
TeraHeap: Reducing Memory Pressure in Managed Big Data
Frameworks

Iacovos G. Kolokasis∗†
FORTH-ICS, Greece
kolokasis@ics.forth.gr

Giannos Evdorou∗†
FORTH-ICS, Greece
evdorou@ics.forth.gr

Shoaib Akram‡

ANU, Australia
shoaib.akram@anu.edu.au

Christos Kozanitis∗
FORTH-ICS, Greece
kozanitis@ics.forth.gr

Anastasios Papagiannis
Isovelent, Inc., USA

anastasios@isovalent.com

Foivos S. Zakkak
Red Hat, Inc., UK

fzakkak@redhat.com

Polyvios Pratikakis∗†
FORTH-ICS, Greece
polyvios@ics.forth.gr

Angelos Bilas∗†
FORTH-ICS, Greece
bilas@ics.forth.gr

ABSTRACT
Big data analytics frameworks, such as Spark and Giraph, need to
process and cache massive amounts of data that do not always fit
on the managed heap. Therefore, frameworks temporarily move
long-lived objects outside the managed heap (off-heap) on a fast
storage device. However, this practice results in (1) high serializa-
tion/deserialization (S/D) cost and (2) high memory pressure when
off-heap objects are moved back to the heap for processing.

In this paper, we propose TeraHeap, a system that eliminates S/D
overhead and expensive GC scans for a large portion of the objects
in big data frameworks. TeraHeap relies on three concepts. (1) It
eliminates S/D cost by extending the managed runtime (JVM) to
use a second high-capacity heap (H2) over a fast storage device. (2)
It offers a simple hint-based interface, allowing big data analytics
frameworks to leverage knowledge about objects to populate H2. (3)
It reduces GC cost by fencing the garbage collector from scanning
H2 objects while maintaining the illusion of a single managed heap.

We implement TeraHeap in OpenJDK and evaluate it with 15
widely used applications in two real-world big data frameworks,
Spark and Giraph. Our evaluation shows that for the same DRAM
size, TeraHeap improves performance by up to 73% and 28% com-
pared to native Spark and Giraph, respectively. Also, it provides
better performance by consuming up to 4.6× and 1.2× less DRAM
capacity than native Spark and Giraph, respectively. Finally, it out-
performs Panthera, a state-of-the-art garbage collector for hybrid
memories, by up to 69%.

CCS CONCEPTS
• Software and its engineering → Memory management;
Garbage collection; Runtime environments; • Information

∗Foundation for Research and Technology - Hellas (FORTH), Institute of Computer
Science (ICS), Greece
†Department of Computer Science, University of Crete, Greece
‡Australian National University, Australia

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9918-0/23/03.
https://doi.org/10.1145/3582016.3582045

systems → Flash memory; Phase change memory; Data ana-
lytics; • Computer systems organization → Cloud computing.

KEYWORDS
Java Virtual Machine (JVM), large analytics datasets, serialization,
large managed heaps, memory management, garbage collection,
memory hierarchy, fast storage devices

ACM Reference Format:
Iacovos G. Kolokasis, Giannos Evdorou, Shoaib Akram, Christos Kozanitis,
Anastasios Papagiannis, Foivos S. Zakkak, Polyvios Pratikakis, and Angelos
Bilas. 2023. TeraHeap: Reducing Memory Pressure in Managed Big Data
Frameworks. In Proceedings of the 28th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems,
Volume 3 (ASPLOS ’23), March 25–29, 2023, Vancouver, BC, Canada. ACM,
New York, NY, USA, 16 pages. https://doi.org/10.1145/3582016.3582045

1 INTRODUCTION
Managed big data frameworks, such as Spark [56] and Giraph [44],
are designed to analyze huge volumes of data. Typically, such pro-
cessing requires iterative computations over data until a conver-
gence condition is satisfied. Each iteration produces new transfor-
mations over data, generating a massive volume of objects spanning
long computations.

Hosting a large volume of objects on the managed heap increases
memory pressure, resulting in frequent garbage collection (GC)
cycles with low yield. Each GC cycle reclaims little space because
(1) the cumulative volume of allocated objects is several times larger
than the size of available heap [51] and (2) objects in big data
frameworks exhibit long lifetimes [10, 48, 52]. Although production
garbage collectors efficiently manage short-lived objects, they do
not perform well under high memory pressure introduced by long-
lived objects [32].

The common practice for coping with rapidly growing datasets
and high GC cost is to move objects outside the managed heap
(off-heap) over a fast storage device (e.g., NVMe SSD). However,
frameworks cannot compute directly over off-heap objects, and
thus, they (re)allocate these objects on the managed heap to process
them. Although some systems support off-heap computation over
byte arrays with primitive types [14], they do not offer support
for computation over arbitrary objects, resulting in applications
specific solutions, such as Spark SQL [12].

Moving managed objects off-heap has twomain limitations. First,
it introduces high serialization/deserialization (S/D) overhead for
applications that use complex data structures [34, 43, 50]. Recent
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efforts [25, 27] reduce S/D but demand custom hardware extensions
and do not mitigate GC overhead. Second, moving a large volume of
off-heap objects to the managed heap for processing increases the
GC cost. Although TMO [49] transparently swaps cold application
memory to NVMe SSDs and provides direct access to device resident
objects (no S/D), it cannot avoid slow GC scans over the device.
Our evaluation shows that GC and S/D constitute up to 87% of the
execution time in big data applications.

In this work, we propose TeraHeap, a system that eliminates S/D
andGC overheads for a large portion of the data inmanaged big data
analytics frameworks. TeraHeap extends the Java virtual machine
(JVM) to use a second, high-capacity heap (H2) over a fast storage
device that coexists alongside the regular heap (H1). It eliminates
S/D by providing direct access to objects in H2 and reduces GC
by avoiding costly GC scans over objects in H2. Frameworks use
TeraHeap through its hint-based interface without modifications to
the applications that run on top of them. TeraHeap addresses three
main challenges, as follows.

Identifying candidate objects for H2. Big data frameworks
move specific objects outside the managed heap on off-heap storage.
For instance, Spark moves off-heap intermediate results; Giraph
moves the vertices and edges of the graph and the messages sent
between vertices. Frameworks organize such data (partitions) as
groups of objects with a single-entry root reference [30]. TeraHeap
provides a hint-based interface that uses key-object opportunism [22]
and enables frameworks to mark objects and indicate when to move
them to H2. During GC, TeraHeap starts from root key-objects and
dynamically identifies the objects to move to H2.

Eliminating GC cost for H2. TeraHeap presents a unified heap
with the aggregate capacity of H1 and H2, where scans over H2
during GC are eliminated, to avoid expensive device I/O. To achieve
this, TeraHeap organizes H2 into regions with similar-lifetime ob-
jects and deals differently with liveness analysis and space recla-
mation. For liveness analysis, TeraHeap identifies live H2 regions
by tracking forward (H1 to H2) and cross-region (into H2) refer-
ences during GC. To identify live objects in H1, TeraHeap explicitly
tracks backward references (H2 to H1) and fences GC scans in H2.
TeraHeap tracks backward references using a card table optimized
for storage-backed heaps, minimizing I/O traffic to the underlying
device during GC. For space reclamation, the collector reclaims H1
objects as usual. For H2 regions, unlike existing region-based allo-
cators [16, 35] TeraHeap resolves the space-performance trade-off
for reclaiming space differently. Existing allocators reclaim region
space eagerly bymoving live objects to another region, whichwould
generate excessive I/O for storage-backed regions. Instead, Tera-
Heap uses the high capacity of NVMe SSDs to reclaim entire regions
lazily, avoiding slow object compaction on the storage device.

Applying TeraHeap. Managed big data analytics frameworks
exhibit significant diversity concerning the objects they move off-
heap. We investigate how Spark and Giraph, two widely used frame-
works, resolve the trade-off between GC cost due to large heaps
and the overhead of off-heap accesses. Spark users explicitly store
immutable cached data on the device, while Giraph transparently
(without user hints) offloads mutable objects to the device. We
modify the two frameworks to use TeraHeap. The use of TeraHeap

is different in each framework: Spark uses TeraHeap to store im-
mutable intermediate results, whereas Giraph uses TeraHeap to
store mutable objects, such as edges and messages.

We implement TeraHeap and its mechanisms in OpenJDK, ex-
tending the Parallel Scavenge garbage collector. We also extend
the interpreter and the C1 and C2 Just-in-Time (JIT) compilers to
support object updates in H2 during application execution. Our
evaluation shows that TeraHeap improves performance by up to
73% and 28% compared to native Spark and Giraph, respectively.
TeraHeap provides similar or better performance by consuming up
to 4.6× and 1.2× less DRAM capacity than native Spark and Giraph,
respectively. Also, it outperforms Panthera [48], a garbage collector
specialized for hybrid memories, by up to 69%.

Overall, our work makes the following contributions:
• We introduce a dual heap approach to reduce S/D and mem-
ory pressure in big data frameworks, by adding a second,
high-capacity, managed heap over a fast storage device.

• We propose a hint-based interface based on key-object oppor-
tunism that enables frameworks to mark candidate objects
in a coarse-grain manner and select when to move them to
the second heap.

• We show the applicability of TeraHeap as: (1) a large, on-
heap, compute cache in Spark to store intermediate results
and (2) a high-capacity heap in Giraph to store messages and
edges.

2 BACKGROUND
This section provides background related to JVM garbage collection
and serialization/deserialization.

Garbage Collection: Modern collectors exploit the generational
hypothesis that many objects die young. For this reason, they divide
the managed heap into a young generation for new objects and
an old generation for objects that survive multiple young (minor)
collections [47]. They further divide the young generation into an
eden space and two survivor spaces, called from-space and to-space.
Application (mutator) threads allocate new objects into the eden
space. When the eden space becomes full, garbage collectors per-
form a minor GC. During minor GC, the garbage collector identifies
live objects in the eden space and from-space. Then, it moves live
objects to the to-space and the mature objects to the old genera-
tion. When the managed heap becomes full, the JVM performs a
full (major) GC, which scans and compacts objects in both old and
young generations.

Although JVMs are typically used with only DRAM-resident
managed heaps, today, they can allocate either the entire heap or
the old generation over a storage device using memory-mapped
I/O (e.g., Linuxmmap). However, existing garbage collectors are de-
signed for DRAM-backed heaps and incur significant overhead for
storage-backed heaps [54]. DRAM is byte addressable and provides
low latency and high throughput regardless of operation types
(read/write) and access patterns (random/sequential). On the other
hand, fast-storage devices (e.g., NVMe SSDs) can only be accessed
in page granularity. Page granularity accesses cause a significant
increase in I/O traffic by transferring the entire page even if only a
small portion of that page is required, resulting in a performance
penalty [1, 41].
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Object Serialization: Java serialization enables the conversion
of a memory-resident object into a form that is convenient for
storing it off-heap (memory, storage, or network) and can even be
shared across JVMs. Serialization transforms Java objects in the
managed heap into a byte stream, and deserialization reconstructs
the Java objects from byte streams into heap representations (with
references). During S/D, the serializer traverses the object graph to
identify all objects that need to be serialized, starting from the root
object selected for off-heap placement.

Java serialization is a complex process that introduces significant
limitations and overheads during execution. When serializing an
object, the serializer omits fields marked with the transient modifier.
Transient fields are initialized to a default value during deserial-
ization based on the serializer implementation. Thus, serialization
limits the objects that can be moved off-heap, as it requires self-
contained entities without references to and from the managed
heap, i.e., only serializable objects [19, 21, 37]. In addition, extract-
ing and recreating the object state requires mechanisms that bypass
constructors and ignore class and field accessibility. Performance-
wise, traversing the object graph requires effort proportional to the
volume of objects in the transitive closure of the root object. Most
relevant to our work, S/D generates many temporary objects while
transforming objects into byte streams and vice-versa. Temporary
objects put more pressure on the heap and lead to more frequent
GC cycles. Recent work identifies S/D as a significant performance
bottleneck in big data analytics frameworks [33, 34, 43, 46].

3 TERAHEAP DESIGN
3.1 Overview
The key idea of TeraHeap, as shown in Figure 1, is to extend the
JVM to use a second, high-capacity managed heap (H2) over a fast
storage device that coexists with the regular managed heap (H1).
Unlike DRAM-backed H1, H2 is memory-mapped over a storage
device, allowing direct access to deserialized objects without S/D.
Memory-mapped I/O eliminates the need to use a custom reference
lookup mechanism in the JVM to identify objects on the device,
as the OS virtual memory mechanism performs this translation.
TeraHeap manages the two heaps differently and hides their het-
erogeneity, providing to big data applications the abstraction of a
single managed heap.

Although TeraHeap is agnostic to the specific device that backs
H2, the intention is to mapH2 over fast storage devices, either block-
addressable NVMe SSDs or byte-addressable NVM. Such devices are
amenable to memory mapped I/O due to their high throughput and
low latency for small request sizes (4 KB) regardless of the access
pattern [41]. NVMe SSDs are particularly attractive as datasets
grow because they provide high density (capacity) and lower cost
per bit compared to DRAM and NVM [49].

We design TeraHeap based on our observations about objects
and their management in big data analytics frameworks, as follows.

Which objects to move to H2 and when? We observe that
different managed big data frameworks maintain off-heap stores
to move (specific) long-lived objects that are reused across com-
putation stages outside the managed heap. They organize groups
of objects in data structures, such as arrays with a single-entry

Second heap (H2)Regular heap (H1)

DRAM 

JVM

Young gen. Old gen.

NVM / NVMe SSD

Region 0 . . . Region N

File-backed mmap()

H2 card table

Anonymous mmap()

Figure 1: TeraHeap design overview.

root reference (key objects). However, their off-heap objects have
diverse access and update patterns. For example, Spark only moves
immutable objects off-heap, and Giraph moves objects that are
eventually immutable.

TeraHeap exposes a novel hint-based interface that uses key-
object opportunism [22] to identify specific objects to move to H2,
typically objects that would be moved off-heap. Frameworks use
that interface to (1) tag with a label the root key object appropriate
for placement to H2 and (2) advise TeraHeap when to move objects
to H2. Decoupling the selection of the candidate root key objects
from their transfer to H2 enables TeraHeap to cope with expen-
sive read-modify-writes over the storage device. These hints are
translated into two native function calls at runtime. The hint-based
interface works at the framework level and is entirely transparent
to applications written on top of such frameworks (§3.2).

How to reclaim dead objects in H2 without GC scans? Scan-
ning the storage-backed H2 for liveness analysis and compacting
objects for space reclamation incurs a high GC overhead due to
excessive device I/O traffic and page faults. Liveness analysis is a
graph traversal operation over a huge graph of live objects con-
nected by references. Object graph traversal often suffers from
random accesses with poor page locality, so the garbage collector
potentially triggers a page fault as it follows each reference. Also,
object compaction in H2 incurs high I/O traffic due to excessive
read-modify-writes operations.

TeraHeap reduces the high GC overhead by organizing H2 in
virtual memory as a region-based heap. Each region hosts object
groups with similar lifetimes to reclaim dead objects in bulk. Most
objects that are reachable by root key-objects exhibit a similar
lifetime [16]. TeraHeap leverages the high capacity of NVMe SSDs
to resolve the space-performance trade-off differently than existing
work [16, 35]. Previous work targets DRAM-backed heaps and
focuses on freeing address space eagerly by scanning regions and
moving live objects with cross-region references to other regions.
However, TeraHeap reclaims H2 space lazily with low overhead by
freeing whole regions and their objects in bulk. To ensure memory
safety while reclaiming dead H2 regions, TeraHeap must take into
account forward (H1 to H2) and cross-region references (§3.3).

How to prevent reclamation of backward references (H2 to
H1)? Fencing GC scans in H2 further requires tracking backward
references from H2 to H1, as the garbage collector must not reclaim
H1 objects referenced by live H2 objects. The key difficulty is that
H2 objects can reference objects in both generations of H1 and need
to be tracked differently. Young objects inH1 change location during
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minor GC, while old objects move only during major GC. Scanning
H2 to identify backward references may incur significant overhead,
depending on the size of H2 and its backing device. Instead, we
use an extended card table for H2 to track backward references,
optimized for storage-backed heaps (§3.4).

Next we discuss how TeraHeap solves the three main challenges
related to: (1) identifying and moving candidate objects to H2, (2)
reclaiming dead objects in H2 without GC scans and I/O traffic, and
(3) tracking backward references (H2 to H1) with low GC cost and
I/O overhead.

3.2 Identifying and Moving Objects to H2
TeraHeap provides a hint-based interface, enabling frameworks to
tag root key-objects with a label for H2 movement, via a new field
(eight bytes for alignment purposes) in the Java object header. Alter-
natively, we can avoid this field by using additional JVM metadata
for storing the address of each object that needs to be moved to H2.
However, this would increase GC time because it requires updating
object accesses in every GC cycle until they are moved to H2. The
TeraHeap interface consists of the following function calls.

h2_tag_root(obj, label): The framework uses h2_tag_root()
to tag a root key-object with a label.

h2_move(label): The framework uses h2_move() to advise Ter-
aHeap to move all objects with the specified label to H2. During the
next major GC, the garbage collector identifies the root key-objects
tagged with the same label as the specified label. Then it detects
and marks for moving to H2 objects in the transitive closure of the
root key-object by tagging these objects with the same label as the
root-key object.

Typically, frameworks can use h2_move() once their object group
becomes immutable. However, immutability is not a strict require-
ment for movement to H2 and partly depends on storage device
characteristics [24]. For instance, in Spark, all objects can be moved
when marking the root key-object, whereas, in Giraph, objects are
best moved at the end of each computation stage, possibly much
later than when marking the root key-object.

Delaying the move to H2 runs the danger of creating out-of-
memory errors because H1 may fill before h2_move() is called. To
avoid this, TeraHeap monitors the space that live objects occupy
at the end of each major GC. If the live objects occupy more space
in H1 than a high threshold (e.g., 85% of H1), TeraHeap will move
marked objects to H2 during the next major GC without waiting
for h2_move().

At this point, if TeraHeap moves all marked objects to H2, it may
incur excessive device traffic, e.g., in case some of these objects may
be updated frequently prior to the application using h2_move().
To mitigate this effect, TeraHeap uses a low threshold mechanism as
well, which limits how many marked objects will move to H2 when
TeraHeap detects high H1 pressure prior to seeing an h2_move()
hint. In our evaluation, we also examine the alternative of not using
h2_move() and relying only on the high-low threshold mechanism.

Placing objects with the same label in the same H2 region allows
TeraHeap to reclaim them en masse. However, the transitive closure
might include specialized objects that can have a longer lifetime
and delay the region from being freed. For this reason, TeraHeap
excludes from the transitive closure: (1) JVM metadata, such as
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Figure 2: H2 allocator metadata in DRAM.

class objects [38] and the class loader, and (2) objects that inherit
the java.lang.ref.Reference class [39].

TeraHeapmoves marked objects from H1 to H2 during major GC.
To reduce this cost, TeraHeap uses explicit asynchronous I/O. We
avoid multiple system calls for small-sized objects ( <1MB), using
a promotion 2MB buffer per region in H2 that writes objects to the
device in batches.

3.3 Reclaiming Dead Regions
Figure 2 shows the region-based organization of H2 in virtual mem-
ory and each region metadata in DRAM. Unlike Broom [16], we do
not impose any restrictions on regions, allowing objects in any re-
gion to refer to each other. TeraHeap ensures that while reclaiming
a region, none of the objects in the region are referenced from live
H1 or H2 objects in other regions. To find such regions, TeraHeap
tracks cross-region and forward references without scanning H2
objects, which would generate excessive I/O.

Cross-region references in H2. To allow internal H2 references
across regions, TeraHeap tracks the direction of cross-region ref-
erences. As shown in Figure 2, TeraHeap keeps a dependency list
in per-region metadata in DRAM. Each node of the dependency
list points to a (different) region referenced by objects of the cur-
rent region. When we move objects to H2 we check if they have
references in existing H2 regions. Then, the H2 allocator adds a
new node (if it does not exist) to the dependency list of the region
where objects will be moved. The size of dependency lists is small,
on average 10 nodes per region in our evaluation.

We also explore a simpler, Union-Find approach, using the notion
of region groups that avoids tracking the direction of cross-region
references. We track cross-region references by logically merging
the source and destination regions in a single region group. Region
groups grow over time to include all regions with cross-region
references. If there is any reference from H1 to any object in the
group’s regions, then we consider the group alive. This approach
does not consider the direction of region references, missing oppor-
tunities to reclaim dead regions with no incoming references. For
instance, if there is a reference from region X to Y and a reference
from region Y to Z, all three regions belong to the same region
group and can be reclaimed when the whole group dies. We find
that the direction of references matters for more efficient space
reclamation. In the previous example, if only region Z is referenced
by H1, then regions X and Y can still be reclaimed.

Forward references (H1 to H2). TeraHeap avoids scanning H2
objects by fencing the garbage collector from crossing into H2 from
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H1. This requires identifying all references from H1 to H2 and
marking the referenced H2 objects as alive. TeraHeap uses a live
bit in the per-region metadata (Figure 2) that signifies the objects
in the region are reachable from H1. The garbage collector clears
live bits at the beginning of the major GC. Upon encountering a
reference from an object in H1 to an object in H2, the collector sets
the corresponding region bit. If the dependency list of the current
region is not empty, then we traverse the dependency lists of each
dependent region recursively, setting their live bits, as well.

Freeing dead regions. At the end of major GC, any H2 region
not marked as live is not reachable from any H1 object nor any
H2 regions. To free these dead regions, we set their allocation
pointer to zero and delete their dependency list (Figure 2). Upon
JVM shutdown, we free all H2 metadata in DRAM.

3.4 Tracking Backward References (H2 to H1)
To track backward references, we use an extended card table for
H2, optimized for use with storage devices. The H2 card table is
a byte array (in DRAM) with one byte per fixed-size H2 segment
(similar to vanilla JVM). Although using a remembered set provides
more precise information about backward references, it increases
memory consumption for regions with many references, especially
as H2 size grows with storage device capacity. It also requires a
more elaborate and expensive post-write barrier [13].

Setting H2 card states. We expect H2 to be much larger than
H1. Thus, we increase the size of H2 card segments to reduce the
number of cards and the card scanning overhead during collections.
However, larger card segments require scanning more objects, in
case they are dirty, introducing device I/O. To reduce the number
of objects scanned during minor GC, we avoid scanning H2 ob-
jects that only reference objects in the old generation of H1, as the
garbage collector does not move or reclaim objects in the old gener-
ation. Thus, we design an H2 card table where each card entry is in
one of four states: (1) clean, when there are no backward references,
(2) dirty, indicating object update by mutator threads, (3) youngGen,
indicating references only to the young generation, or (4) oldGen,
indicating references only to the old generation.

When an application thread updates an H2 object, TeraHeap
marks the corresponding H2 card as dirty in the post-write barrier.
During GC, we change the card value from dirty to oldGen if objects
in the dirty card segment only reference objects in the old genera-
tion. Otherwise, we change the card value to youngGen. We set the
card value as clean only if there are no backward references in the
card segment. In minor GC, we only scan the objects in the card
segments whose cards are marked as dirty or youngGen. In major
GC we also scan oldGen objects. We adjust all backward references
in both minor and major GC to refer to the new H1 object locations.

Scanning H2 card table. GC is multithreaded, and therefore,
the H2 card table must support concurrent accesses from multiple
threads without synchronization. Similar to H1, we divide H2 in
slices and stripes to avoid contention between GC threads. As
shown in Figure 3, each slice contains a number of fixed-size stripes
equal to the number of GC threads. Each GC thread operates on the
stripes with the same id in all H2 slices, avoiding thread contention.

H2 card table

dirty

card seg. ....

stripe 0 stripe 1 stripe 0.... stripe 1

slice 0 slice N

H2

slice 1..N-1

card seg. card seg. card seg.card seg.card seg.

clean youngGen oldGen

Figure 3: Organization of H2 in stripes and slices.

In the native JVM, objects may span card segments and stripe
boundaries. Given that a separate GC thread processes each stripe,
two threads may need to access each boundary (first and last) card
in a stripe. For this reason, the garbage collector avoids cleaning
the boundary cards in H1. If H1 boundary cards become dirty, they
remain dirty throughout execution. This phenomenon results in
the garbage collector scanning in every GC the corresponding card
segments for objects with backward references.

This extra scanning is a significant drawback for H2 because
(1) we use large card segments to reduce H2 card table size and
(2) the card segments are mapped to a storage device, resulting
in high I/O traffic when scanning objects. TeraHeap resolves the
issue of the dirty boundary cards by aligning objects to stripes
and guaranteeing that no two threads will need to access the same
card. TeraHeap uses stripe size equal to the H2 region size because
TeraHeap guarantees that objects do not span H2 regions.

4 TERAHEAP FOR PARALLEL SCAVENGE GC
We implement TeraHeap in OpenJDK8 (jdk8u345), which is a long-
term support version, by extending the Parallel Scavenge (PS)
garbage collector and exporting TeraHeap’s interface through the
Unsafe class to frameworks. PS is a generational garbage collector
which divides its heap into young and old generations. Next, we
discuss our extensions in (1) the post-write barriers in interpreter
and just-in-time (JIT) compilers, (2) minor GC, and (3) major GC.

Post-write barriers. PS uses a post-write barrier and a card
table to track updates in old generation objects that generate ref-
erences to young objects. Such updates may originate from inter-
preted or JIT compiled methods with the C1 and C2 JVM compilers.
When a mutator thread updates an object in the old generation,
this operation is followed by the post-write barrier that updates
the corresponding entry in the H1 card table.

To examine if the mutator thread updates an object that belongs
to H1 or H2, we use an additional reference range check in the post-
write barrier. This reference range check selects the appropriate (H1
or H2) card table, which we then mark with the existing post-write
barrier code. We extend post-write barriers by augmenting the
template-based interpreter and the JIT compilers to generate assem-
bly code for the necessary checks, guarded by the flag we introduce
EnableTeraHeap. We evaluate the overhead of our modifications
to post-write barriers using the DaCapo benchmark suite [6]. The
overhead is small and within 3% over total execution time on av-
erage across all benchmarks. The additional overhead is zero for
applications that do not set EnableTeraHeap.
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Minor GC. In minor GC, we perform two key tasks during
liveness analysis: (1) fence PS from scanning objects in H2 and
(2) prevent reclamation of H1 objects referred from H2 objects
(backward references). For the first task, we introduce a reference
range check in the liveness analysis to fence PS from scanning
references that cross from H1 to H2. For the second task, we scan
the H2 card table to identify and update backward references and
the H2 card state.

Major GC. The major GC in PS consists of four main phases,
which we extend to support TeraHeap. In the first phase (marking),
PS recursively scans both generations starting from roots (e.g.,
thread stacks) and marks live objects. PS assigns a new memory
location to each live object in the second phase of major GC (pre-
compaction). In the third phase (pointer-adjustment), PS adjusts
the references of each object to point to the new location of the
objects as determined in pre-compaction phase. In the final phase
(compaction), PS moves objects to their new locations.

We extend the marking phase to perform five extra tasks. At the
beginning of the marking phase, we reset all live bits of the H2
regions metadata. We mark all objects in H1 that are referenced by
H2 as live. We add a reference range check (similar to minor GC)
that detects forward references (H1 to H2) to fence the PS from
scanning objects in H2 and sets the live bit of the corresponding
region. We identify the root objects tagged with a label through
TeraHeap interface and calculate their transitive closure. At the end,
we free all dead regions in H2.

To determine which objects found in the marking phase should
be moved to H2, we extend the pre-compaction phase. We assign
these objects an address from H2 using their label.

We prolong the pointer adjustment phase to perform three addi-
tional operations: (1) we adjust all backward references to the new
object locations in H1, (2) we identify the newly cross-region refer-
ences, and (3) we track the newly created backward references. For
this purpose, when we adjust the references of H1 objects that are
candidates for H2 transfer, we check if they reference an existing
H2 region or point to an H1 object. If a candidate object references
an existing H2 region, we update the dependency list of the H2
region in which the candidate object is transferred. Also, in case
the candidate object has a reference to an H1 object, we mark the
appropriate entry in the H2 card table as dirty.

Finally, in the compaction phase, PS moves objects to H2.

5 APPLICATIONS OF TERAHEAP
In this section, we describe how we use TeraHeap in two popular
frameworks, Spark [56] and Giraph [44], which differ significantly
in how they use off-heap memory. Spark uses off-heap memory
to cache intermediate results, avoiding expensive recomputation.
Cached objects are immutable at allocation time. Unlike Spark, Gi-
raph offloads mutable objects, i.e., vertices, edges, and messages, to
off-heap memory to ensure adequate DRAM is available for each
superstep. Giraph updates vertex values throughout the computa-
tion, whereas edges and messages become immutable after graph
loading (edges) or at the end of a superstep (messages).

Spark users explicitly annotate objects that need to be moved
off-heap with the persist() call. Giraph transparently selects and
moves objects to the storage device without application interaction.
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Spark applica�on
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JVM

1

2

3
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Part0 Part1 Part2 Part3
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Place RDD par��ons to HashMap

Figure 4: Use of TeraHeap in Spark.

It maintains an out-of-core scheduler that monitors memory pres-
sure in the managed heap and decides which vertices, edges, and
messages to move off-heap. The out-of-core scheduler selects based
on a least recently used policy which objects to move off-heap.

Spark maintains deserialized objects in memory. This incurs sig-
nificant S/D overhead during the off-heap movement. Giraph tries
to reduce memory consumption on the managed heap and serializes
vertices, edges, and messages into byte arrays, at allocation time.
Therefore, Giraph does not require S/D when moving these byte
arrays off-heap on the storage device. Next, we discuss how we
extend Spark and Giraph to use TeraHeap.

Spark. Spark requires only slight modifications to use TeraHeap.
We note that Spark abstracts intermediate results as immutable col-
lections using three sets of APIs [20]: resilient distributed datasets
(RDDs) [55], DataFrames, and Datasets. We mark all cached parti-
tions of RDDs, DataFrames, or Datasets, as root objects for moving
to H2. Figure 4 shows the flow of Spark caching operations using
TeraHeap: 1 The application code invokes persist() without any
modifications. 2 The Spark block manager places the selected data
in the compute cache, a hashmap that contains all cached partitions.
The block manager caches each partition independently, maintain-
ing per-partition entries in the hashmap. When the block manager
stores a new partition in the hashmap, we mark the partition de-
scriptor as a root key-object with the h2_tag_root(), providing
as label the RDD, dataset, or dataframe id. At the same time, we
advise JVM to move marked partitions to H2, using h2_move(). 3
TeraHeap transparently marks additional objects and moves them
to H2 during the major GC.

Giraph. Giraph computes in supersteps, with a synchronization
barrier between supersteps. It loads and partitions the graph during
the input superstep. A graph partition organizes its vertices in a
hashmap, with each vertex belonging to a single partition. Each
vertex maintains a map containing its outgoing edges. In each
superstep, each vertex consumes all of its incoming messages from
the previous superstep and updates its value. Then, it sends its
updated value to its outgoing edges in a new message (per vertex).
Messages produced in the current superstep are only consumed in
the next superstep. Messages become immutable at the end of each
superstep after the coordination phase guarantees they have been
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Table 1: NVMe and NVM server properties.

ID CPU DRAM Device Kernel

NVMe
Server

Intel Xeon E5-2630
32 Cores @ 2.4 GHz 256GB 2TB Samsung PM983

PCI Express NVMe SSD 4.14

NVM
Server

Intel Xeon Platinum
24 cores @ 2.4 GHz 192GB 3TB Intel Optane DC

Persistent Memory 3.10

received and saved completely. In each superstep, Giraph has two
message stores: the incoming message store with messages from the
previous superstep (immutable) and the current message store with
messages of the current superstep (mutable).

To use TeraHeap, Giraph requires small modifications, as well.We
extend Giraph by marking edges and incoming messages as root ob-
jects. We do not mark vertices because they have frequent updates,
and they will increase device (write) traffic. Note that edges and
messages constitute a large portion of the heap [44]. Figure 5 shows
the flow of Giraph execution using TeraHeap: 1 When Giraph loads
a new vertex at the input superstep, it marks the vertex’s map that
contains the outgoing edges with h2_tag_root(), providing the
superstep id as label. 2 At the end of the input superstep, Giraph
advises TeraHeap to move marked edges to H2, using h2_move() in
the next major GC. 3 In each superstep, Giraph marks the gener-
ated messages of the current message store with h2_tag_root(),
providing as label the superstep id. 4 At the beginning of each
(next) superstep, Giraph advises TeraHeap to move to H2 all marked
messages from the previous superstep in the next major GC, using
h2_move().

6 EXPERIMENTAL METHODOLOGY
We answer the following questions in our evaluation:

(1) How does TeraHeap perform compared to native JVM and
state-of-the-art Panthera with NVMe SSDs and NVM?

(2) What are the space requirements of H2 in the storage device
and for its metadata in DRAM?

(3) What is the overhead of tracking references and moving
objects to H2 during GC?

(4) How does TeraHeap scale with an increasing number of
mutator threads and dataset size?

Table 2: Summary of baselines.

Baseline DRAM NVMe SSD NVM
(App Direct mode)

NVM
(Memory mode)

Spark-SD Heap Off-heap - -
Spark-SD Heap - Off-heap -
Spark-MO - - - Heap
Giraph-OOC Heap Off-Heap - -

Server infrastructure. We evaluate TeraHeap both with block-
addressable NVMe SSDs and byte-addressable NVM as the backing
device for H2. Table 1 shows the properties of each server. Our
NVM server operates in twomodes: (1)App Direct mode uses 192GB
DRAM as main memory and 2 TB NVM as persistent storage device.
(2) Mixed mode partitions NVM to use 1 TB in memory mode and
2 TB in App Direct mode. DRAM (192GB) acts as a cache for 1 TB
NVM (memory mode) controlled by the CPU’s memory controller.
In App Direct mode, the system mounts NVM on an ext4-DAX file
system to establish direct mappings to the device.

Baseline and TeraHeap configurations. We use Spark v3.3.0
with the Kryo serializer [45], a state-of-the art highly optimized
S/D library for Java that Spark recommends. We run Spark with
OpenJDK8, OpenJDK11, and OpenJDK17. We run Giraph v1.2 with
Hadoop v2.4 and OpenJDK8, as it does not support more recent
versions of OpenJDK. We use two garbage collectors in different
configurations: PS in OpenJDK8 and OpenJDK11, and Garbage First
(G1) in OpenJDK17. We use an executor with eight mutator threads
for both Spark and Giraph. For PS, we use 16 GC threads for minor
GC and the default single-threaded old generation GC. G1 uses
two parameters: (1) the number of parallel GC threads, which we
set to eight (max value) and (2) the ratio of concurrent to mutator
threads, which we set to two as the recommended configuration is
one-fourth of the parallel GC threads [5].

Table 2 summarizes the Spark and Giraph configurations we
use as baselines. The two Spark-SD configurations place executor
memory (heap) in DRAM and cache RDDs in the on-heap cache, up
to 50% of the total heap size. Any remaining RDDs are serialized in
the off-heap cache, over either NVMe SSD (first line of Table 2) or
NVM in App Direct mode (second line of Table 2). Spark-MO places
executor memory (heap) over NVM in memory mode, caching all
RDDs on-heap. Giraph-OOC places the heap in DRAM and offloads
vertices, edges, and messages off-heap to the NVMe SSD.

We configure TeraHeap to allocate H1 on DRAM and H2 over a
file in NVMe SSD or NVM via memory-mapped I/O (mmio). The
file in both NVMe and NVM servers is mapped to the JVM virtual
address space where the application can access the data with regular
load/store instructions [41]. Our experiments show that machine
learning (ML) workloads in Spark access the individual elements of
cached RDD partitions sequentially. For this reason, we configure
TeraHeap for Spark MLworkloads to use huge pages (2MB) in H2 to
reduce the frequency of page faults. Instead of the nativemmap, we
use HugeMap [31] a custom, open source, mmio path that enables
huge pages for file-backed mappings.

In Spark-SD, to capture the effect of large datasets and limited
DRAM capacity [11], we use a small heap size that caches a limited
number of RDDs on-heap and the rest off-heap (Spark-SD column
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Table 3: Configuration for each workload on NVMe and NVM
servers for Spark-SD, Spark-MO, and TeraHeap.

NVMe
Server

Data-
set

Spark-
SD

Spark-
MO

Tera
Heap

GB DRAM Size Heap Heap H1

G
ra
ph

X

PageRank (PR) 80 32 64 1024 64
Connected Components (CC) 84 32 68 1024 68
Shortest Path (SSSP) 58 32 42 650 42
SVDPlusPlus (SVD) 40 2 24 500 24
Triangle Counts (TR) 80 2 64 64 64

M
Ll
ib

Linear Regression (LR) 70 256 54 1084 54
Logistic Regression (LgR) 70 256 54 1084 54
Support Vector Machine (SVM) 48 256 32 620 32
Naive Bayes Classifier (BC) 98 21 82 82 82

SQ
L RDD-RL 63 16 47 96 47

Table 4: Giraph-OOC and TeraHeap configurations for each
workload on our NVMe server.

NVMe
Server

Data-
set

Giraph-OOC TeraHeap

GB DRAM Size Heap DR2 H1 DR2

PageRank (PR) 85 31 70 15 50 35
Community Detection
Label Propagation (CDLP)

85 31 70 15 60 25

Weakly Connected
Components (WCC)

85 31 70 15 60 25

Breadth-first Search (BFS) 65 31 48 17 35 30
Shortest Path (SSSP) 90 31 75 15 50 40

in Table 3). In Spark-MO we find and use the minimum heap size
that fits all the cached data on-heap (Spark-MO column in Table 3).
In Giraph-OOC, we experimentally find the minimum heap size for
each workload (Giraph-OOC Heap column in Table 4). TeraHeap
uses the same amount of DRAM as Spark-SD and Giraph-OOC but
divides it between H1 (DR1) and system (DR2). The DRAM devoted
to system use (DR2) includes the Spark and Giraph drivers and the
kernel page cache for I/O.

For the division of DRAM, we explore H1 sizes between 50% and
90% of DRAM capacity, and we report results with a configuration
hand-tuned for each workload. We omit exploration results due to
space constraints. Table 3 and Table 4 show the H1 size of TeraHeap
in each workload, in Spark and Giraph, respectively. DR2 is always
16GB for Spark, whereas Table 4 shows the DR2 size for Giraph-
OOC and TeraHeap in each Giraph workload. We limit the available
DRAM capacity in our experiments with the NVMe server using
cgroups. Table 3 and Table 4 show the total DRAM capacity in the
NVMe server for each workload.

Workloads and datasets. We use ten memory-intensive work-
loads from the Spark-Bench suite [28] and five workloads from the
LDBC Graphalytics suite [23] for Giraph. We synthesize datasets
for Spark workloads with the SparkBench data generators. For Gi-
raph workloads, we use the datagen-9_0-fb dataset [23]. Table 3
and Table 4 show the dataset size for each workload.

Execution time breakdowns and S/D overhead. We repeat
each experiment five times and report the average end-to-end exe-
cution time. We break execution time into four components: other
time, S/D + I/O time, minor GC time, and major GC time. Other
time includes mutator threads time. In TeraHeap, the other time
potentially includes I/O wait due to page faults when accessing the
H2 backing device. In Spark-SD (see Table 2), S/D time includes
S/D time both for shuffle and caching. In TeraHeap and Spark-MO
(see Table 2), all S/D time is due to shuffling. The JVM reports the
time spent in minor and major GC.

To estimate S/D overhead, which occurs in mutator threads,
we use a sampling profiler [40] to collect execution samples from
the mutator threads. The samples include the stack trace, similar
to the flame graph [18] approach. Then we group the samples
for all the paths that originate from the top-level writeObject()
and readObject() methods of the KryoSerializationStream and
KryoDeserializationStream classes. These samples include both S/D
for the compute cache and the shuffle network path of Spark. We
then use the ratio of S/D samples to the total application thread
samples as an estimate of the time spent in S/D, and we plot this
separately in our execution time breakdowns. We run the profiler
with a 10ms sampling interval, verifying that this does not create
significant overhead (less than 2% of total execution time).

7 EVALUATION
7.1 Performance Under Fixed DRAM Size
First, we investigate the performance benefits of TeraHeap under
a fixed DRAM size. Figure 6 shows the performance of TeraHeap
compared to Spark-SD and Giraph-OOC for the NVMe SSD setup.
We normalize execution time to the first bar in each figure. Missing
bars indicate out-of-memory (OOM) errors.

Using the same DRAM size, TeraHeap reduces execution time
in Spark between 18% (SSSP) and 73% (BC) compared to Spark-SD.
In Giraph, TeraHeap reduces execution time between 21% (CDLP)
and 28% (PR). In both cases, the performance improvement results
from reducing the GC overhead, by up to 96% and 54% in Spark and
Giraph, respectively. This overhead occurs mainly because cached
objects in Spark and messages and edges in Giraph occupy almost
half of the heap, triggering GC more frequently. TeraHeap transfers
objects to H2, stressing H1 less.

In addition, TeraHeap reduces S/D cost in Spark-SD, between 2%
(BC) and 93% (LR), as it provides direct access to deserialized objects
in H2. Note that S/D cost in TR and BC for TeraHeap is similar to
Spark-SD because the cached data fits in the on-heap cache. In
Giraph, the impact of TeraHeap on S/D overhead (part of other) is
minimal because Giraph serializes objects in the managed heap as
well, and not only as part of moving objects off-heap. Also, in LR,
LgR, and SVM other time with TeraHeap increases by up to 43%
compared to Spark-SD. These workloads perform streaming access
on cached RDDs elements in each iteration of the ML training
phase, which is the largest part of the execution (100 iterations).
Thus, they do not exhibit locality in the I/O page cache, fetching
data from the storage device during the computation. The average
read throughput in these workloads is 2.9GB/s, which is the peak
device read throughput. Using more NVMe SSDs can reduce other
time for LR, LgR, and SVM.
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Figure 6: Overall performance of TeraHeap (TH) compared to Spark-SD and Giraph-OOC on the NVMe server.
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Figure 7: GC time and old generation occupancy in PR for (a)
Spark-SD and (b) TeraHeap. The heap size is 64 GB.

To examine pressure on the managed heap, Figure 7 shows GC
behavior for PR with Spark-SD and TeraHeap with a 64GB heap.
We examine the execution time for each minor and major GC cy-
cle and monitor the percentage of the old generation consumed
by cached objects. We note that Spark-SD suffers from frequent
major GC cycles. There are 171 major GC cycles, each requiring,
on average, 3.7 s. Each cycle in Spark-SD reclaims 10% of the old
generation objects (0-3000 s in Figure 7), as the remaining objects
are live cached objects. However, TeraHeap performs only 13 major

GC cycles. Each cycle in TeraHeap takes, on average, 16 s. More
than 70% is due to I/O during the compaction phase of major GC.
Finally, moving objects directly from the young generation to H2
reduces total minor GC time by 38% compared to Spark-SD. This
reduction is because TeraHeap scans fewer cards that track old-to-
young references than Spark-SD. We omit similar results for other
workloads due to space constraints.

Reducing DRAM capacity demands. We examine the poten-
tial benefit of TeraHeap in reducing DRAM capacity demands in
Figure 6. Using between 1.3× and 4.6× less DRAM, TeraHeap out-
performs by up to 65% (SVD) compared to Spark-SD. In Giraph,
TeraHeap with 1.2× less DRAM improves performance between
7% (CDLP) and 18% (PR). For example, using TeraHeap in Giraph-
PR, the heap usage in the first phase of the application (0-330 s) is
between 70% and 100%. Then, at the end of the fifth major GC, Ter-
aHeap reduces heap usage to 13% because it moves 17GB of objects
to H2. By reducing memory pressure in H1, TeraHeap with less
DRAM can provide similar or higher performance than Spark-SD
and Giraph-OOC.

Comparison with newer garbage collectors. We next present
the performance of TeraHeap compared to an optimized version
of PS on OpenJDK11 and G1 on OpenJDK17. G1 is a generational,
region-based garbage collector which uses concurrent and parallel
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Figure 8: Performance of TeraHeap (TH) compared to Paral-
lel Scavenge (PS) on OpenJDK11 and Garbage First (G1) on
OpenJDK17 garbage collectors on the NVMe server.

phases to reduce pause time and to maintain high GC throughput.
When G1 determines that a GC is necessary, it collects the regions
with the least live data first (garbage first). Figure 8 shows the
performance of Spark with PS, G1, and TeraHeap, for the same
amount of DRAM.

G1 outperforms PS between 7% (LR) and 72% (TC) because it
reduces GC time by up to 95%. However, G1 cannot eliminate the
high S/D (up to 44%) caused by the limited DRAM size and the
amount of cached data. Unlike G1, TeraHeap eliminates S/D over-
head, providing direct access to the storage resident objects. Thus,
TeraHeap improves performance between 21% (CC) and 48% (LgR)
compared to G1.

Note that G1 cannot run SVM, BC, and RL due to fragmentation
problems caused by humongous objects. Humongous objects in G1
are these that are bigger than half of the G1 region size. Such objects
are allocated separately in contiguous regions (humongous regions).
A humongous region can accommodate only one humongous object.
The space between the end of the humongous object and the end
of the humongous region, which in the worst case can be close to
half the region size, is unused. Therefore, when many long-lived
humongous objects exist, G1 exhibits significant fragmentation,
resulting in OOM errors. PS resolves fragmentation, performing
object compaction when the heap becomes full.

We note that TeraHeap can also be used with G1 to eliminate
S/D cost and reduce the amount of data subject to GC, by moving
long-lived, humongous objects to H2.

7.2 Effects of Transfer Hint and Low Threshold
This section examines the performance effect of using the transfer
hint h2_move(). Figure 9(a) shows the performance of TeraHeap
with and without using h2_move(). Frameworks use h2_move()
to advise TeraHeap when to move objects with a specified label to
H2. Note that in case of high memory pressure, TeraHeap moves to
H2 all marked objects without waiting for h2_move() hints. Given
that TeraHeap can use only the high threshold mechanism to decide
when to move objects to H2, we explore eliminating h2_move().
This results in objects staying longer in H1.With a high threshold of
85%, we see (Figure 9(a)) that using h2_move() improves TeraHeap
performance between 29% (SSSP) and 55% (WCC) compared to not
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Figure 9: TeraHeap performance for Giraph (a) with (H) and
without (NH) transfer hint, and (b) with (L) and without (NL)
low transfer threshold.

Table 5: Metadata size per TB of H2 space.

Region Size (MB) 1 2 4 8 16 32 64 128 256
MetaData Size (MB) 417 209 104 52 26 13 7 3 2

using the hint. In WCC, using h2_move(), we move objects to H2
on average every 215 s, reducing GC cost by 39% compared to not
using the transfer hint, which transfers objects on average every
485 s. Moving objects with frequent updates to H2 increases other
time by up to 59% (WCC) due to the large cost of read-modify-write
operations on an I/O device. This increases device traffic by up to
98% (writes) due to page-based accesses to the device. Thus, using
the transfer hint is necessary to delay moving objects with frequent
updates to H2 until they become immutable.

Next, we study how effective is the TeraHeap low threshold mech-
anism. Figure 9(b) shows TeraHeap performance using h2_move()
with and without a low threshold. We use a low threshold of 50%
(and we leave the high threshold to 85%). TeraHeap will move ob-
jects until it reduces H1 usage to 50%. We use PR and SSSP with
a large dataset (91GB) in Giraph. These two workloads trigger
the high threshold mechanism. We use 170GB DRAM and 200GB
DRAM in PR and SSSP, respectively. The percentage of DR1 over
total DRAM is similar to the corresponding workload in Figure 9(a).

Using a low transfer threshold improves TeraHeap performance
by up to 44% (SSSP), compared to using only the transfer hint with
the high threshold. For example, in SSSP, during graph loading, we
detect high memory pressure in the fourth major GC. After the
fourth major GC, most objects in H1 are related to marked edges.
Then, in the fifth major GC, we move 44GB of marked objects to
H2, reducing H1 usage to 50%. Therefore, the low transfer threshold
reduces read-modify-write operations on the device by up to 95%,
decreasing the other time by up to 65%. Although there may be
benefits in setting the low and high thresholds dynamically, we
leave this for future work.

7.3 Storage Capacity Consumption
This section investigates the storage requirements of H2. TeraHeap
organizes object groups with a similar lifetime in fixed-size regions
in H2 and reclaims them in bulk. This approach may result in waste
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Figure 10: CDF of the percentage of live objects (top row) and
space occupied by live objects (bottom row) during execution.

of space for two reasons. First, when the number of objects in
a group is small, unused space in the corresponding region can
be large. Second, one live object can keep the entire region alive,
preventing TeraHeap from reclaiming it. Generally, a smaller region
size reduces both of these factors at the cost of increasing metadata
in DRAM.

We first show how the region size affects the metadata size for
H2. Table 5 shows the metadata size in DRAM per TB of H2, for
region sizes between 1MB and 256MB. As we increase the region
size from 1MB to 256MB, the total metadata in DRAM decreases
from 417MB to 2MB.

Figures 10(a) and 10(b) show the CDF of the percentage of live
objects per region for all allocated regions with 16MB and 256MB
size, respectively. Figures 10(c) and 10(d) show the CDF of the
percentage of space occupied by live objects for 16MB and 256MB
regions. The number of allocated regions is equal to the sum of
reclaimed regions during execution and the active regions before
JVM shutdown. Although not shown in these figures, we observe
in our measurements that unused space is between 1% and 3% for
all workloads in both region sizes. Essentially, TeraHeap is able
to use the space in each region it allocates with its append-only
placement.

In Figures 10 (a) and 10(b) all regions with 0% live objects are
reclaimed during execution. We see that in PR, CDLP, and WCC,
TeraHeap reclaims most allocated regions and around 90% in CDLP
and PR for both region sizes. In BFS and SSSP, TeraHeap reclaims
28% and 6% of the total allocated regions, respectively. In BFS and
SSSP, although most of the objects in a region are live, most of the
space is occupied by large dead arrays. For example, in SSSP with
256MB regions, in 90% of the regions at least 20% of the objects
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Figure 11: (a) Minor GC time in H2 for different card segment
sizes using a 256 MB stripe size in Giraph. (b) Major GC time
using Giraph-OOC (OC) and TeraHeap (TH).

are live. However, in 45% of the regions, the live objects occupy
less than 10% of the allocated region space (Figure 10(d)). In these
cases, using 16MB regions is more appropriate because they reduce
by 10% (BFS) the space waste compared to 256MB regions. We
believe that future work can investigate object placement policies
for H2 that takes into account object size to further improve space
efficiency on storage devices.

7.4 GC Overhead
The garbage collector in TeraHeap performs additional work during
minor GC that involves scanning H2 cards and updating backward
references. We evaluate this overhead for different card segment
sizes in Giraph. Figure 11(a) shows minor GC time in H2 for 1 KB,
4KB, 8KB, and 16 KB card segments, normalized to 512 B card
segments. We see that increasing the size of card segments from
512 B to 16 KB reduces minor GC time on average by 64%. Larger
card segments result in a smaller card table, and less time is required
to scan the respective cards. However, increasing card segment size
increases the cost of scanning each card segment if the respective
card is marked as dirty. For example, increasing the card segment
size in PR from 512 B to 16KB leads to an increase in minor GC
time for scanning and update H2 objects with backward references
(H2 to H1) by 5×. In Spark, updates to H2 objects are infrequent
compared to Giraph, as RDDs are immutable.

Next, we examine the overheads introduced by TeraHeap during
major GC for H1 by moving objects to H2, which involves device
I/O when using SSDs as the backing device. Figure 11(b) shows the
four phases of major GC time using Giraph-OOC and TeraHeap.
Overall, TeraHeap improves all phases of major GC by up to 75%
(BFS) compared to Giraph-OOC because we avoid scanning H2
objects. For example, in PR, the collector avoids following in each
GC, on average, 109 million forward references from H1 to H2
objects. We note that the compaction phase takes between 37% and
44% of the major GC time in TeraHeap due to the device I/O.

7.5 TeraHeap Performance with NVM
Figure 12 shows the performance of Spark-SD, Spark-MO, and Ter-
aHeap on our NVM-based setup. We present only Spark workloads
due to space constraints. Our goal is to examine the benefits of
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Figure 12: TeraHeap (TH) performance compared to (a) Spark-SD, (b) Spark-MO, and (c) Panthera (P) over NVM server.

TeraHeap when using NVM to increase the heap size, which can
eliminate S/D at increased GC cost for native. Figure 12(a) shows
that TeraHeap improves performance by up to 79% and on average
by 56%, compared to Spark-SD. Unlike the off-heap cache in Spark-
SD, TeraHeap allows Spark to directly access cached objects in H2
via load/store operations to NVM, without the need to perform
S/D. TeraHeap significantly reduces S/D and GC time compared to
Spark-SD by up to 97% and 93%, respectively.

Figure 12(b) shows that TeraHeap improves performance by up
to 86% and on average by 48%, compared to Spark-MO. The main
improvement of TeraHeap results from the reduction of minor GC
and major GC time by up to 88% (on average by 52%) and 96% (on
average by 46%) compared to Spark-MO, respectively. In Spark-MO,
running the garbage collector on top of NVM (using DRAM as a
cache) incurs high overhead due to the latency of NVM [53] and
the agnostic placement of objects. For instance, minor GC time
in Spark-MO increases on average by 36% compared to Spark-SD
(Figure 12b) because objects of the young generation are placed
in NVM, resulting in higher access latency for the garbage collec-
tor. Unlike TeraHeap that controls object placement in NVM (H2),
Spark-MO relies on the memory controller to move objects between
DRAM and NVM. We measure that Spark-MO incurs on average
5.3× and 11.8× more read and write operations to NVM compared
to TeraHeap, resulting in higher overhead. Therefore, the ability to
maintain separate heaps allows TeraHeap to both limit GC cost and
reduce the adverse impact of the increased NVM access latency on
GC time.

We also compare TeraHeap with Panthera [48]1, a system de-
signed to use NVM as a heap in Spark. Panthera extends the man-
aged heap over DRAM and NVM, placing the young generation
in DRAM and splitting the old generation into DRAM and NVM
components. We configure Panthera similar toWang et. al [48] with
64GB heap, 25% on DRAM (16GB), and 75% on NVM. We set the
size of the young generation to 1

6 (10GB) of the total heap size and
place it entirely on DRAM. We set the size of the old generation to
the rest of the heap size (54GB) and place 6GB on DRAM and the
rest (48GB) on NVM. We configure TeraHeap to use an H1 of 16GB
and map H2 to NVM. Thus, both systems use the same DRAM and
NVM capacity.

1As Panthera is not publicly available, we are thankful to the authors for providing us
their code.
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Figure 13: Performance scaling with (a) number of mutator
threads and (b) dataset size in the NVMe server.

Figure 12(c) shows that TeraHeap improves performance between
7% and 69% compared to Panthera across all workloads. Panthera
bypasses the allocation of some objects in the young generation,
allocating them directly to the old generation. However, each major
GC still scans all objects in the old generation, which increases
overhead as the heap address space grows. Instead, TeraHeap re-
duces the address space that needs to be scanned by the garbage
collector. Note that Panthera incurs more accesses to NVM because
it allocates mature long-lived objects that are highly read and up-
dated by the mutator threads. Specifically, it increases other by up
to 53% because it performs more NVM read (up to 54×) and NVM
write (up to 51×) operations than TeraHeap.

7.6 Performance Scaling
A benefit of TeraHeap is that it allows increasing the number of
mutator threads in Spark and Giraph executors. In both Spark
and Giraph, each mutator thread processes a separate partition.
Thus, as the number of threads in the executor increases, the object
allocation rate increases, leading to higher GC cost. Figure 13(a)
shows the performance of CC, LR, and CDLP (other workloads show
similar behavior) using Spark-SD, Giraph-OOC, and TeraHeap (TH)
with 4, 8, and 16 threads, normalized to 8 threads per configuration.
We note that Giraph-OOCwith four threads results in an OOM error.
TeraHeap allows applications to scale performance further to 23%
with 2× more threads. However, Spark-SD does not scale beyond
8 threads in LR because GC cost increases (by 44%), eliminating
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any benefits from using more threads. We note that increasing
the number of threads in Spark-SD reduces S/D cost by up to 55%
(CC) because Spark parallelizes the S/D process. Although Giraph-
OOC (native) improves performance by 10% using 16 executor
threads, it still performs 1.4× more major GCs than eight executor
threads. Finally, TeraHeap significantly alleviates memory pressure
by moving a large portion of H1 objects to H2, leaving more room
for mutator threads to work without the need for frequent GC.

We also investigate the performance benefits of TeraHeap for a
larger dataset in Figure 13(b). We observe similar (CDLP) or higher
improvements (CC, LR) compared to the smaller datasets. TeraHeap
is robust to different dataset sizes and improves performance by up
to 70% compared to Spark-SD and Giraph-OOC, while our expecta-
tion is that benefit will increase further as dataset size increase.

8 RELATEDWORK
TeraHeap combines techniques from several areas, including mem-
ory management and storage. Thus, we group the related work in
the following categories: (1) region-based memory management, (2)
scaling managed heaps beyond DRAM capacity, and (3) mitigating
S/D overhead.

Region-basedmemorymanagement. Managed big data frame-
works have started to use region-based memory management for
large heaps. Facade [36] provides a compilation framework that
transforms programmer-specified classes for off-heap allocation.
However, it increases the programmer’s effort because they need
to specify when to free objects from native memory. Broom [16]
uses region annotations but requires refactoring of applications’
source code. Yak [35] requires programmers to annotate epochs
in applications. Yak allocates all objects in an epoch on a second
region-based heap to reduce GC time. The epoch abstraction is
appropriate for the map-reduce programming pattern. However, it
cannot handle objects computed lazily or accessed from arbitrary
program locations. Deca [29] proposes lifetime-based memory man-
agement for Spark. However, their work only applies to Spark and
cannot be used for other frameworks. Unlike prior work, TeraHeap
requires adding hints only in the framework layer. Then, TeraHeap
dynamically selects all appropriate objects in the transitive closure
of root objects. NG2C [9] uses runtime profiling to identify long-
lived objects. They incur online profiling overhead. Other work uses
offline allocation site profiling to manage objects [7, 8]. Lifetime
profiling can complement TeraHeap and further improve efficiency.

Scaling managed heaps beyond DRAM capacity. Recent ef-
forts target NVM for storing managed heaps beyond DRAM. Akram
et al. [2, 3] focus on improving NVM write endurance. Yang et
al. [54] report high GC overhead with NVM-backed volatile heaps
and optimize the G1 GC for Intel Optane persistent memory. Pan-
thera [48] extends the managed heap over hybrid DRAM and non-
volatile memory (NVM) to scale on-heap caching in Spark. Panthera
increases GC overhead as scanning and compacting objects on the
managed NVM heap costs more than collecting the DRAM heap.
Also, TMO [49] monitors application DRAM usage and transpar-
ently offloads cold data to NVMe SSD. Unlike these works, TeraHeap
control which objects to move to the second heap and eliminates
slow GC traversals over objects on NVM or NVMe SSD. Finally,

prior effort [26] discusses a preliminary prototype of TeraHeap,
while this paper presents the full design and evaluation with pro-
duction frameworks.

Mitigating S/D overhead. Several libraries [15, 17, 45] improve
the efficiency of S/D, but they cannot reduce high GC cost in big
data frameworks. Skyway [34] reduces the S/D cost by directly
transferring objects through the network in distributed managed
heaps, but it does not cope with DRAM limitations and GC over-
heads. SSDStreamer [4] is a userspace SSD-based caching system
that uses DRAM as a stream buffer for SSD devices. Although SS-
DStreamer reduces S/D cost by providing a lightweight serializer,
it cannot reduce GC cost and the memory pressure in the man-
aged heap. Recent work [25, 42] reduces S/D overheads in analytics
frameworks using custom hardware and modifications to the pro-
gramming model. Other work [43, 46, 50] focuses on reducing S/D
cost by reducing the number of object copies across buffers. This
body of work does not mitigate directly GC overhead. TeraHeap is
the first work that eliminates both GC and S/D for a large portion
of objects in big data analytics frameworks.

9 CONCLUSIONS
Managed big data analytics frameworks demand increasing the
heap size as datasets grow. In managed language environments,
such as JVM, high-capacity heaps incur excessive GC overhead.
Thus, frameworks avoid using large heaps and resort to expensive
off-heap S/D when managing large datasets. This work proposes
and evaluates TeraHeap, which extends the JVM to use a transpar-
ent, high-capacity heap over a fast storage device alongside the
regular heap, reducing memory pressure. TeraHeap reduces GC
overhead and eliminates S/D cost by fencing the collector from
scanning the second heap and providing direct access to objects on
the second heap. We find that TeraHeap improves the Spark and
Giraph performance by up to 73% and 28%, respectively. Overall,
our proposed approach of managing large memory in the JVM as
customized, separate heaps is a promising direction for incorporat-
ing huge address spaces in managed environments and reducing
memory pressure without incurring high GC overhead.
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A ARTIFACT APPENDIX
A.1 Abstract
The main goal of this appendix is to allow readers to reproduce
the paper’s results. We provide information about the source code,
hardware, and software dependencies and the build process. We
also discuss how to install TeraHeap and run the main experiments
of the paper.

A.2 Artifact Check-list (Meta-information)
• Program: Spark v.3.3.0, SparkBench, Giraph v.1.2, LDBC Grapha-
lytics Benchmark Suite for Giraph

• Compilation: gcc v.8.3.1, g++ v.8.3.1, maven v.3.5.4, GNU Make
v.4.2.1

• Data set: KDD12 (21GB), datagen-9_0-fb (30GB), datagen-sf3k-fb
(91GB), datagen-8_9-fb (25GB)

• Run-time environment: OpenJDK8 (v.1.8.0_345),
OpenJDK11 (v.11.0.17+6), OpenJDK17 (v.17.0.4.1+0), Centos 7,
Linux Kernel v.4.14, Linux Kernel v.3.10

• Hardware: Two 1 TB Samsung PM983 PCI Express NVMe SSD, 3 TB
Intel Optane DC Persistent Memory, 4 TB HDD (for datasets)

• Execution: single user, cgroups
• Metrics: Execution time
• Output: CSV files and graphs
• Experiments: Bash and Python scripts
• How much disk space required (approximately)?: 1.5 TB for
the datasets and 1 TB for H2 allocation

• How much time is needed to prepare workflow (approxi-
mately)?: 1 hour

• How much time is needed to complete experiments (approxi-
mately)?: 12 days

• Publicly available?: Yes
• Code licenses (if publicly available)?: The GNU General Public
License (GPL)

• Data licenses (if publicly available)?: The Apache Licence v.2.0
• Archived (provide DOI)?:
Yes. https://doi.org/10.5281/zenodo.7590151

A.3 Description
A.3.1 How to Access. All scripts are available in the GitHub repos-
itory https://github.com/CARV-ICS-FORTH/asplos2023_ae.
All sources, including JVM, frameworks, and benchmarks, are in-
cluded as public git submodules. Also, the artifact is available at
https://doi.org/10.5281/zenodo.7590151.

A.3.2 Hardware Dependencies. We recommend a dual-socket server
that is equipped with two Intel(R) Xeon(R) CPU E5-2630 v3 CPUs
running at 2.4GHz, each with eight physical cores and 16 hyper-
threads for a total of 32 hyper-threads. The server should have
at least 128GB DRAM. We recommend using two 1 TB Samsung
PM983 PCI Express NVMe SSDs and an HDD (larger than 1.5 TB)
to allocate the datasets. For the evaluation with NVM, we consider
using a dual-socket server with two Intel Xeon Platinum 8260M
CPUs at 2.4GHz, with 24 cores and (96 hyper-threads), and 192GB
of DDR4 DRAM. We use Intel Optane DC Persistent Memory with
a total capacity of 3 TB, of which 1 TB is in Memory mode and 2 TB
are in AppDirect mode.

A.3.3 Software Dependencies. The compilation environment and
the provided scripts assume Centos 7, which uses Linux Kernel

v.3.10 and v.4.14. Also, you need to install additional packages using
the following script:

## Install packages
$ cd scripts
$ ./install_package.sh

A.3.4 Data Sets. The required datasets for Spark workloads (ex-
cept BC) are automatically generated using the SparkBench suite
dataset generator. The dataset will be generated when executing the
specific scripts to run Spark workloads. The datasets for Spark-BC
and Giraph workloads are downloaded automatically before each
workload execution.

A.4 Installation
For the installation, either download the complete artifact from Zen-
odo (https://doi.org/10.5281/zenodo.7590151) or clone the GitHub
repository: https://github.com/CARV-ICS-FORTH/asplos2023_ae.
The GitHub contains all the required scripts to run the artifact.
The source code of TeraHeap, frameworks, benchmarks will be
downloaded by running the following script:

$ cd scripts/build_jvm
$ ./build_jvm.sh
$ cd ../build_apps
$ ./build_spark.sh
$ ./build_giraph.sh

A.5 Experiment Workflow
Once you build TeraHeap, Spark, SparkBench suite, Giraph, Graph-
alytics Benchmark suite, and the native JVM, you can execute the
workloads as described below. We provide individual scripts for
each figure in the paper.

A.5.1 Experiments With NVMe SSD. For the workloads that use
NVMe SSD run the appropriate ./gen_figXX.sh under each
./experiments/figureXX directory. Generate first Figure 5 and
then the rest of the figures because some of the produced results
(e.g., results with TeraHeap) are reused in the other figures.

# To generate Figure 5
$ cd scripts/experiments/figure5
$ gen_fig5.sh
# To generate Figure 7
$ cd scripts/experiments/figure7
$ gen_fig7.sh

A.5.2 Experiments With NVM. For the workloads that use NVM
run the following scripts on the server with PMEM:
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$ cd scripts/experiments/figure11a
$ gen_fig11a.sh

$ cd scripts/experiments/figure11b
$ gen_fig11b.sh

$ cd scripts/experiments/figure11c
$ gen_fig11c.sh

A.6 Evaluation and Expected Results
When you have completed all or some of the experiments, you
can compare the produced results with the results in the paper.
The reference results used in the paper are located in the folder
results/reference/.

Copy the directory results/ to your local system and execute:

$ cd scripts
$ ./generate_plots.sh

Open teraheap-artifacts-report.html in your web browser
to check the generated plots side-by-side with the results in the
paper.
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