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I. ABSTRACT

Today, there is increased interest in understanding the
impact of data-centric applications on compute and storage
infrastructures as datasets are projected to grow dramatically.
In this paper, we examine the storage I/O behavior of twelve
data-centric applications as the number of cores per server
grows. We configure these applications with realistic datasets
and examine configuration points where they perform signifi-
cant amounts of I/O. We propose using cycles per I/O (cpio)
as a metric for abstracting many I/O subsystem configuration
details. We analyze specific architectural issues pertaining to
data-centric applications including the usefulness of hyper-
threading, sensitivity to memory bandwidth, and the potential
impact of disruptive storage technologies.

Our results show that today’s data-centric applications are
not able to scale with the number of cores: moving from one
to eight cores, results in 0% to 400% more cycles per I/O
operation. These applications can achieve much of their per-
formance with only 50% of the memory bandwidth available
on modern processors. Hyper-threading is extremely effective
and applications perform with in 15% of what is achieved
with full cores instead of hyper-threading. Further, DRAM-
type persistent memory has the potential to solve scalability
bottlenecks by reducing or eliminating idle and I/O completion
periods and improving server utilization. Projecting in the
future for an increasing numbers of cores, at 4096 processors,
servers would require between 250-500 GBytes/s per server
and we will need about 2.5M servers that will consume 24
BKWh of energy to do a single pass over the projected 35
Zeta Bytes of data around 2020.

II. INTRODUCTION AND MOTIVATION

Recently, there has been increased interest in examining
how modern data-centric infrastructures will cope with the
alarming rate of data growth; Published reports [1] evaluate
the trends in data growth and show that by 2020 we will
need to cope with 35 Zeta Bytes (ZB) of stored information.
This growth is mainly driven by our ability to generate
and collect more information at all levels of human activity
and by new business models and services. In this context,
there are increasing concerns that existing applications and
infrastructures will not be able to cope with this growth in
data, limiting our ability to process available information.
These trends are represented by data-centric applications that

are currently driving the shift towards the design of systems
that process data rather than perform computation on memory
resident datasets [2]. A particular concern when designing such
systems is the efficiency and scalability of the I/O stack due
to the I/O intensive nature of most data-centric applications.

For this reason, there has been work in understanding
how our data processing infrastructures will cope with data
as well as how they are projected to scale in the future,
mainly with processor technology and the number of cores.
The predominant approach for scaling modern applications to
many cores is to improve our current system and software
stacks for handling parallelism better. Wickizer et al. [3]
report many scalability bottlenecks in today’s system stacks.
However, this approach of scaling the underlying system to
larger numbers of cores is not straight-forward. For this reason,
another possible approach, as advocated e.g. by Salomie et
al. [4], is to “distribute” multiple instances of the same
application as a means of utilizing additional cores.

To date, little attention has been paid to how I/O activity in
applications scales with the number of cores and the resulting
implications on data-centric applications and infrastructures.
For instance, results reported in [3] consider only I/O to
an in-memory filesystem. Moreover, lately there has been
increased interest and work on projecting I/O requirements
to the 2020 timeframe [5], [6]. These projections mainly aim
to identify I/O requirements at the infrastructure and server-
level and estimate potential limitations or set design targets.
However, existing studies use market growth rate for storage
and processing capability to project storage I/O requirements
of servers and infrastructures making it difficult to examine
the impact of specific optimizations and techniques.

In this work we tackle these issues by examining twelve
applications that operate on data. We perform extensive mea-
surements for calculating and understanding cpio for these
applications that are currently used for servicing, profiling,
analyzing and managing data (SPAMD). We start from mea-
surements on servers representative of most modern data-
centric infrastructures. We ensure that applications are oper-
ating at configuration points where they perform significant
amount of I/O operations while generating maximum load
for the processor. This is not a straight-forward step as most
applications require extensive tuning or modifications to reach
this state. Further, it requires extensive effort to tune the run-
time parameters and collect datasets that are representative of



future workloads. We characterize each application and present
an analysis of its behavior with respect to I/O.

We first examine data-centric applications scale with the
number of cores from an I/O point of view. We examine
the impact of hardware multi-threading, sensitivity to memory
bandwidth, and the impact of memory-based persistent I/O. We
propose using cycles per I/O (cpio) as an overall metric that
abstracts system-level details and is able to capture application
behavior. We discuss how we measure cpio and then we use
it to investigate the issues above by performing measurements
on a real system with realistic workloads. We focus on the
following questions:

• How does the amount of I/O performed by applications
increases with the number of cores and what happens to
the number of cycles per I/O?

• Should processors targeted for data-centric applications
support hyper-threading?

• What is the impact of memory bandwidth on application
behavior?

• To what extent can “storage-class-memories” improve the
scalability of modern applications to many cores?

Then, we perform a range of projections for infrastructure
size and server I/O requirements as datasets and the number
of cores per server grows in the 2020-timeframe. We use our
measurements and a simple linear model to set targets for
I/O requirements in future servers and to also provide a first
approximation of the infrastructure size that will be required to
process the data produced in 2020. We focus on the following
questions:

• What I/O requirements, in terms of throughput and IOPS,
will a server have as the number of cores grows?

• What infrastructure size in terms of the number of
servers/cores and energy will be required to process data
in the 2020-timeframe?

We compare our projections using cpio with estimates from
market growth and find that the two approaches result in com-
patible numbers. However, unlike market growth information,
our approach using cpio allows for projecting the impact of
new designs and techniques on application and infrastructure
I/O efficiency.

Overall, our work is a step towards building a methodology
for evaluating and understanding the impact of architectural
and systems software optimizations and extensions on data-
centric applications and infrastructures. Our results indicate
that:

• Compared to one core, applications spend from 0% up to
400% more cycles per I/O with 8 cores.

• On average, for twelve data-centric workloads, there is
only a 15% increase in cycles per I/O when hyper-
threading is used instead of full cores.

• On average, for seven data-centric workloads, there is
only a 20% increase in cycles per I/O, when memory
bandwidth per core is reduced by 37%.

• Persistent storage operating at the speed of DRAM is
able to fully eliminate periods from the execution time

where applications merely wait for I/Os to complete.
Idle periods, although not fully, but to a great extent are
eliminated from the execution time.

• If applications scale according to our optimistic assump-
tions, servers with 4096 cores will need to support storage
I/O throughput between 250-500 GB/s.

• A one pass over the entire dataset that will be produced
in 2020 will require 18 billion kWh given current server
power, idle power, and scalability trends. This energy will
be consumed by 2.5 million servers operating for one year
at low utilization levels observed today. We show that,
whereas architectural improvements such as reducing idle
power and minimizing total server power will result in up
to 2x saving in energy consumption, scaling applications
to reduce per I/O overhead has the potential to reduce
energy consumption by a factor of 100x.

The rest of this paper is structured as follows. In Section III,
we describe a methodology for characterizing and projecting
I/O behavior. Section IV describes a set of applications that op-
erate with big datasets. Section V discusses our experimental
platforms and observed behavior of applications. Section VI
provides measurements from experiments and Section VII
provides projections for future. Finally, Section VIII discusses
related work and Section IX concludes the work.

III. METHODOLOGY

In this section we describe our methodology for character-
izing I/O behavior based on cycles per I/O.

A. Using cpio to characterize data-centric applications

Characterizing I/O is a complicated process. This is particu-
larly true today, with storage systems that include many layers,
components, and perform complex functions transparently to
the applications. For this reason it is important to use metrics
that can abstract the details of today’s storage subsystems and
their interaction with applications. We propose using cycles
per I/O operation (cpio ) as a metric to quantify application
behavior from an I/O point of view. We also propose to use
cpio for projecting the scalability and requirements of data-
centric applications.

We calculate cpio for each application by running each
application in a meaningful configuration; applications when
run, should generate I/O traffic. For instance, cases where the
workload fits in the available memory and exhibit low I/O are
probably not typical of future configurations since the demand
for data grows faster than DRAM capacity. For this purpose,
we select datasets that are big enough to not fit in memory
and generate I/O throughout execution.

We measure the average execution time breakdown as
reported by the OS consisting of user, system, idle, and
wait time. Linux reports the CPU utilization numbers in
“USER HZ” which is 100 ms on our systems. The conversion
from USER HZ to physical cycles is straightforward given the
frequency of each core is known. We also note the number of
I/Os (NIOS) that occurred during the same interval counting
both read and write operations. There are two issues related



to the cpio calculation. First, what each of the components
means and second which ones should be taken into account
to come up with a meaningful metric. We next briefly explain
what each component of the breakdown means.

User time refers to the time an application spends executing
code in the user space. When the user application request
services by the OS, the time spent is classified as system
time. The time an application spends waiting for I/Os to
complete is classified as iowait time. Idle time refers to the
time during which the application either has no more work to
perform within its allocated quantum or because it is waiting
for resources that are not available, for instance, locks.

Given this, cpio can be calculated as follows: Either divide
the total number of cycles with the number of I/Os including
idle and iowait time or by excluding these two components.
The first approach is valid for cases where it is difficult to
scale the application and consume all available CPU cycles.
This is common today given the complexity of applications
and the increasing number of cores. This first approach is
also more representative of systems where idle cycles cost
significantly (disproportionally) in terms of energy which is
the situation today [7]. However, given that one of our goals
is to quantify issues in a longer timeframe and that there
is currently significant research interest in providing energy
proportionality in future systems, we choose to exclude idle
and wait cycles from the cpio calculation, assuming that these
cycles have no cost.

A second issue is what should be used as the number of
I/Os. Typically in I/O intensive applications, there are multiple
parameters that can characterize I/O behavior: the size of each
I/O (e.g. small vs. large), the type of I/O (read or write), the
access pattern (e.g. sequential vs. random), and the number of
outstanding I/Os. In many cases it is difficult or impossible to
capture this behavior and associate this to application behavior.
In our work, we use a fixed and predefined size of 512 bytes
as the number of I/Os that occur during execution. We choose
the size to be 512 bytes which is a typical size for the sectors
in many (but not all) storage devices. The main implication
is that the overhead per I/O in an application that does large
I/Os will appear to be smaller per I/O. We consider this to
be a desirable situation, since an application (or system) that
strives to achieve large I/Os should be perceived as a good
case. Finally, note that the CPU utilization and I/O numbers we
refer to are cumulative for the whole system and the execution
window we consider regardless of the number of cores or
different phases in the application.

Thus, cpio is calculated by dividing the user plus system
cycles as reported by the OS with the total number of sectors
read and written throughout the execution of application. In all
our measurements, we run applications long enough to capture
their typical behavior.

The advantages of using cpio as a metric to examine data-
centric applications are: 1) Application-level metrics, such as
transactions or events do not represent the actual volume of
data that pass through the I/O subsystem. cpio , on the other
hand, takes both compute and I/O resources consumed into

account. 2) Individual components of cpio are able to point
towards inefficiencies in different components of today’s com-
plex software stacks. For instance, the ability to quantify user-
level versus system-level overheads. 3) Given the peak and idle
power of a server, cpio can be converted to energy consumed
per I/O operation. 4) When running multiple applications each
with its performance metric, it is difficult to analyze the overall
system performance. cpio serves as a system-wide metric of
efficiency in such scenarios. 5) cpio has predictive value and is
able to project future infrastructure requirements as discussed
in the next section.

B. Using cpio as the basis for projections

We use cpio to project application requirements, as follows.
A multi-core processor with N cores, each with a frequency
F , has a total capacity of Cn physical cycles during an interval
T , given by Cn= N ∗ F ∗ T . We define the CPU utilization,
µ, as Cp/ Cn, where Cpis the sum of user and system cycles
during execution. NIOS is the total number of 512-byte I/Os
performed by an application during an interval T. Using the
above, cpio can be expressed as:

cpio = (µ ∗N ∗ F ∗ T )/NIOS. (1)

To calculate IOPS that I/O subsystems will need to support
with increasing number of cores, we use the following equa-
tion:

IOPS = (µ ∗N ∗ F )/cpio. (2)

Note that, in Equation 1, IOPS = NIOS/T .
We assume a frequency of 2 GHz for each core in future

servers, opting for the current trend of a larger number of
slower cores. To estimate the size of infrastructures in data-
centres we use Equation 2 to find throughput of applications.
We then assume a particular size for the dataset and a time
frame with in which to process the dataset. This provides us
with the number of cores (or servers) required to process the
projected amount of data. We then use various assumptions
about the power of mid-range servers in 2020 to estimate
energy consumption of all the servers.

IV. SPAMD APPLICATIONS

In this section we discuss how we configure the applications
we use to perform large amounts of I/O and the datasets we
use. Table I summarizes these characteristics.

Asynchronous direct I/O (zmIO) is an in-house micro-
benchmark able to provide data rates close to maximum stor-
age bandwidth, using the asynchronous I/O API of the Linux
kernel to issue concurrent I/Os at low CPU utilization. It serves
as a reference point quantifying the maximum achievable
performance in today’s systems [8].

File system stress tests can reveal the behaviour of metadata-
intensive workloads. We use a modified version of fs mark [9]
to stress filesystem operations individually. Each fs mark
thread performs a sequence of operations on a private file
within a shared directory.

Checkpointing of high performance computing (HPC) ap-
plications generates large amounts of I/O. We use IOR [10]



TABLE I
SPAMD: APPLICATIONS FOR SERVICING, PROFILING, ANALYZING AND MANAGING DATA.

Application Description Parameters Dataset Size
(GBytes)

zmIO Asynchronous Direct I/O Outstanding I/Os=16K; Read/Write Block Size=128KB 600
fs mark File System Stress Test Threads=128; Directories=128; Files per Directory=128 64

File Size=4MB; Read/Write Block Size=16KB
Operations=open,create,read,write,close

IOR Application Checkpointing Processes=128; File Size=2GB; I/O Mode=MPI IO; 128
Offseting within File=Sequential

Psearchy File Indexing H(Directory Hierarchy)=Flat(F) or Complex(C) 100
D(Document Size)=Small(S) or Large(L)
Workloads: I-HFDL; I-HFDS; I-HTDS; I-HTDL
Processes=32; Hash Table Size=128MB

Dedup File Compression DedupS: File Size=10MB;Instances=100; Threads per Stage=1 1
DedupL: File Size=1GB; Instances=10; Threads per Stage=32 10

Metis Mapreduce Library for Application:Word Count; Instances=5 20
Single Multi-core Machines File Size=1GB; Map Threads=8; Reduce Threads=8

Borealis Data Streaming BR-128 : Tuple Size=128 Bytes; Batching=256; Instances=4 2.62
BR-1024 : Tuple Size=1KB; Batching=32 ; Instances=4 2.62
BR-64 : Tuple Size=64KB; Batching=1 ; Instances=4 60

HBase NoSQL Store Threads=128; Fields per Record=10; Size of Field=1KB 30
BDB Key-value Store (Java-based) Threads=128; Fields per Record=10; Size of Field=1KB; 30
TPC-C OLTP Workload (Warehouse) Warehouses=3000; Virtual Users=512 155

innodb thread concurrency=8; innodb file io threads=4
TPC-E OLTP Workload (Stock Broker) Active Customers=200000; Days of Trade=7; Terminals=128 155

innodb thread concurrency=8; innodb file io threads=4
Ferret Content Similarity Search Size of Query Images=800KB 200
BLAST Sequence Similarity Search Instances=16; Threads per Instance=16; Task=blastn 20

Queries per Instance=16; Databases=Pre-formatted Nucleotide-
Databases from NCBI (refseq genomic, env nt, nt)
Alignments=128; Target Sequences=5000

Tariff Offline Profiling of Threads=64; Size of each CDR File=1GB 64
Call Detail Records (CDRs)

to simulate various checkpointing patterns. IOR uses MPI and
typically exhibits moderate user time whereas the I/O issued
by several concurrent MPI processes results in significant
iowait time.

File indexing is mainly done as a back-end job in data-
centres and web hosting facilities. We use Psearchy [3] as
a file indexing application. We run Psearchy using multiple
processes where each process picks files from a shared queue
of file names. Each process maintains a hash table for storing
BDB indices in memory. The hash table is flushed to storage
devices after it reaches a particular size. We modify the
original Psearchy to improve its I/O behavior by avoiding
character I/O and batching requests to larger sizes.

Deduplication is a technique for compression mainly used
for near-line and archival storage. We use the dedup kernel
from the PARSEC benchmark suite [11]. Dedup is usually
entirely dominated by user time.

Mapreduce is used as the basis for various data-centric
applications. We use Metis from the Mosbench benchmark
suite [3] and perform a simple wordcount on input files. Metis
maps the input file in memory and assigns a portion of the file
to each of the map threads. Metis is primarily dominated by
user time. We run multiple instance of Metis and assign a
different file to each instance.

Stream processing is an upcoming class of applications
for data-centres. We use Borealis [12] to process streams of
records (or tuples) stored on storage devices. We run the client,
the Borealis server and the receiver on the same node. The
client reads tuples from storage devices, the Borealis server fil-
ters tuples, and the receiver writes the tuples to storage devices.
We extensively hand-tune Borealis to remove operations that
hurt overall throughput. We run multiple instances of Borealis
to increase system utilization. Two important parameters for
Borealis are: tuple size and the batching factor. Batching
factor is the number of tuples in an event. As batching factor
is increased while keeping the tuple size small, there is an
increase in user time.

NoSQL data stores are becoming popular for serving data
in a scalable manner. HBase is such a data serving system
that is part of the Hadoop framework. We use the YCSB
benchmark [13]. We first build a database using the YCSB
load generator using a workload that performs only insert
operations. We then run a workload that performs 70% read
and 30% update operations. We reserve 3GB of physical
memory for the Java virtual machine (JVM). HBase has high
idle time while there is an equal amount of user and system
time.

Key-value data stores over traditional databases is another



approach to building NoSQL stores. BDB is a library that
provides support for building data stores based on key-value
pairs. Our evaluation methodology for BDB is similar to that
for HBase. Since BDB is an embedded data store, the YCSB
clients and the BDB code share the same process address
space. We reserve 6GB of physical memory for the JVM.
We configure YCSB to use 3GB for the YCSB clients and
3GB for BDB. BDB is dominated by user time but there is
considerable system time.

Online transaction processing (OLTP) is an important class
of workloads for data-centres. We use TPC-C and TPC-E as
OLTP workloads. TPC-C models an order-entry environment
of a wholesale supplier while TPC-E models transactions that
take place in a stock brokerage firm. We run both TPC-C
and TPC-E using MySQL and specify runtime parameters that
result in high concurrency. We use an open-source version of
TPC-C called Hammerora [14]. We run the hammerora clients
and the MySQL database server on the same machine. We
observe that hammerora clients consume very little percentage
of the entire CPU utilization in our experiments. We run TPC-
C with 6GB RAM which results in realistic amount of I/O for
our chosen database. We observe that using MySQL database
server results in high idle time for both TPC-C and TPC-E.

Content similarity search is used in data-centres that host
e.g. social networking services [11]. We use Ferret from
the PARSEC benchmark suite. Ferret is compute intensive
and performs sustained but small amount of I/O. We fit the
database of image signatures against which queries are run in
memory. Ferret is dominated by user time.

Comparative genomics leverages the tremendous amount
of genomic data made possible by advances in sequencing
technology. We use BLAST [15] for Nucleotide-Nucleotide
sequence similarity search. We run multiple instances of
BLAST each executing a different set of queries on a separate
database. We use random query sequences of 5KB, which
is a common case in proteome/genome homology searches.
BLAST is I/O intensive and the execution time is dominated
by user time.

Profiling of call detail records (CDRs) by telecommunica-
tion service providers is performed for analyzing the feasibility
of various usage plans. We use TariffAdvisor (Tariff) that does
offline profiling of CDRs using machine learning models. The
input to Tariff is a set of files that each contains different
plans offered by the operator to the users. Tariff analyzes the
records covering a period of time and outputs the plans that are
financially productive. Tariff uses PostgreSQL as the database
management system. Tariff is an I/O intensive application and
its runtime is dominated by user time.

V. EXPERIMENTAL PLATFORM

Figure 1 shows the breakdown of execution time on a disk-
based and an ssd-based storage subsystem. The important
features of the two machines are shown in Table II. The
applications on the X-axis are ordered in terms of increasing
iowait time, as a percentage of total execution time. Note that

TABLE II
SUMMARY OF EXPERIMENTAL PLATFORM PARAMETERS.

DISKS SSDS
2 Intel Xeon E5620 (Quad-core) 2 Intel Xeon E5405 (Quad-core)
No hyper-threading 2 Hardware Thread per Core
8 GB RAM; 1 Storage Controller 12 GB RAM; 4 Storage Controllers
XFS on Hardware RAID 0 (8 Disks) XFS on Software RAID 0 (24 SSDs)
Storage Throughput=1 GB/s Storage Throughput=6 GB/s
CentOS distribution; 2.6.18 kernel CentOS distribution; 2.6.32 kernel

in terms of I/O behavior, the applications cover a broad range
and the average iowait time reduces when using SSDs.

We note that the average idle time for DISKS is 30%
compared to only 7% for SSDS. This is because, threads
wait longer for I/Os to complete, and thus the entire system
is slow. This observation is of particular interest to data-
centric infrastructures as in today’s server machines, the idle
and iowait periods consume up to 70% of the peak power.
This implies that disk-based storage subsystems not only have
slower response time but are also inefficient in processing I/Os
in terms of energy. We also note that on average, the system
time on DISKS is only 2% of total execution time compared
with 26% on SSDS. Thus, the idle time that applications
observe on DISKS is converted to system time on SSDS for
the applications that we evaluate.

Figure 2 shows the cpio of all applications for both se-
tups. We observe that for many applications, cpio is largely
independent of the underlying storage technology and system
configuration. Figure 2 does not show the cpio of Ferret and
TPC-C since they would require a much higher value on the
Y-axis. The cpio of Ferret is approximately 2 million cycles
on both setups. The cpio of TPC-C on SSDS and DISKS is
12K cycles and 2M cycles respectively. We suspect this large
difference is due to spinning by client threads which consume
excessive cycles on SSDS which has more cores.

Note that given two applications, the one with a higher
execution time can appear to be more cpio-efficient by doing
large amounts of I/O. As an example, note that BDB, which
is a light-weight data store, has an order of magnitude higher
cpio compared to HBase, which has a complex software stack.
This is because HBase does a large amount of small I/O
operations. In reality, its execution time for the same YCSB
test is much higher compared to BDB. Thus, cpio should be
used carefully when comparing the efficiency of two software
stacks that generate different volume of I/O during execution.

VI. MEASURED RESULTS

A. Does application I/O scale?

Perfect scalability for I/O intensive applications implies
that, with doubling of cores, IOPS should proportionally
double. Thus, cpio stays constant and application performance
doubles. However, we show in Figure 3 that cpio increases
for most applications from one to four cores and for all
applications from one to eight cores. In the same figure, we
show scalability of cpio with hardware threads instead of
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Fig. 1. Breakdown of execution time in terms of user, system, idle, and iowait time on DISKS and SSDS.
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Fig. 2. cpio on DISKS and SSDS.

cores. In Figure 3(b), we use one and two cores per socket on
SSDS and enable hyper-threading to experiment with four and
eight hardware threads. We note that the scalability trend is the
same with increasing hardware threads as seen with increasing
cores.

Next we show how well applications are able to use cycles
made available by more cores for processing additional I/Os.
Figure 5 shows how µ changes from one to multiple cores.
From one to eight cores, µ drops for most applications, and up
to 0.68 from one. Further, from one to 16 hardware threads, µ
drops to below 0.5 for HBase, BDB, TPC-C and I-HFDL. This
drop is because as more cores are added, either iowait and/or
idle time increases. Thus, as applications strive to perform
more I/O operations with increasing number of cores, synchro-
nization overhead becomes one of the primary bottlenecks to
scalability. For other workloads, in particular Dedup, Metis,
Tariff, and BR-1024, µ does not drop significantly.

B. Are hyper-threads effective?

In this subsection we show the effectiveness of hyper-
threading for data-centric applications. Schone et al., recently
showed the (slightly) negative impact of hyper-threading on
performance [16]. However, they experimented with all cores
and hyper-threading enabled. With all cores utilized, it is
difficult to analyze if any particular feature is the bottleneck.
Therefore, we evaluate hyper-threading with different number
of cores. Figure 6 shows cpio for different number of cores
both with and without hyper-threading enable (normalized to
cpio with four cores). We note that, for most applications, there
is no significant increase in cpio using four cores with hyper-
threading (4C+HT) instead of eight cores (8C). In particular,
most applications observe only a 20% increase in cpio when
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(b) Hardware Threads

Fig. 3. Increase in cpio (Y-axis) normalized to the cpio with one core (a)
and with one hardware thread (b).
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Fig. 4. Increase in cpio (Y-axis) from 1 to many cores normalized to cpio
with one core.

hardware threads are used instead of full cores thus achieving
performance within 80% of performance with full core.

This figure also shows that, for half of the workloads, cpio
increases significantly with 16 hardware threads. Given our
earlier observation that cores and hardware threads follow a
similar scalability trend, we believe that, what we observed for
16 hardware threads, will be the case for 16 cores. Our results
indicate that the increase in cpio is contributed both by the
user and system component. Thus, we infer that the I/O stack
in current systems do not scale because of resource contention
for shared resources, for instance, a single page cache shared
across all software threads.

C. How much memory bandwidth?

An important question for data-centric applications is how
much memory bandwidth is sufficient for scalability to many
cores. We answer this question by analyzing the sensitivity
of applications to memory bandwidth. Scientific applications
are known to be less sensitive to memory bandwidth, because
computing complex addresses generated by these applications
hides the memory latency [17]. Since it is difficult to estimate
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Fig. 6. Effectiveness of hyper-threading for data-centric applications.

what future technologies might be capable of providing, we
project memory bandwidth demand in future that is sufficient
for scaling current performance standards to many cores. First,
the maximum bandwidth on SSDS is 21 GB/s. This implies a
bandwidth of 1.3125 GB/s per core. We measure the increase
in cpio by a decrease in memory bandwidth. For this, we
wrote a microbenchmark modeled after STREAM [18] called
mstress that stresses the memory subsystem. We run multiple
instances of mstress along with an application from Table I.
We note the aggregate memory bandwidth consumed by the
mstress instances. Figure 7 shows the percentage increase in
cpio of the application when part of the memory bandwidth
is taken by mstress. Note that most applications suffer a 20%
increase in cpio but then require from 6% up to 65% less
memory bandwidth.

D. What will be the impact of DRAM-type persistent storage?

An emerging challenge in the storage domain is to examine
how things might evolve when storage class memories [5] start
to appear in real systems. Although there are various types of
memories proposed in this category, we make a first order ap-
proximation and take the simplistic approach that these mem-
ories will appear comparable to DRAM. However, we assume
that applications will still perform I/O via the traditional I/O
path, since this would be a first step in the evolution towards
using storage class memories and in addition, complex data-
centric applications such as transactional databases will require
fundamental changes to avoid the traditional I/O path when
going to persistent memory. For this study, we wrote a kernel
module (kram) that simulates a block device. kram completes
I/O operations in-place without using any re-scheduling of
I/Os. The size of kram is 54 GB and the physical memory in
these experiments is 12 GB. The experiments are performed
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Fig. 7. Memory bandwidth per core today and after tolerating an increase
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on DISKS and datasets are adjusted to fit in the available
memory.

Figure 8 shows the breakdown of execution time for selected
applications with high iowait and idle times on SSDS. First,
we see that iowait time disappears for all applications. This
is expected since I/Os now complete upon issue without the
issuing thread leaving the executing core. We note that, for
certain applications, there is still idle time either due to severe
imbalances or other form of synchronization. Our observa-
tions on idle time with DRAM-storage strongly indicate that
application scaling on many-core systems will not be simple
even for data-centric applications that in principle exhibit large
amounts of concurrency.

VII. PROJECTED RESULTS

In this section, we use cpio to project I/O-related require-
ments consumption to the 2020 time-frame. In our results,
wherever we show averages for all applications, we do not
include zmIO, fsmark, and Ferret.

A. How many cycles per I/O?

Figure 4 shows the projected increase in cpio for 1024,
2048 and 4096 cores using the measured values today. Note
that, workloads such as I-HFDL, which observe only a small
overhead in cpio with eight cores will end up spending
100 times more cycles per I/O with 4096 cores. This is an
important observation given that future systems and servers
that will process data are expected to have a large number of
cores in a single enclosure.

B. How much storage bandwidth?

We calculate millions of IOPS (MIOPS) using Equation 2
and use it to examine how much I/O we will need to provide



TABLE III
MILLIONS OF IOPS (MIOPS) REQUIRED FOR DATA-CENTRIC APPLICATIONS WITH 4096 CORES.

Scenario Millions of IOPS with 4096 Cores
s(µ, cpio) zmIO fsmark Ferret I-HFDL I-HFDS I-HTDS I-HTDL Metis DedupS DedupL BR-64 BR-128 BR-1024 IOR Tariff BLAST HBase BDB TPC-C TPC-E Average
s(l, p) - 4.56 0.02 12 - 0.67 - 1 0.60 5 2 0.4 8 35 5 - 12 2 6 9 7.5
s(h, p) - 92 0.02 65 - 424 - 1 0.87 8 40 40 38 49 5 - 107 12 16 14 59
s(l, t) 1228 1272 3 2207 163 151 1183 36 61 95 711 26 145 1522 128 147 563 103 321 535 476
s(h, t) 14297 5038 3 4509 412 425 2822 37 68 99 812 40 183 1991 135 153 1405 215 680 743 818
s(l, d) - 1297 27 2540 - 146 - 79 74 132 811 25 140 3735 87 - 644 104 797 1743 969
s(h, d) - 7629 28 5941 - 405 - 80 83 148 989 38 186 5014 93 - 1652 218 1699 2469 1810
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Fig. 9. GB/s (Y-axis) required by OLTP, Data Stores, and Backend
applications in 2020. The solid line shows % increase in storage I/O from
s(l, t) to s(h, t).

per server when running data-centric applications on many-
core processors. Note that in Equation 2, µ and cpio, as
a combination, leads to various scenarios, which we call
s(µ, cpio). In this work, we consider s(l, p), s(h, p), s(l, t),
s(h, t), s(h, d), s(l, d); where l and h stands for low and high
utilization respectively whereas t, p and d stands respectively
for cpio measured today with 16 cores, projected cpio from
real measurements and desired cpio measured with one core.

We use 100% for calculations with high utilization. For
low utilization, we take the measured utilization with 16
cores for s(l, t) and project it to many cores for s(l, p).
Note again that utilization could be low for several reasons
including I/O bottlenecks and excessive synchronization. Thus,
it is important to quantify all scenarios that may appear in
future. The variation in server utilization is also observed
in today’s data-centres: The peak levels are characterized by
high utilization, while mostly, servers operate at low levels of
utilization [19].

We consider three values for cpio for a many-core processor
in 2020. The measured value with 1 core is the most optimistic
assumption for a many-core processor as it is challenging
to completely eradicate contention and synchronization over-
heads. On the other hand, projecting from measured values
is a very pessimistic scenario. Therefore, the measured value
with 16 cores provides an interesting middle-ground between
the two extremes.

Table III shows the MIOPS per server for the four scenarios
assuming applications run on a single server with 4096 cores.
s(l, p) results in the lowest MIOPS characterized both by low
levels of server utilization and high cpio. s(h, p) improves
µ and thus results in increased IOPS by a factor of 4 (on
average). This implies that even if cpio continues to increase,
applications can exploit the large amounts of raw cycles to
perform more I/O Operations per second. The more desirable
scenarios result with measured cpio. Further, IOPS for s(h, t)
is, on average, twice the IOPS for s(l, t) showing the im-

portance of improving server utilization. Finally, using cpio
with one core (s(l, d) and s(h, d)) results in twice the IOPS
compared to projected cpio.

There are workloads in Table III for which projected cpio
becomes stable with increasing cores. For instance, note that
BR-128 and I-HTDS generate the same IOPS for s(h, t) and
s(h, p). These workloads observe utilization today between
40%-50%. Still, note the adverse drop in throughput reported
by s(l, p) owing to increasing iowait time and idle time with
more cores.

Figure 9 shows storage throughput in terms of GB/s for
all workloads grouped into three categories. We show the
throughput for a server with 128 cores and one with 4096
cores. We note that all workloads require 10s of GB/s with 128
cores assuming high utilization. However, for 4096 cores, the
requirement is up to 500 GB/s for s(h, t) and up to 250 GB/s
for s(l, t). With the current annual growth in disk throughput,
this will require thousands of disks per server. Thus, faster
and area-efficient storage devices will be required if modern
applications are able to scale to many cores. Also, providing
per socket memory and I/O bandwidth in the range of 100s of
GB/s will be challenging. The servers in today’s data-centres
use network-attached storage via Ethernet or Fibre Channel
links. Thus, packaging servers with enough network cards
capable of providing multiple TB/s within expected power
budgets will require tremendous efforts. Overall, improving
application stacks for better CPU utilization and less overhead
per I/O, will open up new and challenging problems in the
storage and I/O domain.

C. How much energy?

We show the energy that will be needed to sweep through
(in one year) all data produced in 2020. We show the energy
assuming both today’s CPU utilization and full CPU utiliza-
tion. We calculate energy considering idle power consumption
in servers today (70% of full power) and assuming zero idle
power. We use the measured, desired and projected cpio. We
discard the case with projected cpio where CPU utilization
is low since it is unrealistic to have a processor with 4096
cores which is mostly idle and applications spend 100x the
cycles per I/O compared to what they spend on one core. We
make different assumptions in Table IV for full power of a
mid-range server in 2020: a) Energy-star based server power
in 2006 (675W per server), which would correspond to about
0.1 Watt per core for a 4096 core server, if achievable, b) The
same number projected to 2020 using Energy-star’s projection
(1.25 KW per server), which would correspond to about 0.2



TABLE IV
KWH (BILLIONS) TO SWEEP THROUGH 35 ZETA BYTES. IP=0% AND

IP=70% REPRESENTS IDLE POWER OF 0% AND 70% OUT OF FULL
SYSTEM POWER.

Power Assumptions Low CPU Utilization High CPU Utilization
for a mid-range desired cpio today’s cpio projected today’s desired
server in 2020. IP=0% IP=70% IP=0% IP=70% cpio cpio cpio
Assuming 0.5 Watts per core (2.5 kW) 0.18 0.21 0.27 0.33 29 0.27 0.175
Energy-star projected to 2020 (1.25 kW) 0.11 0.12 0.16 0.20 17.5 0.16 0.107
Energy-star of 2006 (0.675 kW) 0.06 0.07 0.09 0.11 9.5 0.09 0.057

Watts per core, if achievable, c) 0.5 Watts per core (about 2.5-
3.0 KW per server). We also assume that all power will be
consumed by servers with data-centres operating at PUE=1.

Given today’s utilization, projected cpio, idle power con-
sumption, and power per server, it will take 13 Billion kWh to
do one pass over data (on average). This represent 4.33% total
energy consumption in data-centres in 2020 projected by [20]
based on annual growth. For a single pass over the dataset, this
amount of energy consumption is extremely high. Therefore,
even with machines built efficiently, where 4096 cores and
supporting infrastructure such as I/O hubs and interconnect
etc. is packaged in a 675 Watts server, application overheads
will result in tremendous energy consumption in data-centres.

Bringing idle power down to zero has the potential to save
energy consumption by up to 18%. Xiabo et al., [7] report
a possibility of 50% reduction in energy consumption of a
real data-centre by bringing idle power down to 10% of peak
power. The difference in results is because of the application
datasets and parameters we use, which result in an average
CPU utilization of 68%, higher than what happens in today’s
data-centres.

Given packaging limitations, fitting 4096 cores in a sin-
gle server (e.g. in four sockets) will require one to two
orders of magnitude improvement from today’s per-core power
consumption to the 0.1 watt level. Our results in Table IV
indicate that carefully architect in the software stack to avoid
increasing cpio (as our measured trends show) can reduce
energy consumption by one to two orders of magnitude.
Finally, reducing idle power and improving server utilization
are two other important factors, however with lower potential
for energy consumption improvements, in the 10-30% range.

VIII. RELATED WORK

In this section, we mainly compare our work with results
reported in recent literature.

a) Scalability to many cores: Recently, there has been
effort to scale Linux to multiple cores. The authors in [3]
report and address scalability bottlenecks in all layers of the
system stack. In [21] the authors analyze the scalability of
many data-centric applications and provide a methodology
to identify indiviual components of scalability bottlenecks.
All these studies on the scalability analysis of data-centric
applications use I/O to a memory-resident device or filesystem
and focus on the CPU processing aspect alone [3], [22]. This
approach potentially hides inefficiencies in applications that
use a real storage subsystem, since they omit a number of

layers in the OS kernel in addition to altering application
behavior.

Low server utilization today is also an impediment when
scaling to many cores. Figure 9 shows that for all application
domains and data stores (HBase and BDB) in particular, there
is a large gap between current utilization levels and what
is ideally possible. Note that we use application parameters
that result in high concurrency and little iowait time on the
SSDS machine. Thus, it is worth discussing the argument
of “distributing versus scaling” as presented in recent work,
e.g. in [4]. It is a valid question how much effort will it
take to improve utilization of a single instance on future
many-core systems. Instead, it may be preferable to just
run multiple instances of distributed applications on a single
system, possibly via virtual machines.

b) Storage I/O projections: We contrast our projected
throughput results with those reported in recent literature [5],
[6]. Benner et al. [6] project the I/O bandwidth needed for
OLTP, business intelligence, and technical applications in 2007
for today’s time frame using historical trends. For the OLTP
workloads, our observed storage I/O throughput with 16 cores
match their results (approximately 1 GB/s). Tariff and BLAST
falls in the business intelligence and technical domains respec-
tively. However, they perform storage I/O that is far from the
projections of the authors. Note that application stacks in many
domains tend to get complex over time increasing the cycles
elapsed between successive I/Os that is not taken in to account
by projections based on market growth.

Freitas and Wilcke [5] project storage I/O requirements of
data-centric applications in 2020 using as a starting point,
a large-scale system able to perform 2 million start I/O
operations per second (SIO/s) in 2007. We observe, on average
for all applications, roughly 2 million IOPS for 8 cores and
then use four scenarios to project. Assuming 70% and 90%
annual growth rate, the authors report 2 GSIO/s and 8.4
GSIO/s. Our most optimistic scenario i.e., s(h, t) projects 1
billion IOPS per server assuming 4096 cores. As a reference
point, zmIO reports 2 billion and 7 billion IOPS with 1024
and 4096 cores respectively.

c) Energy projections: Energy Star reports an 8x op-
portunity for saving energy consumption by improving power
management of processors, voltage reduction, server consoli-
dation using virtualization, etc. Note that Energy Star performs
its projections by examining the growth rate for data-centre
infrastructures over the last decade and taking into account
power consumption projections for servers. Our calculations
have a different starting point, which projects application
behavior to many-core processors and reports implications
of scaling on energy (in)efficiency in future data-centres.
More recently, Ferdman et al. [22] analyze many data-centric
applications and conclude that current processor architectures
for servers are over-provisioned in terms of many microarchi-
tectural features.

d) cpio as an efficiency metric: cpio as a characterization
metric for data-centric applications is to some extent, similar to
the five-minute rule by Jim Gray [23] and compute efficiency



metric discussed by Anderson and Tucek [24]. A performance
comparison of different ways for managing disks in a virtual-
ized environment by VMware [25] uses a metric called MHz
per I/Ops which is similar to cpio. In this work, we show that
cpio is able to characterize application behavior in terms of
efficiency and scalability and it has predictive value.

IX. CONCLUSIONS

In this work we first discuss the scaling of data-centric
application to an increasing number as well as the impact of
hyper-threading, memory bandwidth, and DRAM-type persis-
tent memories to data-centric applications. Then, we discuss
projections for I/O requirements in 2020 timeframe. We pro-
pose using cycles per I/O (cpio) as the basis for characterizing
applications at a high-level and projecting requirements to
the future and discuss implication of different approaches to
calculate cpio.

Our measured results show that applications do not scale
well with an increasing number of cores, despite the fact
that they are designed to incur high concurrency. In addition,
hyper-threading works very well for these applications, while
today’s servers are over-provisioned in terms of memory
throughput. Finally, although DRAM-type persistent memory
can help reduce idle time in applications, it is not enough to
completely eliminate it.

Our projections show that future servers, under scaling
assumptions, will need to support 250-500 GBytes/s of I/O
throughput and that in 2020 we will need about 2.5M servers
of 4096 cores and 24 BKWh of energy to do a single pass
over the estimated 35 ZBytes of data that will be produced
within 2020.

Overall, our methodology is able to abstract application
behavior and to characterize a broad range of applications.
For many cases, our methodology results in projections that
are inline with published numbers, however, using measured
data rather than market growth information. This makes our
methodology useful as a tool to also evaluate the impact
of system and architectural optimizations by examining the
impact on cpio .
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