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Abstract—The state-of-the-art implementation of full-text search on persistent memory involves creating an in-memory hash table
from the data set, then transforming this in-memory hash table into a sorted/unsorted string table (UST/SST). The transformation is
required due to poor query evaluation performance of the hash table. We build the hash table on Optane DC persistent memory to
achieve state-of-the-art indexing and query evaluation performance [10]. Persistent memory is an emerging hardware technology
which offers many advantages over traditional DRAM, with the most crucial being non-volatility and scalability. In this paper, we explore
an optimisation of an hash table which utilises variable sized blocks, and evaluate its performance against the state-of-the-art. We find
that this optimisation significantly improves query evaluation performance, providing equivalent performance to the UST index for most
query types. We present our optimised hash table as an appealing alternative to a UST index; it allows us to eliminate an expensive

indexing step while retaining excellent query evaluation performance.

1 INTRODUCTION

HE development of fast and efficient search is of great
T interest to companies such as Google, Facebook and Twitter
which must handle large amounts of data. The implementation
of full text search for large corpora is a two step process which
involves both indexing and query evaluation. The purpose of
an index is to enable fast and efficient query evaluation. Given
a search term, an index can be traversed to produce a list
of documents which contain the term and their locations on
disk. The state-of-the-art approach for indexing on persistent
memory involves building an in-memory hash table, then trans-
forming it into a sorted /unsorted string table (UST/SST). This
transformation step is necessary since searching the hash table
is slow.

In this paper, we explore an alternative design for the hash
table that uses variable sized blocks to improve query evalua-
tion performance. We find that with this optimisation, the hash
table performs just as well as a UST for most query types. This
means that we can avoid transforming the hash table into a
UST, but still retain excellent evaluation performance.

Eliminating this transformation opens up new opportunities
for real time search. Real time updates to the index are easier to
facilitate since it is easier to append new terms or postings to a
hash table than to a UST. The index can be efficiently searched
in real time because the query evaluator does not have to wait
for the UST transformation to finish.

We build this new design upon a high-performance search
engine called Psearchy [3], implemented in the C programming
language.

2 BACKGROUND

In this section we provide some background on Intel Optane
DC persistent memory, inverted indices (Psearchy), pointer
chasing, and variable sized blocks.

2.1 Intel Optane DC Persistent Memory

Intel Optane DC Persistent Memory (PM) is an emerging
storage technology which utilizes 3D XPoint, a new storage
medium which ”stores information as a change in the material’s
bulk resistance” [1]. Functionally, Intel PM is similar to DRAM,
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except that it offers non-volatility and better scalability; Optane
is more cost effective (GB/$) than DRAM and offers higher
module capacities [1]. Unlike traditional persistent storage de-
vices, Optane PM offers byte addressability, removing read-
modify-write overhead costs [2]. Unfortunately, Optane PM has
higher latency (2-3 times slower) and lower bandwidth than
DRAM [5].

We use PM to build an in-memory hash table quickly
and efficiently. The special properties of PM mean that oper-
ations such as sorting, flushing and merging can be eliminated
from the indexing process. These operations are required for
DRAM/SSD based search engines [10].

We use PM to improve query evaluation performance since
we do not have to load partial indices from secondary storage,
which is a much slower than accessing the index directly on
PM [10].

2.2

Psearchy is the baseline search engine (written in C). Although
the original implementation supports parallel operations, in
this paper we will only consider single threaded indexing.
The Psearchy engine is used because it is written in C, which
simplifies integration with PM libraries such as Intel PMDK.

An inverted index is an indexing system which maps terms
to their locations in a set of documents.

The Psearchy index follows a similar structure to a log-
structured merge-tree and is implemented using an in-memory
hash table [1].

As shown in Figure 1 The hash table is made up of buckets
and blocks. We have a bucket for each term, which contains
a pointer to a first and last block for that term. Each block
contains a pointer to the next block, and contains a fixed-
sized array of postings. A Posting records information about
the location of the word: the id of the document in which it is
contained and its position inside the document. We can query
the hash table by obtaining the bucket for the term using some
hash function. We can get the first block from the bucket, then
traverse the linked-list of blocks to produce a posting list.

After indexing, the hash table is transformed into a sort-
ed/unsorted string table (SST/UST). A SST is a file which
contains a set of sorted key-value pairs. A UST is the same as a
SST, except the key-value pairs are unsorted. In this paper, we
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The state-of-the-art technique for indexing with persistent Fixed
memory consists of four stages [10]: L Ly Ly N N L

1) In the first stage, each document is assigned a docu-
ment id, and a mapping from its document id to its
location on a file system is stored in a did-to-file map.

2) The indexer iterates over the words in the documents.
For each word, a hashing algorithm is used to find
its corresponding bucket in the hash table using open
addressing. The bucket contains a reference to a linked-
list of blocks, containing the postings for the term. A
posting is created for the term, and inserted into the
last block. If the block is full, it is inserted into a new
block, which is attached to the end of the linked-list and
becomes the new last block.

3) Once the hash table index is built, it is transformed into
a UST.

4) Finally, we use a flush operation to ensure that the data
is persisted.

2.3 Pointer Chasing

Pointer chasing is ubiquitous in data-intensive applications
such as databases and key-value stores. In our search engine,
pointer chasing is required to traverse the blocks of the hash
table. The blocks use a linked-list data structure; each block
holds a pointer which refers to its subsequent block. In this
scheme, pointer chasing refers to the act of dereferencing this
pointer to retrieve the next block from memory. Traversing the
blocks is slow because irregular memory access is an expensive

Fig. 4: Pointer example

operation. With irregular access patterns, the out-of-order exe-
cution feature of the cpu is limited, and cache and TLB misses
are more frequent, resulting in worse latency and throughput
[9]. For opposing reasons, traversing an array of postings is fast
because we have a linear (regular) access pattern and spatial
locality. Therefore, we would like to reduce the number of
block traversals as much as possible by “trading” them for less
expensive posting traversals. This can be achieved by simply
increasing block sizes, however this leads to a trade-off between
space and performance; having larger block sizes results in
higher fragmentation. A UST structure solves this problem
by essentially allocating each term a block size corresponding
to its posting count, however, the transformation process is
expensive. We can solve this problem efficiently used variable
sized blocks, discussed in the next section.

2.4 Variable Sized Blocks

In a hash table with fixed sized blocks, newly allocated blocks
have the same capacity. A block’s capacity refers to the number
of postings it can hold. In this paper, we introduce variable
sized blocks to the hash table; when a block reaches its capacity,
we create a new block which is twice as large as the previous
one. We will refer to the hash table with variable sized blocks
as VSB, and the hash table with fixed sized blocks as FSB for
conciseness.



One of the reasons that the original hash table design
performs poorly is the large number of block traversals re-
quired when evaluating a query. In the previous section, we
explain how pointer chasing (which is used for block traversal)
is an expensive operation. VSB improves query evaluation
performance by increasing block sizes, thereby reducing the
total number of blocks for each term, resulting in fewer block
traversals. This is shown in Figure 4, where we compare the
number of traversals for a hash table with fixed and variable
sized blocks. Although both have the same number of postings,
we have to chase 6 pointers for FSB, but only 3 for VSB.

We originally hypothesized that VSB would reduce frag-
mentation in the hash table, since it means we allocate less
space for unpopular terms. If we allocate a small block when
we first encounter a term, it means we reduce over-allocation
for very infrequent terms, e.g. terms that appear only one (see
Figure 3). In Figure 3, we have a variable sized block with
a starting size of 1 posting; for a fixed block size of 4, the
fixed sized block allocates unnecessary space for 3 additional
postings. Unfortunately, we found that VSB did not reduce
fragmentation. In fact, we found that we achieved the lowest
fragmentation with FSB for small block sizes.

The transformation from a hash table to a UST is an
expensive operation, but it helps to eliminate fragmentation.
However, it does this at the cost of flexibility; the UST is not
designed to facilitate index growth.

To implement variable sized blocks, we formulated a new
hash table design which separates the postings from the blocks
(Figure 5). Unlike the previous design where each block con-
tained a fixed size array of postings (Figure 1), the new design
stores all of the postings in a separate array. For example, to
obtain the postings for the term “dog” in Figure 5, we use a
dictionary to obtain its corresponding bucket, and access the
first block. The block now points to an offset in the postings
array, and the block size represents the number of consecutive
postings for that term after that offset. This new design allows
us to easily vary the number of postings associated with each
block.

2.5 Configurations

In this paper, we evaluate the evaluate our optimisation: VSB
(a hash table with variable sized blocks) against a baseline hash
table index with fixed sized blocks (FSB) and the state-of-the-art
(UST).

3 EXPERIMENTAL SETUP

The parameters of our server is outlined in Table 1. We use a
dual-socket Dell PowerEdge R740 with configured with DRAM,
NVM and SSD.

3.1 Index Formation

Our data set is a file constructed from Wikipedia’s English
corpus (sourced from the Luceneutil website [6]) containing
5,000,000 lines, each line of the corpus is 1 KB in size. The
corpus is stored in DRAM on the tmpfs filesystem to ensure
that reading the corpus is not the bottleneck [1].

We build the index for varying block sizes (1, 2, 4, 8, 16, 32,
64, 128) for both VSB and FSB, using 1 indexing thread.

3.2 Query Formation

We have three query types: high, medium and low frequency
(H, M, L). We test single term queries, using 8 threads for our
query evaluator. For each configuration, we run 8 experiments
with 1,000 words from each query type. The query evaluator
retrieves the postings and writes them to an output buffer.

System

Operating System  Ubuntu 18.04.1 Linux OS (5.4.0 kernel)
Hardware Dell PowerEdge R740 Server
Processor

Processors Intel Xeon Gold 6252N

Number of cores 48 physical cores (96 logical)

Core frequency 2.3GHz

Issue width 4-wide

ROB size
Branch predictor
Max. outstanding

128 entries
hybrid local/global predictor
48 loads, 32 stores, 10 L1-D misses

Cache Hierarchy

L1-1 32 KB, 4 way, 4 cycle access time
L1-D 32 KB, 8 way, 4 cycle access time
L2 cache 256 KB per core, 8 way, 8 cycle
L3 cache shared 36 MB, 64 way, 30 cycle
DRAM

Capacity 400 GB

Bus frequency 800 MHz (DDR 1.6 GHz)

Bus width 64 bits

Channels 6

Ranks 1 rank/channel

Banks 8 banks/rank

NVM

Capacity 1.5TB

Hardware Intel Optane Persistent Memory
SSD

Capacity 1TB

Hardware 3.5-Inch, Seagate, SATA (6 Gbps)

TABLE 1: Target system parameters.
3.3 Measurement Methodology

From the indexer, we obtain measurements for posting utilisa-
tion, block count, and indexing time. We evaluate the indexer’s
performance based on the total execution time and the exe-
cution time of its components. From the query evaluator, we
obtain measurements for queries per second (QPS), tail latency
and average blocks traversed. We use the ext4-DAX filesystem
to directly access Optane PM, bypassing the buffer cache [1].

4 EVALUATION
We now provide an evaluation for the proposed optimisation
against the baseline and state-of-the-art.

4.1 Indexing Performance

The indexing time results for VSB and FSB are shown in
Figure 6 and Figure 7. The time is broken down into four
components:

o alloc_table: Allocating persistent memory for the hash
table (buckets, blocks and postings).

o pass0: Retrieving buckets and blocks and inserting post-
ings into the table.

o ust: Transforming the hash-table into the UST format.

o flush: Persisting the data.

In Figure 6, we can see that indexing time for VSB increases
with block size due to an increase in flush time. flush increases
with block size because we allocate space for the postings array
using the product of the number of blocks and the starting block
size.

For FSB, the indexing time decreases as we increase the
block size, up to around a block size of 16 (Figure 7). This
decrease occurs because ust time improves, since we reduce
the amount of block traversals when we create the UST from
the hash table.
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Fig. 7: Indexing time break down for FSB.

Both VSB and FSB have similar indexing times when block
size reaches 128; VSB takes 290 seconds and FSB takes 285
seconds. For both, pass0 takes up the majority of the indexing
time, followed by ust, flush and alloc_table (which is too small
to be seen). ust accounts for around 25% of the total indexing
time.

The pass0 time increases for both VSB and FSB with block
size, however, we did not have enough time in this project to

For VSB, we have an increased risk of allocating unnecessary
space since we double the block size when we allocate a new
block. This result introduces an important tradeoff between
performance and utilisation to consider; we can improve the
posting utilisation by using small fixed-sized blocks, however,
the query evaluation performance is much worse.

Posting utilisation decreases with block size for both VSB
and FSB, however, they eventually converge when block size
reaches 128.

Figure 12 shows the total block count for FSB and VSB.
Both decrease with increasing block size; FSB is much higher
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initially, but converges with VSB. VSB block count is less than
FSB, especially for small fixed blocks sizes; using less blocks
saves memory. At block size = 128, VSB block count is about
30% lower.

5 RELATED WORK

In related research, Shoaib Akram evaluates various hybrid
memory and storage configurations for search using inverted
indices [1]. He finds that the indexing time can be improved
with hybrid configurations (DRAM, NVM, SSD) at low core
counts. Our work is the first to evaluate a fully persistent in-
memory index.

Yang et al. provide an “empirical guide to the behavior and
use of scalable persistent memory” [5]. They investigate Optane
PM by measuring and evaluating its performance relative to
DRAM (latency and bandwidth). They discuss methods for
maximising the performance of Optane PM.

Jia et al. perform a performance study on the application of
Optane PM for a popular key-value store called RocksDB [7].
They confirm that using persistent memory results in a perfor-
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mance gain. They describe bottlenecks in the current LSM-tree
design which inhibit us from exploiting the full potential of PM.

Busch et al. discuss Twitter’s real-time search engine, Early-
bird [8]. This engine provides both rapid content ingestion
while “concurrently supporting low-latency, high-throughput
query evaluation” [8]. This is closely related to the long-term
goal of this project in implementing efficient real-time search
with persistent memory.

6 FUTURE WORK

Future work for this project includes using our new design with
SSD storage. Since our new design separates blocks and post-
ings into separate arrays, we could consider storing portions
of the postings array on the SSD while keeping the bucket
and block arrays in memory. This is important so that we
can increase the capacity of our index beyond the limits of
persistent memory.

Another idea for future work is exploring new methods
for implementing variable sized blocks to improve posting
utilisation. For example, we could try allocating larger block
sizes for frequent terms, and smaller sizes for infrequent terms.
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7 CONCLUSION

The key finding of our work is that we can significantly
improve the performance of a hash table index using variable
sized blocks, matching the query evaluation performance of
a state-of-the-art, UST index for most query types. The sig-
nificance of this result is that we can eliminate an expensive
step of the indexing process, while maintaining excellent query
evaluation performance. This also introduces an opportunity
for efficient real-time search with the hash table, since it can be
built and queried in the same format in real time. Finally, we
show that there is an important tradeoff between performance
and utilization; using fixed sized blocks gives us better posting
utilization at the cost of query evaluation performance.
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