use of data by the process running on the local or the remote
socket. We describe four configurations with different buff (18]
placement and process scheduling policies. We classify the]
configurations based upon how the transfers occur between th
storage devices and the kernel memory, and from the kernel
memory to the buffer reserved by the application. Our resufto;
show that NUMA effects are particularly degrading for 1/O-
intensive applications. As systems become more and more

VIIl. CONCLUSIONS
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Recently, there is a surge in literature dealing with thread
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2010. ACM.

M. J. Bligh. Linux on numa systems.
Symposium2004.

IRroceedings of the Linux
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