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“Big Data” and Role of Event
Processing

Amount of data produced is increasing

— Data doubling faster than Moore’s law [www.emc.com]
— Mainly driven by web

Data needs to be processed with low latency
— Modern web applications

— Real time analytics

— Finance, fraud detection etc.

Data produced by many sources can be seen as events
Event processing has potential for the data center

— IBM InfoSphere Streams is an example



Challenges

* Rich processing capabilities
— Functionally equivalent tasks in real-time
e Scale yet simple and efficient

— Low end-to-end latency
— Low energy consumption



Challenges

* Rich processing capabilities
— Functionally equivalent tasks in real-time

e Scale yet simple and efficient (focus of this work)
— Low end-to-end latency

— High network utilization
— Low energy consumption



Motivation 1-Understand

* Sources of complexity when aiming for scale?

* This work: Detailed study of a real event processing stack
— Event processing stack = Processing plus distribution
— Flow of events intra-node and inter-node



Motivation 2-Quantify and
Improve

e What is the cost and could it be improved?

* This Work: Quantify, improve and measure impact
— Up to 200% improvement in throughput on thin nodes
— Up to 5x improvement in throughput on fat nodes
— Reduction in energy consumption and infrastructure cost



Outline

v’ Introduction and Motivation

e Stream Event Processing (Borealis)
 Optimizations

e Evaluation Methodology

e Results
— Throughput
— Energy
— Projections for Future

e Conclusions



Stream Event Processing

Static queries and moving data
Full set of database operators (filter, sort, union etc.)
The end-user provides

— Meaning of data in the stream (schema)
— How to process data (query logic)

Individual nodes run subset of query in a distributed setup

Famous examples

— Stream (Stanford)

— System S (IBM)

— Aurora/Borealis (MIT/Brown/Brandeis)



Events in Borealis

e Event contains tuples, info., and (optionally) arrays

Events contain

— Tuple has a time-stamp
— and a number of fields
— and arrays of data

Batch of tuples Number of | Size of !-}uui_m of | Stream
tuples tuple tuples infio
Tuplel Tuple2 Tuple3 Tupled
Time Field1 Field2 Field3
stamp




End-to-end Datapath

: 10
receve aurora prepare send

olobal buffer
(whuf)

stack space
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new event new event (string)

e Stream, Array, T-Queue, and D-List are shared structures
e Each numbered operation is buffer copy operation
e After user-space optimizations, only 1, 4 and 10 remains
e Kernel space will also be bypassed (only 4 remains)
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What makes these operations necessary?

 Well-defined interfaces
e Convenience

* Heterogeneity

e Portability

e Faults/Reliability
 Decoupling




Outline

v’ Introduction and Motivation

v’ The Borealis Stream Processing Engine
 Optimizations

e Evaluation Methodology

e Results
— Throughput
— Efficiency
— Projections for Future

e Conclusions



Flow Control
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 No flow control in original Borealis (slow networks)

serialized event
(string)

new event

e Size of array is monitored for flow control
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Message Queuing (Asynchronity)
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Message Queuing (Asynchronity)

send

olobal buffer
(whuf)
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e Message queuing on the send path (1)wbuf
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Message Queuing (Asynchronity)
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Message Queuing (Asynchronity)

receive aurora prepare send
olobal buffer
stack space (whuf)
olobal buffer
(tbuf) SStream| —LT=Quete “D=bist
,f‘ = R ™, — 1
' T ~ s
serialized event
new event SOATERYO = new event (string)

Message queuing on the send path (1)wbuf (2)D-List
If network is slow or failure downstream
Fast networks and reliable hardware

— Prepare event->send event->prepare next event ...
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New Stack without Message Queuing

receive aurora send
stack space
* serialized event
alobal buffer | Mooy oo (string)
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Buffer Management

(across threads/modules)

(buffer_ptr, size) tuple

* Pass a pointer to buffer and size

* Need to manage buffer across modules *

receive

stack space

'

olobal buffer
= (rbuf)

'

new event

aurora

Copy the Buffer

Copy data in buffer provided by other module
Each module does its own buffer

\

send

serialized event
(string)

|

= newevent




Buffer Management

(across threads/modules)

(buffer_ptr, size) tuple

* Pass a pointer to buffer and size

* Need to manage buffer across modules *

receive

stack space
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Buffer Management

(across threads/modules)

(buffer_ptr, size) tuple Copy the Buffer

* Pass a pointer to buffer and size e Copy data in buffer provided by other module
 Need to manage buffer across modules * Each module does its own buffer

recejve aurora send

stack space

12

olobal buffer
= (rbuf)

13

new event

serialized event
(string)

A Stream |~ T-Queue

Ao |
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Event Serialization

e Serialization
— Communicate events in binary form (machine independent)
— Event is scattered in memory
— Collect the event in a contiguous area in memory

e Alternative?
— Communicate structure not bytes
— Structure such as event size, field boundaries
— Minor increase in network traffic

— Saves some large memory copies



New Stack without Serialization and
with Proper Buffer Management

receive send

aurora

stack space |
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Socket based Network Communication

* Socket based communication uses TCP/IP
e TCP/IP has known overhead

— Copies in the send and receive path
— Protocol processing overhead

e User-level network protocols (MX from Myricom)
+Bypasses the kernel layer and spare CPU cycles
-Specialized hardware

e How they work?
— Release (post) buffers (user-space) and inform the sender
— Sender directly fills the buffer with event data
— Flow control protocol is custom



Protocol for User-level Communication

Connect Wait Receive Process

1)Post Buffers Data 1)Process data
2)Send credits delivery 2)Post buffer

Data structures Repeat
— A circular queue
— A credit counter (in the process state)
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Outline

v’ Introduction and Motivation

v’ The Borealis Stream Processing Engine
v Optimizations

e Evaluation Methodology

e Results
— Throughput
— Energy
— Projections for Future

e Conclusions



Goals of Evaluation

* Impact of optimizations
— original (original Borealis)
— tcp-opt (all optimizations except MyrinetMX)
— mx-opt (all optimizations)
 Impact of various parameters
— Tuple size (128, 1024 and 4096 Bytes)
— Event size (128 Bytes to 128 KB)
— Number of instances (1, 4 and 8)



Query Graph

Two filter operators in a chain
A source of tuples per instance of Borealis

A receiver of tuples per instance of Borealis
Distributed setup of Borealis
Total of four servers



Experimental Platforms

Setup-A

e One Intel Xeon Quadcore (X3220)

e 8 GB of DRAM

10 Gbit Ethernet NIC from Myricom
e Myricom Switch

Setup-B

e Two Intel Xeon Quadcore(E5620)

e 12 GB of DRAM

e 10 Gbit Ethernet NIC from Myricom

e 10 Gbit HP ProCurve 3400cl Switch (does not operate with mx-opt)



Estimating Energy Consumption

e Simple model B*u+l
— lisidle energy and
— B is busy energy
— uis CPU utilization

e Use averages for B, | and u (for a large number of events)
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Throughput Results

Setup-A

P e I ] 3000 .
E ] - S - el :
o g E — - 200 ] —m— l-original
w - 2 g ' Y . A AT E & 7 —p— 4-l'tl'["l'IH]
3 v o 7 . L 150 8 § 2000 @ E §
z = 2 100 ity Ll = z 2 — = |-cp-opl
E / i it 2 - ] . ,/: el B z w & -8 Hopopt
4 - p—F 1 3 B e i L g = 1000 & —-B—- l-mx-opl
i SR I i ,,’3/ :-I-:’ " - Rk m " —.e—- dmuopl
I I [ . 0 ‘F T T 0 o o
2 % & i - % % 4
event size (bvtes) event size (hytes) event size (hvtes)
128 Bytes 4 KB
Setup-B
600
- 250
u g - o e W Lpop
2 2 3 400 5 W0 5 —e— dicpopt
z Z i 2 z 150 & T Hopom
= ] & 4 = ¢ — - l-original
" = 200 % - 100 2 — -»— 4origina
’ sp  — -&—- Boriginal
Q 0
event size (bytes)
event size (hytes) event size (bytes)
No substantial gain
20/07/2012 DEBS 2012 32



M bits'se o

Mhbits'sec

Throughput Results

Setup-A

3 S ] 3000 -
2 - — - - .2 : 3
.,;.’f’J L = 1500 - ./)# 200 5 &0 5 —&— |-original
b - £ 7 y AR 50 £ § 2000 @ E _+_._ f‘t‘"m'ﬂ
; Y = T 000 o = z g, -Lep-opt
, lﬂﬂf-F"* g z L -0 & z w & - e— 4icpopt
. - W - - . — P - i
/ [ M— |, | R LR B S b g = 10 &  —-B—- l-muopl
. BT 4 004 - - = - m 7
.__;;/';IV-"' - AF'J_’:/;;I_:-:’____J 50 st - = o i — -@—- 4-mx-opl
| | | . ; | | il | =1
- « S 2 = o v w " o "
o = I g 2 = = s I z 2
event size (bvtes) event size (hytes) event size (hvtes)
128 Bytes 4 KB
Setup-B
600
= 250
Z —8— [-cp-opt
—; ; 400 ’E- ; 200 :-- —a— 4-icp-opl
Z E = z 150 % A Hon
£ & £ = £ — - l-orgina
" = 200 % - 100 2 — -»— 4origina
’ sp  — -&—- Boriginal
] 0
event size (bytes)
event size (hytes) event size (bytes)
No substantial gain High throughput and gain
DEBS 2012 33

20/07/2012



M bits'se o

Mhbits'sec

Throughput Results

300 _ [ 300
: e
- 'ﬂ f
200 - - 200
/ e
100 ;II -""IF 100
VAR Sl '
___«;/I' -
. | T T “
_ o s ¢ o
o - = e [‘,l

event size (bvtes)

128 Bytes

event size (bytes)

No substantial gain

20/07/2012

xassspdnyy

aas apdngy

Setup-A

] o .
1500 — _,'}, 0 ot
7 . sl 50 E
2 1000 /'f/' =
= 4 e N g b [
I': s L "‘;F i '__.-- _. o £
500 — f:i__f_f_ :{:___ :_-—-l 50 )
”‘F____ T T
< < £
event size (hytes)
Setup-B
G0
: )
3 400 2
e 200 ﬁ
0

event size (hytes)

High throughput ach:IBg

ain
2012

3000 -
W i =
3 2000 i R a E
= r e - =
= - o o ]
- m il ’ L oF 1
o0 & =~y - 0 £
- - 0
-7 e
{
i} I T I 0
= g o
= & £
event size (hvtes)
8000 — 250
£ T ]
§ 6000 200
2 7 150
4000 —
- 100
2000 50
0 0

event size (hytes)

High gain but throughput become354flat

sassapdngy

—&— [-original
—&— 4-original
— #—  [-lcp-opl
— #— 4epopt
— -B—- 1-mx-op
— -@—- 4-mx-opl

—&— |-lcp-opt
—a— 4-{cp-opt
—— B-tep-opt
— - l-origindl
— -&— - 4-original
— -4 — - B-original



M bits'se o

Mhbits'sec

Throughput Results

Setup-A

0 i % ] e 3000 -
A - —l - 7 = . .
P i 1500 — /o 0 &0 —m— [-original
% g g A z g Z  —e— d-uiginal
i . Bl 5 i PR 50 E § 2000 @ E i
/ =} = 2 1000 P 3 = L 2 - - I-lcp-opt
S P ; 2 i s - TR0 £ =z w & — 8- Hopopl
100 I/ ;_—.-":_l___-—-l— —4 100 3 2 so0 }y-: P _.:"__- - f; = 100 ] . . f: — -B—- 1-mx-opt
e N e
. | T T “ g ‘F T T ' | i
iy = ad o 2 o i o . o g
o = A g = - T s ] 5 i

event size (hytes) event size (hvtes)

1KB 4 KB
Setup-B

event size (bvtes)

128 Bytes

8 instances (original vs. tcp-opt)

600
= 250
1 —8— I-icpopt
5 ¢ 00 : 00 F —e— dupop
z E E E 150 3 A beom
g 2 ] = B - - l-original
" z 200 % g 100 £ —-e— doriginal
’ sp  — -&—- Boriginal
0 i
event size (bytes)
event size (hytes) event size (bytes)
No substantial gain High throughput aBQng(i)rlmz High gain but throughput become355flat

20/07/2012



M bits'se o

Mhbits'sec

Throughput Results

Setu p'A 4 instances (tcp-opt vs. mx-opt)
300 i TS i BT | ey
i e ey X i
F o R e r E e 4oigm
200 v Lo E 7 y AR £ 7 = I DR,
; s = 2 10w s = z = poide
P -I-"'F_-I_F ¥ ] - i A s ] z B - e— dlopop
I I e— T, - > AR £ = g — B l-mxopt
__:;/r — X : o ?':’/_.f_-'l'f’ Tl ' T —e—- dmuopl
. | | | . ”‘F_ | | | |
a axd = o - = =l = = P e
s - < z i - & © < 5 B
event size (bvtes) event size (bytes) event size (hvtes)
128 Bytes 4 KB
Setup-B
8 instances (original vs. tcp-opt)
600 N
x 8000 — 250 {-tcp-opt
e g 400 ,E- 3 em:._- 200 :-: —!—-{-ttp-np{
z E E z 150 3 A beom
£ & E & 4000 | & — - l-original
= 200 % - 100 2 — -»— 4origina
’ 2000 sp  — -&—- Boriginal
Q 0 0
e
=+
event size (bytes)
event size (hytes) event size (bytes)
No substantial gain High throughput aBQng(i)rlmz High gain but throughput become356flat

20/07/2012



Summary

| Million tuple/s (128 Byte tuples)

10 Gbits/s (4096 Byte tuples)

Large events, large tuples, 4 instances (200%)
Large events, small tuples (50%)

Small events, small tuples (Negligible)



Energy Consumption (Large
Fvents)

BkWh

2011 2016 2020
Time Frame

4096 Byte Tuples

Fix amount of data (produced in 2011,2016,2020)
Fix amount of time to process the data

Divide data into events (32 KB events)

60% reduction with tcp-opt for large tuples

3% reduction with mx-opt for large tuples



Energy Consumption (Small

Fyioantc)

1024 4086
Tuple Size

2020
Event size=Tuple size



Energy Consumption (Small

Fyioantc)

Event size=Tuple size

e Small tuples, tcp-opt has overhead

— More data communicated per event



Energy Consumption (Small

Fyioantc)

Event size=Tuple size

e Small tuples, tcp-opt has overhead

— More data communicated per event

e Large events, mx-opt provides 20% reduction



Network Bandwidth Projections
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Could require up to 2 Tbits/s



Conclusions

Sources of complexity when providing scale?

— Provide functionality (heterogeneity, portability )

— Ease of design

— Support (old) assumptions running on (modern) hardware
Possible to restructure event-based stacks for scale

— 1 Million tuples/s (small tuples)

— 10 Gbits/s (Large tuples)

Reduction in energy and infrastructure cost

2 Tbits/s needed from supporting infrastructure in 2020
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Thank you for your attention!
Questions?

Shoaib Akram
shbakram@ics.forth.gr
Foundation for Research and Technology — Hellas (FORTH)
Institute of Computer Science (ICS)
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