
Fast and Scalable Text Search using
Non-Volatile Main Memory

A thesis submitted for the degree
Bachelor of Advanced Computing (Research and Development) (Honours)

24 pt Honours project, S2/S1 2021–2022

By:

Aditya Chilukuri

Supervisor:
Dr. Shoaib Akram

School of Computing
College of Engineering and Computer Science (CECS)

The Australian National University

July 2022



Declaration:

I declare that this work:

• upholds the principles of academic integrity, as defined in the University Academic
Misconduct Rules;

• is original, except where collaboration (for example group work) has been autho-
rised in writing by the course convener in the class summary and/or Wattle site;

• is produced for the purposes of this assessment task and has not been submitted
for assessment in any other context, except where authorised in writing by the
course convener;

• gives appropriate acknowledgement of the ideas, scholarship and intellectual prop-
erty of others insofar as these have been used;

• in no part involves copying, cheating, collusion, fabrication, plagiarism or recycling.

July, Aditya Chilukuri

ii

https://www.anu.edu.au/about/governance/legislation
https://www.anu.edu.au/about/governance/legislation


Acknowledgements

Thank you Shoaib, my supervisor, for your invaluable guidance throughout my project.
You taught me how to conduct research, how to think critically, and how to keep fighting
a research problem, even when nothing makes sense yet. I’ve learnt so much from working
with you. Thank you.

Thank you Ben and Zak, my roommates, for your kindness and understanding. Your
motivating words and friendly checkins helped me immeasurably in completing this
thesis.

Thank you Kunal and Zak for your time in reviewing my thesis. Your valuable insights
helped me present all the hard work I put into this project in a clear and polished way
to the interested reader.

Thank you all my friends. Your company, conversation and kindness mean so much to
me. I’d particularly like to thank Ashleigh Johannes, Calum Snowdon, Declan Hunt,
Erina Carmichael, Gabe Bolton, George Bellas, Grace Brown, Jackie Murtagh, James
Taylor, Kiara Chen, Maja Wilbrink, Max Barnes and Zixian Cai. Many of you have
patiently listened to far too many of my rants about this thesis. Finally, it is done, and
it wouldn’t be possible without your support and kindness.

To my mum and dad, Sudha and Ravi Chilukuri: no amount of thanking you will every
be enough to express my gratitude. Thank you for Everything. Thank you Sumedha, my
sister, for your love. Thank you to our puppy, Olive, for being so cute and the best dog
we could have. I love you all very much. This thesis, my university degree, my job and
everything else in my life would not be possible without all your support, understanding
and encouragement.

iii



iv



Abstract

In our information-driven society text search is ubiquitous. Searching large document
sets such as the world wide web or social media posts requires building a search index.
Search indices consume large volumes of main memory (DRAM) capacity, as even the
fastest storage devices cannot satisfy the latency requirements for today’s user-facing
applications. Unfortunately, main memory is a limited and expensive resource. Specif-
ically, the volume of information our society produces on the web doubles every year,
while DRAM capacity only scales by roughly 10%. On the other hand, as datasets
grow, the size of the inverted index grows proportionally. The current approach which
search engines take to conserve memory capacity is to compress the search index and
store it on a fast storage device. Unfortunately, searching over a compressed index slows
down queries significantly. Our findings show that using a compressed index slows down
queries by 1.5× on average, compared to using an uncompressed index stored on the
program heap. Despite their performance advantage, compressed indices consume a
massive heap (DRAM) capacity. Our results indicate that the uncompressed index is
7× to 10× larger than the compressed index.

Contribution 1: On the hardware side, emerging non-volatile main memory (NVM)
is similar to DRAM as it offers byte-addressability, but also provides high capacity and
scalability. This work is the first to evaluate the performance of search queries over two
different index formats backed by DRAM and NVM. Our results show that commercially
available NVM is a viable option for storing a search index. More specifically, we observe
a slowdown of 10% between queries on placing the uncompressed index on DRAM and
our new method which places the uncompressed index on NVM. Our approach is 30%
faster than the state-of-the-art.

Contribution 2: We do extensive performance analysis to understand the narrow dif-
ference in search speed between DRAM-backed and NVM-backed indices. Specifically,
we use Intel’s recommended top-down methodology for evaluating bottlenecks. Our key
finding is that search engines demand massive memory capacity, but the algorithms used
for query evaluation exhibit high spatial locality. Therefore, the higher latency of NVM
does not hinder the performance of search queries, as modern cache hierarchies are able
to exploit locality and hide NVM latency.
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Contribution 3: We rigorously perform a range of sensitivity studies to evaluate the
NVM-backed managed heap for inverted index storage. Our analysis also confirms that
search over an NVM-backed index scales well over multiple cores and large index sizes.

In summary, we contribute a novel approach for searching over ever-growing search
indices targeting contemporary memory and storage technology trends. Our approach
outperforms the state-of-the-art approach by 30%.

We recommend a novel two-step approach for scalable in-memory indices for search
engines:

• storing the inverted index in an uncompressed format on the managed heap, and

• backing the managed heap by scalable NVM.
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Chapter 1

Introduction

Search engines are ubiquitous in modern life. For example, Google and Bing inform
people of recent and historical events, while social media platforms keep us updated
on real-time news stories. For these internet search providers, the key to attracting
and retaining users is to have low response times for user queries. Web search engines,
social media platforms, and e-commerce websites invest enormously in optimising search
response times. Amazon investigated how user experience is affected by search latency
as long ago as 2006 (Linden, 2006) and found that even increments of 100ms in delays for
search results resulted in “substantial and costly” drops in revenue. Similar observations
have guided Google’s search platform design for the last 15 years.

We focus on plain-text search: finding documents in a large data set that contain words
in a search query. We can perform a simple text search using command-line tools such
as grep to scan the entire document set for text matches. However, this approach does
not scale to large document sets. Since the conception of the search engine, the data
structure at its core has been the inverted index. The inverted index (or simply, the
index) is essentially a dictionary mapping all unique words in the document set to lists
of document IDs that contain each word. Associating words to documents that contain
them speeds up search query evaluation drastically.

In the information age, data set sizes are evergrowing, and search engines must in-
dex large data sets in a space-efficient manner. To this end, the Information Retrieval
(IR) research community has designed many specialised and space-efficient compression
schemes. Apache Lucene, a popular Java-based search engine library, uses a compression
scheme that reduces index size by 85–90%, allowing efficient storage on the file system.
The downside of index compression is that the search engine must decompress parts
of the index when evaluating a query. Doing so increases the computation required
to serve user queries. Nevertheless, for an index stored on a hard disk or solid-state
drive, a well-designed compression algorithm reduces memory transfer costs (since the
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1 Introduction

document lists are shorter) and seek times (Zobel and Moffat, 2006). Secondary storage
has been the bottleneck of search performance for many decades (Zobel and Moffat,
2006). Consequently, modern search engines use large capacities of Dynamic Random
Access Memory (DRAM) to cache sections of the index directly on main memory using
the operating system page cache. However, with DRAM capacity growth slowing and
the DIMM interface’s power limitations, search providers must find a more scalable and
performant alternative to DRAM for index storage.

Non-volatile main memory (NVM) technologies, such as the recently introduced Intel
Optane Persistent Memory (PM) offer large capacity memory over DRAM. PM is byte-
addressable and more capacity scalable than DRAM. However, its read and write latency
is higher than DRAM. PM can be used in two modes.

• In the Memory Mode, it assumes the role of the system’s entire physical address
space. DRAM is transparently managed as a cache by the memory controller.

• In the App Direct Mode, PM is exposed to the operating system as a light-weight
filesystem. Memory-mapped files then provide direct access to the applications
for storing data at a byte granularity. In this later mode, the physical address
space consists of the combination of DRAM and PM (called hybrid DRAM-PM
memory).

Optane PM has orders of magnitude faster latency than the best NVMe SSDs. However,
it is 2× to 3× slower than DRAM (Yang et al., 2020). Optane PM opens up new
opportunities for search engines to make the use of main memory more efficient and also
reduce the total memory expenditure in data centers, while improving the quality of
service.

In this thesis, we explore the following question:

Can we use scalable non-volatile memory (NVM) to host ever-growing inverted indices
in main memory?

1.1 Findings and contributions

We explore and evaluate two approaches for placing an Apache Lucene index on NVM:

1. placing an uncompressed index on the Java heap, where the heap is memory-
mapped on NVM

2. placing a compressed index on an NVM-backed file.

Since NVM is 2–3× slower than DRAM, we expected our two approaches using NVM
for index storage to perform significantly worse than equivalent approaches for storing
indices on DRAM. However, our experiments showed surprising positive results.

1. Our first approach provides a 30% improvement in search performance (i.e. aver-
age query latency) over the current approach of searching a compressed index on
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1.2 Thesis Organization

DRAM. Our first approach is only 10% slower than an equivalent system using an
uncompressed index on the DRAM-backed heap.

2. Our second approach of executing queries on a compressed index on NVM has
minimal difference in search performance over the current approach of placing the
compressed index on DRAM.

To explain these surprising results, we conduct a thorough performance counter analysis
and find that search is a cache-friendly application. Search algorithms are not sensitive
to the worse memory latency of NVM, making NVM a strong candidate for a scalable
and performant storage platform for inverted indices.

We validate this result with a sensitivity study on various index sizes and core counts.
We find that large inverted indices are more cache-friendly to search on, so our proposed
approach of using an uncompressed index on NVM performs much better than the state-
of-the-art for large inverted indices. All our findings are valid for both single threaded and
multi-threaded search. Specifically, we find that search performance with NVM-backed
indices is competitive or better than the DRAM-backed indices at all core counts.

We use our findings to justify two new approaches for inverted index storage on NVM:

1. the fast approach: placing the uncompressed index on the heap, where the heap
is memory-mapped to NVM. This approach makes search queries 30% faster com-
pared to the state-of-the-art. The fast approach has two major benefits:

a) the reduction in average query latency allows each node in a search server
farm to resolve more queries per second, reducing search infrastructure costs

b) the reduction in 99th percentile latency improves user experience drastically
for high latency queries.

2. the scalable approach: placing the compressed index on a file in an NVM-backed
file system. This approach provides search performance that is comparable to the
state-of-the-art. The scalable approach makes best use of NVM’s large capacity
to store colossal indices entirely on NVM, where the processor can access these
indices with no IO costs. This approach enables search over evergrowing datasets
which are infeasibly expensive to place on DRAM.

1.2 Thesis Organization

In chapter 2 we introduce the algorithms used in a plain-text search engine and the new
NVM technology. Chapter 3 describes previous works that explore NVM technology
of text search and other similar applications. Chapter 4 presents our methodology for
constructing an uncompressed index on a DRAM-mounted managed heap and compares
against the state-of-the-art. In chapter 5, we describe how we place the compressed and
uncompressed indices on NVM and present our work’s key findings. Chapter 6 presents a
sensitivity study on various index sizes and finds that our approach performs best in the
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1 Introduction

critical case of for large indices. We note drastic performance gains using our approach
over the state-of-the-art. Finally, chapter 7 summarises our findings and concludes with
ideas for future work.
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Chapter 2

Background

In this chapter, we provide an overview of text search engines with a special focus on
Apache Lucene. We also provide a background on non-volatile main memory (NVM)
technology.

2.1 The Text Search Engine

This section serves as a tutorial for constructing and using a search index. We keep the
explanation broadly applicable to many search engine implementations. Where it helps
to explain a concrete example, we focus specifically on Apache Lucene’s implementation.

Apache Lucene, or simply Lucene, is an open-source search engine library written in
Java. Lucene supports concurrent indexing and search and uses a highly expressive query
language (Apache, 2022). Twitter (Tonozzi and Daniliuc, 2020) and LinkedIn (Sankar,
2015) employ Lucene in the back end of their search functionalities. Lucene provides
the fundamental indexing and querying functionalities for the popular ElasticSearch and
Apache Solr open-source search engines.

2.1.1 Constructing a Search Index

The inverted index data structure shown in figure 2.1 is a dictionary mapping words
(also called terms) to posting lists representing documents containing those words. A
posting is a tuple made from:

1. Document ID : a unique identifier for a document containing a specific term.

2. Frequency : the occurrence count of the term within this document.
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2 Background

Document 1: Never arrive late 
Document 2: Never say never

Dictionary

Terms       Offsets 
arrive      <docID = 1, frequency = 1, positions = [1]> 
late     <1,1,[2]> 
never    <1,1,[0]>  <2,2,[0,2]> 
say     <2,1,[1]>

Postings

Figure 2.1: Inverted Index Data Structure

3. Positions: a list of integers denoting the positions in which this term occurs in the
document.

A posting list is a list of these postings that specifies which documents contain a specific
term, how many times the term appears in each document, and where the term appears
in each document. The inverted index is typically split into two files when stored on a
file system. The posting lists are stored together in a postings file, and the dictionary is
stored in a term dictionary file. As shown in figure 2.1, the term dictionary maps each
term to an offset into the postings file where the posting list for that specific term starts.

Figure 2.2 shows each major aspect of index construction. The indexer creates an index
from the document set. We explain figure 2.2 in detail.

Documents Tokeniser In-Memory
Table

Written to a new segment

Index Merger

Search Index

Segment
 
 
 
 

Term Dictionary 
File Postings File

Segment
 
 
 
 

Term Dictionary 
File Postings File

3

Indexer

Small segments  
eventually merged 

1
2

4

Figure 2.2: How search indices are constructed

Tokeniser 1

The tokeniser (figure 2.2 step 1 ) processes documents to collect words (also called
terms) into a term list. Search engine implementations may preprocess the documents
to improve search quality and reduce the index size. Implementations employ various
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2.1 The Text Search Engine

techniques for tokenisation. As an example, Twitter performs the following changes
during tokenisation (Singer and Wilcox, 2021):

1. Stemming : replacing words with their grammatical roots. For example, “eats”,
“eating”, “ate” are all replaced with the root word “eat”. This improves search
quality as queries will match documents even when the tense or the plurality of a
word does not match exactly.

2. Filtering articles: Words such as “a”, “an” and “the” rarely add meaning to a
document, and hence they can be removed to reduce the size of the index.

3. Normalisation: removing punctuation marks and accents.

4. Synonym Addition: to improve query results, common synonyms for various terms
are added into the token list.

In-Memory Table 2

The in-memory table or memtable (figure 2.2 step 2 ) is the core of the indexer. The
memtable is a small inverted index, typically stored on the indexer’s heap. The in-
dexer updates the memtable to include the term lists output by the tokeniser for new
documents. The memtable contains the documents most recently added to the search
index. Lucene does not support a searchable memtable. A searchable memtable is help-
ful for many applications where indexing occurs in real-time over a dynamic document
set. For example, Twitter implements a real-time search engine that indexes new tweets
within 1 second so that Twitter’s search function returns new tweets instantly (Singer
and Wilcox, 2021). The memtable is typically searchable for real-time applications, so
the searcher threads can concurrently access the memtable the indexer is writing. As
a contrasting example, an online store’s search index is not real-time and may only be
updated once a day with new items, so it would not need a searchable memtable.

Index Segments 3

When the memtable reaches a specified maximum size, the indexer stores the memtable’s
contents on the file system and clears the memtable. The indexer writes the memtable
on the file system in a data structure called an index segment (figure 2.2 step 3 ).

An index segment is a serialised inverted index. An index segment typically consists
of two files: a postings file and a term dictionary file, as shown in figure 2.1. The
postings file contains all the posting lists in the memtable. The posting lists can be
stored unsorted or sorted. By default, Lucene index segments store posting lists sorted
by document ID. However, it is also possible to store posting lists sorted by the relevance
of the document to user searches (Zobel and Moffat, 2006). We measure relevance by
the document scoring function described in section 2.1.4. Each approach has various
complex tradeoffs, which are discussed at length by Zobel and Moffat (2006). The term
dictionary file contains all the terms in the memtable, mapping them to offsets into the
postings file. Lucene’s term dictionary structure is defined in detail in section 2.1.3.
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2 Background

Segment Merging 4

Storing a large number of index segments is detrimental to search performance, so seg-
ment merger threads merge multiple segments by merging their respective term dictio-
naries and postings files (figure 2.2 step 4 ). Lucene allows merging to be performed
concurrently to indexing or after completing indexing. Lucene allows programmers to
specify custom merge policies and merge scheduling policies. Merge policies define the
criteria by which the indexer decides which index segments to merge, and merge schedul-
ing policies define when the indexer should merge segments. We use the same default
settings for segment merging for all our experiments.

2.1.2 Index Compression Algorithms

Text search presents two major challenges for practical systems.

1. Search engines must support querying billions of documents. As all index data
structures grow linearly in size with the size of the document set (Zobel and Moffat,
2006), indices must be stored efficiently.

2. Search engines must complete queries within stringent performance requirements
for the best user experience.

Compression of posting lists and term dictionaries has historically been an essential step
of this process as compression addresses both challenges of text search. Compression
reduces the index size, enabling the construction of indices over large corpora. Search
over a compressed index also requires fewer memory transfers from slower storage de-
vices (Pibiri and Venturini, 2020). This speeds up query processing significantly when
accessing disk storage is the bottleneck for search.

Pibiri and Venturini (2020) survey the available index compression algorithms devel-
oped by the information retrieval research community. This section covers key ideas in
compression and shows how popular search frameworks employ compression. Index com-
pression techniques employed by Lucene are detailed in section 2.1.3. We defer to Pibiri
and Venturini (2020) and Zobel and Moffat (2006) for a wide-ranging exploration of
index compression techniques explored in research.

Delta Encoding

A key idea employed in many posting list compression algorithms is delta (∆) encoding :
to store the difference between subsequent values instead of the values themselves. This
is shown in figure 2.3. Delta encoding works on the assumption that document IDs in
posting lists are typically sorted numerically and ascend uniformly randomly. Computing
the delta encodings of sorted lists reduces the number of bits needed to represent each
integer in the list.

8



2.1 The Text Search Engine

Posting List 
Document ID 1 4 9 21 30 31 58 

Frequency  2 11 1 2 1 1 7 

 

 

Posting List∆ 
Document ID ∆ (d∆)  1 3 5 12 9 1 27 

Frequency  2 11 1 2 1 1 7 

∆ 

Figure 2.3: Delta encoding of document IDs in a posting list

Posting List∆ 
Document ID ∆ (d∆)  1 3 5 12 9 1 27 

Frequency  2 11 1 2 1 1 7 

 

 

FOR(Posting List) 
FOR-Delta(Document ID)  00001 00011 00101 01100 01001 00001 11011 

FOR(Frequency) 0010 1011 0001 0010 0001 0001 0111 

 

FOR 

Figure 2.4: Frame of reference (FOR) encoding of a block of document ID deltas and
frequencies

Variable Length Byte encoding

In variable length byte (VLB) encoding, we store each integer in the minimum number of
bytes needed to represent it. Each byte uses seven bits to store seven bits of the integer’s
value, with the eighth bit reserved as a continuation bit. The continuation bit marks
whether the following byte is a continuation of the current integer or if the following
byte contains the value of the next integer in the list.

Frame of Reference (FOR) Encoding Family

Frame of reference (FOR) encoding, designed by Goldstein et al. (1998), is the most
popular block-based compression scheme. FOR works by breaking the integer list into
blocks and calculating the minimum number of bits needed to represent the largest
integer. We then store each integer in the block in this minimum number of bits. Every
block has a header field indicating the number of bits used to store each integer in the
block. Figure 2.4 shows FOR encoding applied to a single block of the posting list.
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2 Background

It is common to perform FOR encoding after applying a delta encoding to the list. As
discussed earlier, delta encoding typically reduces the bits needed to store each integer,
which FOR exploits to reduce the storage space of each block. Combining FOR and
delta encoding is called FOR-delta encoding. We demonstrate FOR-delta encoding to
compress the document IDs (which were already delta-encoded) in figure 2.4.

An obvious problem with FOR is that the presence of exceptionally large integers in
a block will increase the minimum bits per integer needed to store each value in the
block, reducing compression efficiency. The patched frame of reference (PFOR) encoding
modifies FOR by extracting “large” values in the list and storing them separately at the
end of the list (Zukowski et al., 2006). PFOR compresses integer lists more aggressively
than FOR. However, compared to FOR, the decompression algorithm for PFOR is slower
as it contains hard-to-predict branches.

Sphinx Search Index Compression

Sphinx (Aksyonoff, 2022) is an open-source search server application1. Sphinx powers
Craigslist and the Chinese video content provider Youku. For each document containing
the search term, Sphinx stores the document ID, the number of hits within the document,
and other information for scoring the document in a struct on contiguous memory.
Sphinx first delta-encodes document IDs and then compresses the whole posting list
using a VLB encoding.

2.1.3 Lucene Index Compression

We use Lucene Version 8.9 in this work2. Lucene provides the PostingsFormat inter-
face to allow implementers to write custom compression and decompression algorithms.
Lucene provides a default implementation of the PostingsFormat interface. For the
version of Lucene we are using, this is called ‘Lucene84PostingsFormat’. This default
implementation defines a compressed index data structure that search functionality im-
plementers most commonly use. We now describe the default index implementation in
Lucene 8.9.

The Lucene index stores posting lists sorted by document ID. We can control what the
Lucene index stores in each posting. We configure the index to store term frequencies
and term positions in our experiments.

Lucene stores postings in multiple blocks in a posting file. Each block contains the
postings for 128 documents. Document IDs are stored in sorted lists using FOR-delta
encoding. Term frequency storage uses PFOR encoding. Term positions are stored using
VLB encoding. Lucene stores the terms in the term dictionary using a custom ASCII
compression scheme, and the posting list offsets in VLB integers.

1Only versions up to 2.3.2 are open-source. The most recent version, Sphinx 3.4.1, is not open-source.
2See https://archive.apache.org/dist/lucene/java/8.9.0/
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2.1 The Text Search Engine

User Query Parser Term Dictionary
Lookup

Posting List 
Traversal

Query 
"Computer AND Science"

List of offsets 
for each term

Lookup
documents by
document IDs

Document hits 
[103, 14, 24, ... 18]Search Results

Search Index

Segment
 
 
 
 

Term Dictionary 
File Postings File

Segment
 
 
 
 

Term Dictionary 
File Postings File

   AND 
 

"Computer"  "Science"

Searcher

Posting List
Decompression

1

2

3

Figure 2.5: How a search query is executed

In the last decade, innovation in compression algorithms has focused on efforts to opti-
mise encodings to use single instruction multiple data (SIMD) instructions for compres-
sion and decompression of the index (Wang et al., 2017; Lemire and Boytsov, 2015). As
a result, optimised implementations of VLB, FOR, and PFOR use SIMD instructions.
Unfortunately Lucene does not use SIMD optimisations for the compression and decom-
pression of the posting lists since Java does not support SIMD optimisations natively.

2.1.4 Search Query Evaluation Algorithms

Query evaluation is finding documents in the search index that are most relevant to the
query provided. As seen in figure 2.5, query evaluation splits into three steps:

1. Query parsing : to find the terms relevant to the search and the conditional oper-
ators applied to each term.

2. Term dictionary lookup: to find posting lists for terms in the search query.

3. Posting list traversal : to search the posting lists for documents satisfying the query.

Our work focuses on single term and 2-term AND queries; we focus on these query types
in our explanations.

Query Parsing 1

Queries are constructed using terms and operators. The most straightforward queries
are single-term queries that request documents most relevant to a single search term.
Boolean queries use conjunctions (AND) and disjunctions (OR) to request documents
containing any or all of the input search terms. An example of a boolean query is shown
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in the output of figure 2.5 step 1 . In addition, we can nest boolean operations to
create more complex search queries. Finally, we note that executing boolean queries is
equivalent to recursively performing basic set operations (intersections and unions) on
the posting lists.

The primitive operators AND and OR are the building blocks of more complex operators.
For example, a phrase query asks for documents where terms appear in a particular
order. A phrase query is essentially equivalent to an AND query over the terms in the
phrase and uses the position data stored in the posting lists. Similarly, a prefix query,
which asks for documents containing terms with a specific prefix, is evaluated using an
OR query over all the terms in the term dictionary matching the prefix. Query parsing
simplifies complex operators into AND and OR queries since boolean queries only require
performing basic set operations.

Term Dictionary Lookup 2

The terms in the query are searched in the term dictionary to acquire offsets into the
postings file as shown in figure 2.5 step 2 . Lucene stores terms and offsets together in the
same file, alphabetically sorted. Since the sorting is alphabetical, terms are recursively
split into prefixes and suffixes, and common prefixes are only stored once. Splitting terms
in the dictionary generates a sorted tree data structure of terms. The term dictionary
stores suffixes and matching term offsets in 24-48 length blocks for each prefix.

Lucene’s default term dictionary implementation uses a DRAM-backed term index that
maps terms to blocks containing the offset data for the term. To search for a term, we
first query the DRAM-backed index for a block address. The block address points to a
block of the term dictionary containing the term’s suffix and its posting list offset. Using
a DRAM-backed index allows term dictionary search to complete in a single IO access
to the suffix-offset table stored on the file system.

Lucene implements the term index as a finite state transducer (FST), described in Mc-
Candless (2019b). The FST is a space-efficient (but computationally intensive) method
of mapping input strings to offsets in the term dictionary.

Term dictionary lookup generally has a complexity of O(logN) where N is the number
of terms in the dictionary. As the number of terms in a dictionary is typically a linear
function of the document set size (Zobel and Moffat, 2006), dictionary lookup time is a
logarithmic function of search index size.

Posting List Traversal 3

Step 3 of figure 2.5 shows posting list traversal. The workflow for this stage is in three
stages:

1. decompress the necessary posting lists
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2.1 The Text Search Engine

2. perform the necessary set operations on the posting lists to find the documents
matching the search query; and

3. score the documents by relevance and rank them to find the best results.

During posting list traversal, the searcher decompresses posting list blocks in a lazy
fashion. The searcher decides which posting list blocks it needs during posting list
traversal and only decompresses those blocks. While there are different algorithms for
matching single term queries and boolean queries, posting list traversal is typically a
linear function of the posting list size and hence a linear function of the index’s size.

Scoring and Ranking

A scoring function uses the information stored within a document’s posting to compute
a numerical score of the relevance of the document to the query. The query can define
which terms are more relevant to the user. For example, the user may send a weighted
query (not tested in our workload) that requests specific terms in the query to be more
prominent in the search results.

Lucene uses the Okapi BM25 scoring function for scoring queries, developed and de-
scribed in detail by Robertson et al. (1994). BM25 scores documents by using the fre-
quency of occurrence of each term in the query, normalised by the document’s length (Heo
et al., 2020). For example, consider the two-document index defined in figure 2.1. A
query of “never” will result in a hit in document two: “never say never”. We provide a
sample calculation of document two’s relevance score according to equation 2.1.

Score(doc) =
∑

term∈query
IDF(term) · freq(term, doc) · (k1 + 1)

freq(term, doc) + k1 · (1− b+ b · lengthd
avgdl

)

(2.1)

= IDF(“never”) · 2 · (1.2 + 1)

2 + 1.2 · (1− 0.75 + 0.75 · 3
3
)

= IDF(“never”) · 1.375

Here, q is the query, and t ∈ q are the query’s terms. Each term’s frequency controls
a component of the final score. The frequency of each term positively affects the score.
freq(term, doc) is the frequency of a term in a document (doc). k1 = 1.2 is a constant
used to limit term frequency scaling of the score, and b = 0.75 is a constant used to
control the effect of document length normalization (Heo et al., 2020; Lucene, 2021).
The lengthd

avgdl is the length of the document normalised by the average document length
in the index.

The inverse document frequency (IDF) defined in equation 2.2 is used to weight rarer
terms in the search index more strongly. For example, an internet search of “Mount
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Everest” should find documents more strongly relevant to the term “Everest”. “Everest”
is less likely to be in as many documents as “Mount” and is more likely to be the word
the user finds most relevant.

IDF(t) = log
W − n(t) + 0.5

n(t) + 0.5
(2.2)

IDF(“never”) = log
6− 3 + 0.5

3 + 0.5

= 0

W is the total word count of the document set. n(t) is the length of t’s posting list. If
a term accounts for half or more of the document set, as in our example, the IDF is 0.

As the goal of scoring is to report the top N most relevant results, Lucene uses a heap
data structure (the heap algorithm, not to be confused with the heap memory of a
program) to rank the top-scoring documents. Single term query evaluation is easy to
implement. Lucene scores each document in the posting list for a single term query, adds
the document to the heap, and reports the top N documents at the end of the traversal.

AND Query Evaluation

For AND queries, we must find the intersection of both posting lists. Since all Lucene
posting lists are sorted by document ID, the posting lists are scanned from start to
end to find document IDs in both lists. This algorithm yields an overall execution time
proportional to the length of the longest posting list. Figure 2.6 shows an outline of
the intersection algorithm for two posting lists. The arrows show the steps taken by the
algorithm. The numbers labelling the arrows show that both posting lists are advanced
in alternate steps. A candidate (circled red in the diagram) is a document ID last seen in
a posting list. At each numbered step shown in the figure, we try to find a document ID
in a posting list equal to the candidate from the other posting list. If we find the same
document ID, there is a match. Steps 3 and 7 resulted in matches. If the candidate
document ID does not exist in the current posting list, we set the following (higher)
document ID seen in the posting list as the new candidate. The process continues until
we find all documents in the intersection of the posting lists.

At every step in the algorithm (shown by arrows in figure 2.6), we must scan the posting
list for a document ID. The naive implementation would scan the posting list sequen-
tially from left to right. Since the posting lists are sorted, we can optimise the naive
implementation by using a binary search starting from the previous candidate.

Skip Lists for Postings

Since the algorithm for posting list intersection involves binary searching over multiple
posting lists, the memory access pattern for AND queries is more random than a single
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Figure 2.6: Posting List Intersection: numbered arrows show steps taken by algorithm

(a) Skip List

(b) Multi level skip list

Figure 2.7: A single-level and multi-level skip list implemented for a block structured
posting list

term query where the algorithm is a linear scan through a single posting list. If the index
is stored on a hard drive, the non-sequential memory access pattern of the intersection
algorithm causes long disk seek times. A second problem is that binary search requires
wasted computation in decompressing all posting list blocks in the index.

To alleviate both problems, modern search implementations use the skip list data struc-
ture shown in figure 2.7a. We still store posting lists in compressed blocks when using
a skip list. The single-level skip list is a second list containing the first document ID in
each block of the posting list. When searching for a candidate document ID, we can use
the skip list associated with the posting list to decide whether to read and decompress
a block of the posting list. Posting list blocks are only fetched from storage and decom-
pressed if they could contain the candidate document ID, significantly reducing posting
list traversal time.
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The single-level skip list is large enough to be stored in compressed form in multiple
blocks on the file system for a sufficiently large posting list. Searching for a single
document ID in large posting lists would require a wasteful binary search on the skip
list, facing the same performance issues outlined earlier. Lucene uses a multi-level skip
list (McCandless et al., 2010). A multi-level skip list is essentially a recursive skip list,
forming a tree-like structure shown in figure 2.7b. The searcher caches higher levels of
the multi-level skip list in main memory at the start of the search. Search on a multi-
level skip list has a logarithmic time complexity, the same algorithmic complexity of
the binary search algorithm. However, using a multi-level skip list massively improves
performance by reducing disk seeking and avoiding unnecessary decompression.

Parallelising Lucene Search

There are two methods for parallelising search queries. First, different threads can satisfy
different queries in parallel. This approach is trivial to implement on any search engine
as query search does not modify the index. This approach improves query evaluation
bandwidth but does not improve query latency (in fact, multi-threading overheads may
increase the latency of individual queries). We use this first option for parallelising
search in our experiments throughout this work.

The second approach supported by Lucene is parallelising a single query across segments.
Since a Lucene index segment is effectively a self-contained index, worker threads can
execute a search query on individual segments, and the best results in each segment can
be accumulated and ranked at the end. This second approach helps speed up individual
queries on large indices, reducing the search latency. Unfortunately, this little known
Lucene feature is not supported by ElasticSearch and Apache Solr (McCandless, 2019a).

Another possible benefit of the second approach is that it can alleviate performance
degradation due to non-uniform memory access (NUMA) effects. We can ensure each
thread accesses index segments corresponding to its NUMA node. Wwe can place index
segments to memory mapped on different NUMA nodes. Worker threads can then
perform search queries on index segments stored in corresponding NUMA nodes.

2.2 Design Challenges for Search Indices

We want to emphasise two fundamental tradeoffs to consider when designing index
storage formats. As with most fields in computer science, there is a space-time trade-
off. Figure 2.8 uses compression schemes from industry and research benchmarks to
compare the space efficiency of a compression algorithm with search performance. Algo-
rithms that aggressively compress posting lists typically require more computation for
decompression, resulting in worse query execution performance.

The second tradeoff is between the computational time of search and input-output (IO)
time. Designs for index data structures have aimed to minimise IO to data stored on
the file system. For example, key-value stores use computationally intensive filters to
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Figure 2.8: Compression efficiency vs AND query evaluation performance for various
compression schemes. Adapted from Pibiri and Venturini (2020).

reduce the number of IO reads needed (Benson et al., 2021; Zhang et al., 2021). Similarly,
Lucene’s term dictionary uses an on-heap term index to reduce IO during term dictionary
lookup and multi-level skip lists to reduce IO during posting list traversal.

The advent of commercially available NVM has changed these tradeoffs. With high
capacity, low latency memory available on the main memory interface, the space-time
tradeoff of compression algorithms has shifted. It is feasible to increase the size of search
indices by making compression algorithms less aggressive. In doing so, we gain search
performance improvements. Our work explores this tradeoff by experimenting with an
entirely uncompressed index. The second tradeoff caused by block storage devices’ high
disk seek times no longer exists if the index is stored on NVM. Memory access latency
of NVM is on the nanosecond-scale (Yang et al., 2020), unlike SSDs (microsecond-scale
access latency) and hard drives (millisecond-scale access latency). Since memory accesses
to NVM are not as expensive as secondary storage accesses, we must redesign caches
and filters.

2.3 Non Volatile Main Memory

DRAM technology poses problems for system scalability due to its capacity limitations
and high cost per gigabyte. DRAM capacity has doubled roughly every three years, and
core counts for server-end processors have doubled every two years (Lim et al., 2009).
We have seen that memory capacity per core is dropping 30% every two years (Lim et al.,
2009). Document sets such as tweets, social media posts, blogs and websites continue to
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grow and must be indexed and stored efficiently to allow low-latency search.

Non-volatile main memory (NVM) technologies use non-volatile storage over the DIMM
interface. NVM addresses DRAM’s scalability concerns as non-volatile storage technolo-
gies scale better than DRAM in memory density. Further, NVM provides two significant
benefits over DRAM due to its non-volatility. First, using NVM eliminates the system
warmup cost of bringing application data stored on secondary storage devices to main
memory. Second, while a power loss causes data loss on DRAM memory, NVM tech-
nologies can allow the intelligently designed software to recover data from mid-execution
and even continue execution from a saved state with minimal performance overhead.

2.3.1 Intel Optane Persistent Memory

Intel Optane persistent memory (PM) is the most promising NVM technology for scal-
ability and cost per gigabyte. The largest available Optane DIMM is 512GB, 4× larger
than typical high capacity DRAM sticks. Optane PM has limited write endurance, sim-
ilar to current SSDs employing flash technology. A controller on Optane PM handles
the remapping of addresses to manage wear levelling. The write endurance of Optane
PM is unclear due to the novelty of the technology. Intel rates Optane PM to perform
reliably for five years under normal wear conditions Intel (2015).

Yang et al. (2020) characterize Optane PM using microbenchmarks. First byte read
latency of Optane PM is 2× to 3× higher than DRAM. Interestingly, the gap between
latency of sequential and random accesses is 20% for DRAM and 80% for Optane PM;
Optane PM strongly prefers sequential memory access (Yang et al., 2020). Optane PM
memory access throughput is heavily dependent on the application. Optane PM suffers
from poor scaling of memory access throughput for multithreaded applications

The minimal unit of data that can be written on Optane PM is 256B, four times the
cache line size of modern processors. Sequential writes to Optane PM are coalesced by
the PM controller before making a single 256B write. However, random writes to Optane
PM will not be coalesced, and consequently use four times the write bandwidth when
compared to sequential writes.

Non-uniform memory access (NUMA) effects for Optane are much more severe for NVM
than they are for DRAM, so programs must avoid cross-socket memory traffic Yang
et al. (2020). Programs must especially avoid cross-socket memory accesses by multiple
threads with a mix of loads and stores. In our experiments, we explore how search
performance scales over multiple cores on both DRAM and NVM. We do not explore
how NUMA affects search performance.

Optane PM can be used in two modes: memory mode and app-direct mode.

In our experiments, we set up PM as a file system in app direct mode. Figure 2.9 shows
how an Optane persistent memory module set up in an app-direct file system is accessed
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Figure 2.9: Optane PM as an App-Direct file system

from an application. Applications can access files on Optane PM using the file API’s
read and write system calls to copy files to and from a DRAM buffer. Alternatively,
PM-aware file systems, such as ext4, support direct load-store access (DAX) (Wilcox,
2014). Using a DAX file system, applications can map persistent memory directly to
their address space. Applications can then access files on Optane PM using simple load-
store instructions. Using a DAX file system removes the need to first cache files on
DRAM before accessing them.

In memory mode, Optane PM acts as main memory, massively increasing the main mem-
ory capacity available to programs. DRAM modules installed on the system alongside
PM act as a cache for Optane PM main memory. Using Optane PM in memory mode
is an interesting approach to potentially optimising search engine systems.

Prior NVM technology, such as AgigA Tech’s AGIGARAM4, combined DRAM-flash
hybrid DIMMs with supercapacitors to store DRAM state on flash memory in case of
power loss (Sartore, 2011). While AGIGIARAM4 is as performant as regular DRAM,
this technology does not scale in storage capacity to match growing index sizes. Another
technology, IBM’s eXFlash memory, was flash memory attached to a DRAM cache,
connected over the DIMM interface (IBM, 2014). Flash memory’s storage capacity scales
far better than DRAM in absolute and per unit-cost terms. However, flash memory has
a limited number of writes. In addition, the high-latency block-based interface used by
flash memory is not suitable for latency-critical applications such as text search.
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Chapter 3

Related Work

3.1 Text Search over Hybrid DRAM and Optane Persis-
tent Memory

The closest related work to this work is a study by Akram (2021) using the C++ Psearchy
search engine provided in the MOSBENCH benchmark suite (Boyd-Wickizer et al., 2010)
on Optane Persistent Memory. Akram studies search indexing performance, crash con-
sistency and query evaluation on a wide range of hardware-software system designs
incorporating NVM into the existing search application. Akram finds that single term
queries perform similarly on a Wikipedia search index placed on Optane DIMMs com-
pared to DRAM. However, Akram finds that the 2-term AND queries do not perform
as well on PMEM as on DRAM. The Psearchy engine does not use any index com-
pression algorithms Boyd-Wickizer et al. (2010); Stribling et al. (2006). The Psearchy
scoring function is simplistic, and to the best of our knowledge, the scoring function
is not referenced in prior literature. Our work uses Lucene, a more realistic industry
search engine library. We use Lucene and compare search evaluation on a state-of-the-art
search engine using index compression on DRAM and NVM. We also investigate how
on-demand decompression affects a modern search engine’s performance. To the best
of our knowledge, no prior work has considered using an entirely decompressed search
index.

3.2 Optimising Key-Value Stores for Optane Persistent Mem-
ory

Prior works by Zhang et al. (2021) and Benson et al. (2021) have focused on designing
and evaluating key-value stores (KV stores) for persistent memory. A KV Store is an
application that is effectively a dictionary mapping keys to arbitrarily structured values.
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A search engine’s term dictionary is a KV store, except the values are posting lists. We
present a review of these two works.

Zhang et al. design, create and evaluate ChamelionDB, an optimized KV store written
in C/C++ for Optane persistent memory. Zhang et al. focus on reducing write ampli-
fication on Optane memory by aggregating writes to persistent memory when the KV
store is updated. On the search side, Zhang et al. note that the log-structured merge
tree (LSM tree) data structure used commonly in key-value stores on block devices such
as SSDs does not work effectively on Optane DIMMs. We must not simply think of
Optane DIMMs as fast SSDs. LSM tree data structures are designed to minimise disk
reads needed to service a single search. Applications using LSM trees keep in-DRAM
data structures for each block of values. The in-DRAM data structures are queried be-
fore making an expensive request to secondary storage. The main idea is that the extra
computation cost on the nanosecond level is compensated many times over by saved
microsecond or millisecond-level random accesses to block devices. Zhang et al. note
this approach does not make the best use of Optane memory, which is only about 2 to
3× slower than DRAM. Using this observation, Zhang et al. designed a PMEM-backed
hash table for mapping terms to their values. Zhang et al. find that their approach
outperforms traditional LSM tree implementations targetted at hard disks and SSDs.

Benson et al. (2021) also construct a KV store for persistent memory. They optimise
operations on KV stores using DIMM-aligned storage segments. We can connect one
CPU socket to up to 6 Optane non-volatile DIMMs and map these DIMMs into program
memory. The operating system interleaves memory maps so that different non-volatile
DIMMs contain subsequent 4KB pages. Benson et al. reason that by sizing storage
segments of their KV store to 4KB chunks, they can minimise DIMM contention on
writes. Benson et al. also align threads uniformly to DIMMs by assigning threads to
work on different memory regions. These load balancing and contention minimising
optimisations cause a 4–18× improvement to various disk-based KV store algorithms.

These prior works in KV store optimisation highlight the point that algorithms initially
designed for block devices must be modified to reflect the unique tradeoffs offered by
NVM. To the best of our knowledge, we are the first to consider how search index
algorithms, in particular search index compression, interact with NVM technology. We
tackle the challenges posed by this novel memory technology by optimising a widely
adopted, managed search engine framework.

3.3 Software Emulation

Many prior works have explored software emulation of NVM technology (Coburn et al.,
2011; Kwon et al., 2017; Moraru et al., 2013). In contrast, our work presents data
on a system with real persistent memory. Yang et al. (2020) used Intel Optane DC
Persistent Memory to provide a detailed review of a prior work by Xu et al. (2019).
Xu et al. (2019) used NVM emulation to evaluate two NVM-specific optimisations for
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RocksDB. Yang et al. found that hardware tests reached the opposite conclusion to
emulation, showing that emulation is insufficient for modelling the performance impact
of persistent memory.
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Chapter 4

Latency Impacts of Index Compression
on Search

We developed a methodology to create compressed and uncompressed inverted indices.
We then designed an experiment to measure the performance impact of compression for
search queries executed on a DRAM-backed search index. The methodology we present
in this chapter is vital to our work exploring NVM in chapters 5 and 6.

4.1 Methodology

This section details the hardware and software platforms we used for our experiment. To
measure the impact of compression on search performance (i.e. average query latency),
we compare the performance of search on a DRAM-backed compressed index and an
uncompressed index on the DRAM-backed managed heap. Our implementations of
these two systems account for a wide range of possible sources of unpredictability to
perform a fair test to evaluate the impact of compression on search performance.

4.1.1 Software Platform

We use the luceneutil project: the de-facto benchmark suite for the Lucene project.
Integration tests developed by the Lucene core developer team track the change in in-
dexing and query evaluation performance using a range of diverse query sets and indices.
Luceneutil provides the infrastructure to construct an index built from the full text of
English Wikipedia. We use the full text of Wikipedia as of 20 March 2021 to build a
5.3GB on disk in the default Lucene compressed index format. Query sets provided in
the luceneutil project perform single term queries, AND and OR queries, and more com-
plex phrase and fuzzy match queries. Due to the rapid release cycles of both Lucene and
luceneutil, we froze the luceneutil version current at 12 April 2021 and Lucene version

25



4 Latency Impacts of Index Compression on Search

8.9.0 for this project. We use OpenJDK Java 13 for this project, and all experiments in
this project use the G1 garbage collector. For all experiments we used the Indexer.java
and SearchPerfTest.java classes from luceneutil, with some modifications 1 described
in section 4.1.3.

We briefly considered using the Dacapo benchmark suite’s lusearch benchmark as the
starting point of our experiments (Blackburn et al., 2006). Lusearch is a Lucene text
search benchmark in the Dacapo benchmark suite, an actively maintained Java bench-
mark suite with extensive support for performance analysis. We chose luceneutil as
the Lucene’s maintainer (Mike McCandless) manages it. Further, luceneutil provided
support for quickly changing the Lucene indexing and search configurations.

4.1.2 Hardware Platform

We conducted all experiments on a dual-socket Dell PowerEdge R740 at ANU running
Ubuntu Linux Version 18.04 LTS. The processors on each socket are both Intel Xeon
Gold 6252N at 2.3Ghz, each with 24 physical cores (48 logical cores), making up 96
cores in the system. Each core has 35.75MB of shared L3 cache. Each core has an
integrated memory controller supporting six memory channels. Each memory channel
connects to a 32GB Micron DDR4 DIMM and a 128GB Intel Optane DIMM. With 12×
32 GB DIMMs and 12× 128GB Intel Optane DIMMs, the total memory capacity of the
system is 384GB of DRAM and 1.5TB of Optane PM. The system has a 1.5 TB Intel
Optane PCI Express NVMe SSD (DC P4800X). Interestingly, both the Optane SSD and
Optane DIMMs use the same storage medium but sit behind different interfaces. We do
not investigate NUMA effects, so we perform our experiments on only one of the CPU
sockets.

In this chapter, we do not use the Optane PM hardware available on this system. All
experiments use DRAM. Chapters 5 and 6 use the Optane PM for experiments and refer
back to this section which describes the hardware platform used for the experiments in
those chapters.

4.1.3 Experimental Setup

To test the impact of on-demand index decompression, we use two Lucene PostingsFor-
mat implementations, each defining the data structures and algorithms used for term
dictionaries and document lists. We visually summarise the two index implementations
in figure 4.1.

1. Compressed index : We build our baseline compressed index using the default index
implementation of Lucene 8.9.0 that we described in section 2.1.3. The default
index implementation is provided in the Lucene84PostingsFormat class. In this

1The source code for all experiments is found in gitlab.anu.edu.au/u6679031/luceneutil
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Figure 4.1: Showing how the CPU accesses the compressed index (left) and the uncom-
pressed index (right)

implementation, the index is in compressed form on the file system, and when
the searcher services a query for a specific term, it decompresses the posting list
associated with that term. We described the data structures and algorithms used
in the compressed index in full detail in section 2.1, but replicate the most relevant
information in table 4.1.

2. Uncompressed index : The uncompressed search index format is provided by the
DirectPostingsFormat class in Lucene 8.9.0. DirectPostingsFormat is essen-
tially a wrapper on the baseline Compressed format. The index is created and
stored on the file system in the same data structures using the same compression
algorithm used by the Lucene84PostingsFormat. However, before servicing search
queries, we first decompress index data structures stored on the file system into
Java byte arrays and int arrays stored on the Java heap. The searcher services
queries by accessing the necessary data on the heap in decompressed form. Impor-
tantly, we perform all decompression ahead of time. We do not spend computa-
tional resources decompressing any index data structures during query evaluation.

We present the relevant differences between the two configurations we used in table 4.1.
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Compressed Index Uncompressed Index

Skip List Data Structure Multi Level Skip List (on file system, cached
on heap)

None

Posting List Compression The document IDs are FOR-delta encoded,
the frequencies are PFOR encoded, and the
positions are stored in VLB integers

None

Term Dictionary Terms are compressed using a custom ASCII
compression scheme. Postings offsets are
VLB-delta encoded and stored in variable
length blocks

Stored in an uncompressed, sorted array of
strings

Term Index A finite state transducer (on heap) maps
each query term to an address pointing to
a block of the term dictionary

None; performs binary search directly on the
term dictionary

Index Storage Location File system JVM Heap

Size of Wikipedia Index 5.38GiB 52.78GiB

Table 4.1: Configuration differences between the compressed vs uncompressed search index
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4.1.4 Query Set

In all the experiments in this thesis, we use two query sets to evaluated query latency:

• A set of single term queries of 45786 English words.

• A set of 5921 2-term AND queries querying the index for documents containing
two English words.

4.1.5 Controlling Jitter in Experiments

We designed experiments to remove possible sources of unpredictability or jitter from
our results. We first describe the sources of unpredictability and then present the steps
we took to account for them.

NUMA Effects for Remote memory accesses

On the dual-socket machine we used for testing, non-uniform memory access slows down
memory accesses significantly. If we do not account for the difference between memory
accesses on local and remote NUMA nodes, we expect to find more variability in our
performance results, making it more difficult to conclude differences between the different
setups we test. In all our experiments, we did not allow non-uniform memory access
(NUMA) to affect performance results. We used numactl, a command-line utility, to
allocate all memory to our benchmark program on the same NUMA node as the socket
on which we conducted experiments.

Controlling SMT and Operating System Scheduling Jitter

To measure the scalability of our results with increasing core counts, we ran experiments
running search queries using thread pools containing 1 to 48 threads. We used the Affin-
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ity library developed by Yang et al. (2016) to pin each query processing thread (worker
thread) to a specific logical SMT core. Pinning threads to specific cores guarantees that
no two worker threads are executing on the same physical core unless there are more
worker threads than available physical cores.

We performed extensive performance counter analysis later in this work. Performance
counter analysis is also more straightforward and accurate when worker threads are
pinned to specific logical cores as we avoid all non-determinisic thread migrations initi-
ated by the operating system scheduler.

Operating System Paging Effects

We store the compressed index on an EXT4 file system on an SSD. When the searcher
accesses index data structures for the first time, the operating system caches the oper-
ating system (OS) pages accessed in the OS page cache on DRAM. The OS page cache
services the request the next time the same page is accessed. We run our query set
five times and take performance measurements on the fifth run. Since the index size is
far smaller than the available DRAM capacity, we expect to always to hit the OS page
cache when accessing the index on the fifth run of the query set. We considered using
a Temporary File System (TMPFS) to place the compressed index directly on DRAM.
However, TMPFS scales poorly on multithreaded benchmarks (Akram, 2021).

Blackburn et al. (2008) identify three key runtime variables that affect a benchmark
executing on a managed language runtime: heap size, non-determinism and warm-up.
We describe how we control these variables in our experiments.

Heap Size

Controlling the Heap Size is vital when benchmarking Java programs. We do not per-
form a sensitivity analysis of the effect of the Java heap size on search performance.
Measuring the effect of garbage collection (GC) on search performance is not the goal of
our work. In our work, we are comparing how the algorithms for search on compressed
and uncompressed indices interact with the memory technology used to store the in-
dex. We took steps to control the heap size so that we can compare performance across
algorithms and hardware without conflating the costs of garbage collection.

Figure 4.1 shows that the compressed index is on the file system in SSD. It is copied to
the OS page cache during search. The index data structures are almost entirely off-heap.
Instead, the heap contains objects used when computing individual queries: we call these
objects search objects. Search objects are produced during each query, and they become
garbage upon query completion.

The uncompressed form is stored as integer and byte arrays on the Java heap. The
index is allocated on the heap before the program starts processing queries. The objects
comprising the uncompressed index are immortal, and are read-only during query eval-
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uation. Thus, the on-heap uncompressed index is a large set of immortal objects, while
Lucene search objects have a small lifespan.

We show the garbage collector settings for both the compressed and the uncompressed
index in table 4.2. The garbage collector settings are necessarily different between the
uncompressed and compressed index setups. The large heap size necessary for uncom-
pressed indices will result in different garbage collector behaviours between the two
experiments. We use a relatively large heap size for the compressed index experiments
as well, so GC is not a significant proportion of execution time. We find this approach
to be quite successful: in the experimentation for chapter 5, we verify that GC pause
times are below 6% of the elapsed time for both the uncompressed and compressed index
setups.

Compressed Uncompressed

Initial Heap Size 2GB 128GB
Maximum Heap Size 32GB 128GB

Table 4.2: Uncompressed vs compressed search index experiment: Heap size settings

Non-determinism

Java uses just-in-time compilation. This means the Java virtual machine (JVM) gen-
erates optimised machine code from an intermediate representation called Java byte-
code at runtime. JVM optimisations are guided by metrics collected during runtime.
The optimisation is thus non-deterministic across different invocations of the Java pro-
gram (Blackburn et al., 2008). Blackburn et al. suggest three methods to account for
this non-determinism. We chose the most accurate method: statistical analysis on suffi-
cient data points. The benefit of this approach is that it accounts for the broadest range
of sources of non-determinism on the machine tested. For every configuration for which
we report performance measurements, we run at least five invocations of the JVM. We
present the mean and the 95% confidence interval in all performance data.

Warm-up

As the program executes code in classes more frequently, the JVM uses increasingly
aggressively optimising compilers to optimise the native code. This process is called
tiered compilation. A single invocation of our program executes the same code for
query evaluation repeatedly until the query set is exhausted. The first few queries
executed by the benchmark application are the slowest as the JVM must first compile
the class bytecode into machine code. Later iterations of the query set will be less
affected by compilation overhead, and will be executing machine code of a higher quality
when compared to earlier iterations. This effect is called warm-up. We must collect
performance data only after the code has warmed-up. To reduce this warm-up time we
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use the OpenJDK compiler options -XX:-TieredCompilation and -server. These flags
remove tiered compilation and use the strongest ‘server’ compiler during JIT compilation.

To account for warm-up time in our experiments, we run the query set five times within
each invocation and collect performance measurements for all queries in the last run of
the query set.

4.2 Preliminary Results

(a) Entire query set on logarithmic axes (b) Showing posting lists of length ≤ 30000

Figure 4.2: Single term query execution time plotted against total posting list length for
the query term (lower is better)

Single term queries require scanning through all postings in the index to find the most
relevant documents. Therefore, we expect a linear relationship between the execution
time of a query and the total length of posting lists across index segments.

Our experiments found that query evaluation the uncompressed index has 3× the average
latency as the compressed index. It is counterintuitive for the uncompressed index to
perform worse than the compressed index as search on the uncompressed index need not
perform posting list decompression, saving computation time.

We explore these trends. Figure 4.2 plots total posting list length against single term
query performance for the uncompressed and compressed index formats on DRAM. We
see that search performance is linear with posting list length on the uncompressed index.
However, search performance is logarithmic for the compressed index format. This
suggests that searching on the compressed index search uses a fundamentally different
algorithm to searching on the uncompressed index.

4.2.1 Changes to Search on Compressed Indices in Lucene

The data in figure 4.2 suggested that the algorithm used for searching compressed indices
is of a different complexity class than the uncompressed index search algorithm. After
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code analysis, we found that Lucene implements “maximum impact indexing” for its
compressed index format.

Maximum impact indexing is an optimisation applied in Lucene to reduce posting list
traversal time significantly. Impacts are an upper bound maximum relevance scores
that are possible for a given document or set of documents. Lucene can calculate this
upper bound for the relevance score of a document during indexing, before queries are
executed. To achieve this, Lucene exploits specific mathematical properties of its scoring
function detailed by Grand et al. (2020). The multi-level skip list stores impact scores
that represent the maximum relevance scores possible for any document in a large chunk
of the posting list.

Without the maximum impact indexing optimisation, the posting list is traversed from
left to right, scoring every document in every block of the posting list. With the opti-
misation, before decompressing and scoring documents in a block, the impact score of
the block is checked to determine whether the block contains any documents that are
competitive with the current candidates of most relevant documents for the query. The
searcher only decompresses and traverses a block if it contains documents more relevant
to the search query than the current candidate results. For longer posting lists, maxi-
mum impact indexing speeds up query evaluation drastically. Much of the posting list
is not decompressed and scored at all.

To compare the uncompressed and compressed indices fairly, we turn off the maximum
impact indexing optimisation when searching over the compressed index. We justify this
change to the state-of-the-art system for three reasons. First, the optimisation was added
to Lucene in version 8.0 in 2019 (Woodward, 2019). Indices built with older versions of
Lucene will not have this optimisation enabled as the optimisation requires significant
changes to the index structure (typically done by re-indexing) (Grand et al., 2020).
Second, many search index implementations do not implement this optimisation. The
maximum impact indexing optimisation is possible for Lucene’s index due to specific
mathematical properties arising from the design of Lucene’s scoring function (Grand
et al., 2020). On the contrary, Bing, for example, uses machine learning models for
relevance scoring (Janapa Reddi et al., 2010) and hence can not implement maximum
impact indexing. Thirdly, the total hit count for queries reported by the optimised
implementation is inaccurate since not all matches are visited. Users may wish to know
how many results exist for a specific query, which is no longer possible. While the
maximum impact indexing optimisation is a critical performance optimisation to Lucene,
it is not characteristic of what many search providers implement. We turn off this
optimisation.

4.2.2 Hardware Performance Counter Analysis of Lucene Search

After removing the maximum indexing optimisation, we found that search performance
on the uncompressed index was still worse than on the compressed index for long posting
lists. However, it now performed much better for short posting lists.
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Figure 4.3: Average instructions per query, bucketed by the magnitude of their posting
list sizes and normalised to the compressed index (lower is better)

We conducted some performance analysis using Intel hardware performance counters to
analyse why the decompressed index performs worse than the compressed index for long
posting lists. Performance counters are special registers on Intel CPUs which can be
programmed to count hardware events such as the number of CPU instructions com-
pleted or the number of CPU cycles passed. With the support of the operating system
scheduler, we can measure these performance counters at the CPU hardware core level
or the software thread level.

We measure performance counters at the start and end of every query evaluated using
the methodology developed by Yang et al. (2016) using the Libpfm (2008) library. We
report the average instructions executed per query for both index setups in figure 4.3,
bucketed by the magnitude of the posting list size. We find that the searcher executed
fewer instructions on an uncompressed index for short posting lists. However, for posting
lists containing more than 105 postings, a query on the uncompressed index executes
more instructions than the compressed index. It is counter-intuitive that a query on
the uncompressed index requires more instructions since it does not require posting list
decompression. Our observation hinted at the possibility of a performance bug in the
uncompressed index implementation.

Bug Fix to Lucene Uncompressed Index Search

We searched the code base and found a performance bug in Lucene’s algorithm for search
on an uncompressed index. We found the bug in the code that iterates the posting list.
Recall that the uncompressed index stores document IDs in java integer arrays. Iterating
to the next element of the posting list should be as simple as incrementing an index
variable. However, Lucene’s search implementation on uncompressed indices performs
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a binary search every time it needs the next element in the array, which is unnecessary
computation. We fixed this performance bug and saw a significant improvement in search
performance for all values of posting list length. We report these results in section 4.3.

4.3 Results

We present a comparison of search performance over the compressed and uncompressed
index setups for single term and 2-term AND queries in figure 4.4. We find a consistent
performance improvement for both query sets using the uncompressed search index,
which scales with increasing core counts. For search using 48 logical cores, both query-
sets measure a 37% performance improvement.

(a) Single Term Queries (b) 2-Term AND Queries

Figure 4.4: Query execution time for search over scaling core counts on Compressed and
Uncompressed index setups (lower is better)

4.4 Summary

This chapter measures the performance improvement gained from searching on an un-
compressed index over a compressed index. We store both indices on DRAM. We design
a methodology to measure Lucene search performance using the luceneutil benchmark-
ing project to make an index from the full English text of Wikipedia and perform single
term and 2-term AND queries on it. We modify the implementations of both setups to
ensure a fair comparison. We find that average search latency on an uncompressed index
is 37% faster than search on a compressed index; however, the uncompressed index is
9.8× larger than the compressed index.
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Chapter 5

Search Indices on Non-Volatile Memory

In the previous chapter, we focused on DRAM and designed a methodology to evaluate
the effect of on-demand decompression on search performance. We found that search on
an uncompressed index is 37% faster than a compressed index. This chapter considers
methods to place the uncompressed index on non-volatile memory (NVM). We then
compare the search performance of both the compressed and uncompressed indices on
DRAM and NVM.

5.1 Methodology

We modify the methodology developed in chapter 4 to store the compressed and decom-
pressed search indices on NVM.

5.1.1 Placing the Compressed Index on NVM

Storing the compressed index on NVM is easy. In section 2.3.1 we discuss using the
persistent memory DIMMs as a direct access (DAX) file system in App-Direct mode.
We use the DAX feature to store the compressed index on an NVM file system and
perform search queries directly on it.

5.1.2 Placing the Uncompressed Index on NVM

We encountered a significant challenge in placing the uncompressed index on NVM. Since
the uncompressed index sits in the JVM heap and not in files like the compressed index,
we must use a different method than the simple method described for the compressed
index. We considered four approaches to placing the uncompressed index on NVM.
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Figure 5.1: Proposed approaches to placing the uncompressed index on NVM
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Approach 1: Split Heap

Approach 1 splits the JVM heap into two segments. We put the first segment to NVM-
backed file. Before servicing queries, we decompress the index and place it in the NVM-
backed heap segment. Next, we put the second segment of the heap to DRAM. When
the searcher services a query, the temporary objects it creates for query resolution are
placed on the DRAM-backed heap segment.

Approach 1 has the benefit that once we implement the necessary changes to the JVM,
it is straightforward to programmatically split the heap. In the codebase for creating
the uncompressed index, we can annotate all code that allocate objects allocate them to
the heap segment on NVM. All the search objects will be allocated to DRAM as usual.

However, we need to make complex changes to the JVM to implement this approach. We
wanted to develop an approach using an industry-standard JVM implementation. We
can make a stronger argument for why commercial search implementers should use our
implementation. Kolokasis et al. (2021) implement Teraheap, an OpenJDK extension
that splits the heap into two segments precisely as we need for approach 1. However,
the code base for this research JVM is still experimental. We decided to to explore this
approach to avoid stability issues arising from using an experimental JVM.

Approach 2: Old Generation Heap on NVM

Approach 2 attempts to approximate approach 1 by using the default Java heap layout.
The JVM heap is split into the young and old generations. The young generation is a
region of the heap that contains newly allocated objects. Objects in the young genera-
tion that are still in the program’s scope after garbage collection are moved to the old
generation region of the heap. Approach 2 places the heap’s old generation on NVM
and the young generation onto DRAM.

1. We place the uncompressed index on the heap at the program’s start.

2. We prompt a full garbage collection. The garbage collector will shift the index
objects into the NVM-backed old generation.

3. The searcher then starts executing queries.

Search objects will be allocated to the young generation heap on DRAM, and young
generation garbage collection will clear garbage created from query resolution.

OpenJDK versions 12 to 15 provide a Java command-line option called AllocateOldGenAt (Khar-
bas, 2018; Schatzl, 2020) which allows us to place the old generation heap on NVM.

Approach 3: Entire Heap on NVM

Approach 3 (A3) places the entire heap on NVM using a Java command-line option
called AllocateHeapAt (Kharbas, 2016). Since both the search objects and the index
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are stored on NVM, we expect this approach to perform worse than A2 since memory
accesses to search objects will be slower.

Approach 4: Uncompressed Index on File System

Approach 4 (A4) is to design a new file-based uncompressed index format in Lucene
and place the index files on an NVM-backed DAX file system. A4 uses the file system
for storage, which provides the practical benefits of permanence and ease of creating
backups.

Designing a file-based index format requires significant software engineering effort of
thousands of lines of code as we must implement all the methods of a Lucene postings-
Format. We decided to implement this approach if time permitted after experimenting
with A2 and A3. Our experiments with A2 and A3 found exciting results, so we per-
formed extensive performance analysis to explain these results. After this analysis, we
did not have time to implement A4 and leave it to future work to investigate.

5.1.3 Evaluation of NVM Placement Approaches

Approaches 1,2 and 3 place the index on the JVM heap. However, popular garbage
collectors use tracing algorithms that scale in overhead with the number of live objects
on the heap. Kolokasis et al. (2021) use Apache Spark to show that storing large datasets
on the JVM heap causes garbage collection time to exceed half of the total execution
time of Spark benchmarks. The poor scalability of garbage collectors to large heaps is
greatly exacerbated with NVM-backed heaps since traversals over heap objects in NVM
are much slower than for DRAM-backed heaps. Since data caches are typically allocated
and freed in bulk, frequent garbage collection over data heaps is unlikely to free much
memory. To this end, Teraheap’s garbage collector (Kolokasis et al., 2021) improves the
performance of collections and reduces the frequency of collections over the large data
heap.

We expect that approach 1 is likely to be the most performant implementation of ap-
proaches 1,2 and 3; since a split heap designed for storing large data sets will incur lower
garbage collection costs. However, we decided not to implement approach 1 as it is still
an experimental codebase and requires a non-standard JVM. Furthermore, our results
in section 5.2 show that garbage collection did not have a major impact on performance.

We expect approach 2 to perform better than approach 3, since it places search objects
on the DRAM-backed young generation heap. Approach 3 provides a lower bound for
the performance of approach 1 and approach 2: since both the index and the search
objects are on NVM, more memory accesses to NVM will occur using A3 compared to
A1 and A2.

We continue experimentation using approaches 2 and 3. We choose these approaches as
the infrastructure for NVM heap placement is readily available in OpenJDK, allowing
us to generate some indicative results and conduct performance analysis.
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5.1.4 Experiment Design

Proportion of LLC Size

0.25× LLC 8.94MB
1× LLC 35.75MB
4× LLC 143MB

16× LLC 572MB
64× LLC 2288MB

Table 5.1: Young generation sizes tested for Uncompressed NVM 1

We compare five distinct configurations in our experiment.

Compressed DRAM and Uncompressed DRAM : These two systems are the same as from
section 4.1.3.

Compressed NVM : The compressed index is placed on an NVM-backed DAX file system.

Uncompressed NVM 1 : This is approach 2 described in 5.1.2. The old generation con-
taining the index is sized at 128GB (fitting the uncompressed index, 53GB) and placed
on NVM. The young generation is on DRAM, and we must configure it separately to
limit DRAM usage. We used the default garbage collector for our JVM, the garbage first
garbage collector (G1GC) for all experiments. G1GC uses a variable-size young gener-
ation, but we can configure the maximum size for the young generation. We measure
the effect of the maximum young generation size by testing five different young genera-
tion sizes set at multiples of the last-level cache (LLC) size (35.75MB), summarised in
table 5.1. We also test this setup without restricting the young generation size.

Uncompressed NVM 2 : This is A3 described in 5.1.2. The entire heap is sized at 128GB
and placed on NVM.

For Uncompressed NVM 1, we must ensure the index is stored in the old generation
heap on NVM. We call a full garbage collection using System.gc() after loading in the
decompressed index onto the heap. A full garbage collection serves two purposes. First,
since the decompressed index survives garbage collection, it will be placed on NVM.
Secondly, decompressing the index onto the heap creates huge amounts of garbage. If this
fills up the old generation, the old generation garbage collection on NVM can seriously
impact search performance on the uncompressed NVM 1 and uncompressed NVM 2 and
UN2, making it difficult to compare memory technologies and search algorithms. For
consistent methodology, we call System.gc() right before executing queries on all five
configurations.

We also note that the heap sizes are consistently 128GB across the uncompressed setups,
except that Uncompressed NVM 1 also has a young generation heap on DRAM. Using
a large heap avoids garbage collection affecting performance results, making it easier to
compare memory technologies and index setups.
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Figure 5.2: Comparing average latency of single term queries between NVM-backed in-
dices and DRAM-backed indices (lower is better)

5.2 Results

In figure 5.2, we present the comparison of average latency for single term queries ex-
ecuting inverted indices stored in the five configurations we tested. We present data
for single threaded and fully multithreaded (48 core) workloads. We first observe that
Uncompressed NVM 1 and Uncompressed NVM 2 both perform better than Compressed
NVM. This observation matches our expectations as we observed the same trend between
Uncompressed DRAM and Compressed DRAM in the previous chapter.

For a 48 core configuration, Uncompressed NVM 1 marginally outperforms Uncom-
pressed NVM 2 when we provide it with a sufficiently large young generation heap size
on DRAM. However, on 48 cores, Uncompressed NVM 1 is worse than Uncompressed
NVM 2 for small young generations. We see that search performance of Uncompressed
NVM 1 is sensitive to the number of search threads, since multithreaded search pro-
duces garbage at a faster rate, causing more garbage collection overhead for Uncom-
pressed NVM 1 with small young generation heaps. The other four configurations show
no difference in their relative performance for different core counts.

The exciting result is that Uncompressed NVM 2 outperforms the state-of-the-art Com-
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Figure 5.3: Comparing average latency of 2-term AND queries between NVM-backed
indices and DRAM-backed indices (lower is better)

Compressed Uncompressed
DRAM (SoA) NVM DRAM NVM 2

Single Term 15 (± 1) 15 (±1) 11 (±1) 11 (± 1)
2-Term AND 301 (±10) 293 (±8) 194 (±11) 194 (± 5)

Table 5.2: 99th percentile latency for 48-core search
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pressed DRAM setup by 30% for single term queries. Figure 5.3 shows that 2-term AND
query performance is also 33% better for Uncompressed NVM 2 compared to Compressed
DRAM. Table 5.2 shows the latency of the 99th percentile longest executing queries for
all setups. We note that Uncompressed NVM 35% (100ms) improvement in the latency
of the slowest 1% of 2-term AND queries.

There is only a little performance benefit from placing search objects on DRAM instead
of NVM. Placing the young generation heap on DRAM does not significantly improve
performance. so we focus on Uncompressed NVM 2 as the uncompressed NVM system
for our discussion herein since it is simple and performant. While the uncompressed
index is 9.8× larger than the compressed index, Uncompressed NVM 2 is logistically
feasible due to the scalability of NVM technology.

Perhaps the most puzzling observation from this data is that the performance difference
between NVM and DRAM is little for both the compressed and uncompressed indices.
For the compressed index, placement on NVM had a statistically insignificant effect on
search performance. Focusing on the uncompressed index, Uncompressed NVM 2 is only
10% slower than Uncompressed DRAM for single term queries and only 5% slower for
2-term AND queries. Yang et al. found that memory access latency of Intel persistent
memory (NVM) is 2× to 3× higher than DRAM for microbenchmarks. Further, the
memory bandwidth of NVM is at least 65% lower than for DRAM for a multi-threaded
microbenchmark. Given the considerable performance gap between the two memory
technologies, observing only a slight difference in search performance between NVM and
DRAM is puzzling.

(a) Single Term Queries (b) 2-Term AND Queries

Figure 5.4: Time elapsed in garbage collector as a proportion of elapsed time

We validate that garbage collection overhead is not a significant proportion of execution
time. We use the Java GarbageCollectorMXBean interface, which accesses the G1GC’s
internal data structures containing monitoring information, including the young and old
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generation counts and elapsed times. Figure 5.4 shows that time elapsed in garbage
collection as a proportion of elapsed wall-clock time in the fifth run of the query sets
when performance data was collected. The garbage collection overhead is less than 6%
of the elapsed time for all experiments. We only show the garbage collection overheads
for the compressed index setups, as the young and old garbage collections never occurred
for the uncompressed index setups Uncompressed NVM 1 and Uncompressed DRAM,
due to their large heap sizes. This measurement validates that the ≈ 30% difference
between the uncompressed and compressed index setups is not due to garbage collection
artefacts. We have also ruled out garbage collection effects as a cause for the puzzling
observation that NVM is only slightly worse than DRAM for search index storage.

We argue that search algorithms are memory capacity intensive but not sensitive to
memory latency. The computations for intersection, scoring and ranking help hide the
higher memory latency of NVM. The bandwidth of NVM is still sufficient to satisfy search
queries. To justify this claim, we conduct an extensive microarchitectural performance
analysis in section 5.3.

5.3 Microarchitectural Performance Analysis

We make use of the Top-Down method for performance analysis and counters architec-
ture, a paper of the same name by Yasin (2014). We use the top-down methodology
to deepen our understanding of how the algorithms interact with memory devices and
explain our results from a microarchitectural perspective. The top-down methodology
hierarchically finds true bottlenecks on modern out-of-order processors by measuring
heuristics at different levels of the analysis hierarchy shown in figure 5.5. By recur-
sively narrowing down on components of the processor causing bottlenecks, we can find
and measure specific performance pathologies of both the compressed and uncompressed
index search algorithms on DRAM and NVM.

5.3.1 Top level Breakdown

The modern out-of-order CPU has two parts: a frontend and a backend (Yasin, 2014).
The frontend fetches (CISC) instructions from memory and decodes them into micro-
operations (µops), and feeds the µops to the backend portion. The backend schedules
the µops, executes (performs) the µops out of program order, and commits (retires)
these µops in program order.

An ideally optimised program on a modern superscalar Intel processor executes four µops
every clock cycle. A pipeline slot refers to the behaviour of one of the four superscalar
units on a particular clock cycle. The top level metrics classify each pipeline slot on the
processor into one of four categories shown in figure 5.6. If a µop is issued at a particular
slot, it is either completed to retirement (retire) or cancelled and rolled-back due to a
bad speculation. If a µop is not issued, the processor is not executing instructions at
maximal throughput. µop issue may stall because of either the unavailability of resources
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Figure 5.5: The Top Down Performance Analysis Hierarchy

in the backend (e.g. fully occupied ALUs or load-buffer entries); or the unavailability
of decoded µops from the frontend (e.g. due to an instruction cache miss). The four
top-level metrics are reported as proportions of all slots (4× CPU cycles elapsed).

Figure 5.6: Top level metric definition

R R R R FE FE R R
R R R R FE FE R R

BE BE BE BE FE FE BE BE
BE BE BE BE FE FE BE BE
1 2 3 4 5 6 7 8

Time in Clock Cycles

Figure 5.7: Example processor trace
showing pipeline slots

Figure 5.7 is a pedagogical example of a single Intel processor’s pipeline to illustrate the
top level breakdown. There are four pipeline slots in every clock cycle, and each slot
counts towards retiring (R), frontend bound (FE), or backend bound (BE). The core
is shown to execute a memory-intensive workload, so only two slots are utilised every
clock cycle between cycles 1 to 4 and 7 to 8. The remaining two slots per clock cycle are
unused due to a lack of execution units available in the backend (BE). At clock cycle 5,
the core finds out it has incorrectly speculated on a branch. Rollback causes execution
stalls in cycles 5 and 6 as adequate instructions from the correct execution path are
fetched and decoded by the frontend (FE). Since they were from the wrong code path,
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the core cancels the µops issued for execution between cycles 1 and 4. The cancelled
µops are accounted in bad speculation and not retiring (R).

(a) Single Term Queries (b) 2-Term AND Queries

Figure 5.8: Top level breakdown of Top Down Hierarchy for 4 index setups

Yasin presents the definitions of the top-down metrics for Intel’s Ivy Bridge microar-
chitecture. In this project, we found the updated performance counter events for Intel
Cascade Lake CPUs by exploring available counters using Libpfm (Libpfm, 2008). We
found later that Kleen (2022) keeps an up-to-date repository of the performance counter
events needed for measuring top-down metrics on various microarchitectures. We present
the definitions of each of the top-down metrics for the Cascade Lake processor in ta-
ble 5.3.

We present the top-level metrics, scaled to the average execution time for the four index
setups in figure 5.8. For both the query sets, we find that increases in the backend bound
component of the top level breakdown explain the differences in performance for NVM
and DRAM. We present the memory bound component of backend bound in figure 5.9.
The memory bound metric measures the proportion of pipeline slots where the CPU is
not issuing µops due to unavailable memory resources (e.g. fully occupied load buffer
entries for the various levels of cache).

The uncompressed index is more memory bound than the compressed index. We explain
this by noting that search on the uncompressed index requires reading a larger volume
of memory from main memory into the CPU since the posting lists needed for search are
much longer when uncompressed. For the uncompressed index, NVM has a significantly
higher memory bound metric compared to DRAM, explaining the performance difference
between NVM and DRAM for the uncompressed index. On the other hand, the memory
bound metric differs minutely from DRAM and NVM for the compressed index. This
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observation is in line with the performance results in figures 5.2 and s 5.3; however, we
must explore deeper to explain these results.

(a) Single Term Queries (b) 2-Term AND Queries

Figure 5.9: Memory Bound Metric for 4 index setups (lower is better)

5.3.2 Memory Bound Breakdown

Having verified that the critical bottleneck for search on NVM is memory bound, we
explore further down the hierarchy to the component of memory that we expect to
affect execution the most: external memory bound. The external memory bound metric
measures the proportion of pipeline slots where the CPU is not executing µops because
it has stalled accessing main memory (DRAM or NVM). The external memory bound
metric can measure how much the memory latency and bandwidth are true bottlenecks
to performance. Figure 5.10 shows the external memory bound metric for all 4 index
setups. The external memory bound metric is surprisingly low across all the index
setups for both query types. In the worst case (single term queries on uncompressed
NVM index), only 13% of CPU pipeline slots are stalls caused by a main memory access.

To explain these results we look at the last level cache misses per 1000 instructions
(LLCMPKI). In figure 5.11, we find that for all setups, the LLCMPKI is very low at
only one miss per kilo instruction. With a low cache miss rate, the CPU can hide the
latency of these infrequent cache misses by executing other instructions out of order.
The low LLCMPKI we observed explains why the external memory bound was low for
all setups. Text search as a benchmark has cache-friendly memory access behaviour.

Cache-friendly behaviour could be a result of one of two phenomena. The first possibility
is that the query sets’ relevant posting lists fit in the last level cache. The second possi-
bility is that the latency of memory accesses is being effectively hidden by the hardware
cache-line prefetchers, reducing the average time spent on a cache miss by prefetch-
ing the necessary chunks of posting lists. Cache-line prefetchers could be reducing the
performance impact of storing indices on slower NVM technology.
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(a) Single Term Queries (b) 2-Term AND Queries

Figure 5.10: External Memory Bound Metric for 4 index setups (lower is better)

The first possibility is unlikely as the index sizes (5.4GB for compressed; 53GB for un-
compressed) are far larger than the CPU cache size of 35.75MB. The second possibility
is more likely than the first, based on results reported in previous work by Hadjilambrou
et al. (2019). Hadjilambrou et al. characterised Lucene search from a microarchitectural
perspective, and their results agreed with ours: LLCMPKI was low for Lucene search
on the index created in the default compressed format. Hadjilambrou et al. also experi-
mented searching on a processor with hardware prefetching disabled. They found a 30%
increase in LLC miss rates when hardware prefetching was disabled. On the DRAM-
backed compressed index Hadjilambrou et al. experimented on, the effect of prefetching
on practical search performance was minimal. However, prefetching is crucial for the
performance of an NVM-backed index since the penalty per LLC miss is much higher
(as observed in the external memory bound metric shown in figure 5.10).

In chapter 6, we perform our investigation into which of these two phenomena is causing
cache-friendly behaviour for search. We measure how each of the four setups scales in
performance by increasing the index size. We find that the second phenomenon (effective
prefetching) ensures that NVM performs comparably to DRAM for search.
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(a) Single Term Queries (b) 2-Term AND Queries

Figure 5.11: Last level cache misses per kilo-instruction (LLCMPKI) for 4 index setups
(lower is better)
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Metric Explanation Definition

Clocks Number of clock cycles executed CPU CLK UNHALTED

Slots The number of pipeline slots that can be filled with µops.
The Intel Cascade Lake processor used for all experi-
ments can issue 4 µops per clock cycle per core.

4× Clocks

Retiring Proportion of slots where a µop is issued and completes
to retirement

UOPS RETIRED.RETIRE SLOTS / Slots

Bad Speculation Proportion of slots where a µop is issued but is later
cancelled due to a bad speculation

(UOPS ISSUED.ANY - UOPS RETIRED.RETIRE SLOTS

+ 4× INT MISC.RECOVERY CYCLES)
/ Slots

Frontend Bound Proportion of slots that are unutilised due to unavail-
ablility of decoded µops from the frontend

IDQ UOPS NOT DELIVERED:CORE / Slots

Backend Bound Proportion of slots that are unutilised due to unavail-
ability of required backend resources (e.g. data cache
misses, overloaded divider unit)

1 - Retiring - Bad Speculation - Frontend Bound

Memory Bound Proportion of cycles which are unutilised due to un-
availablility of memory resources (full load-store buffers,
cache misses for µop operands, etc.)

CYCLE ACTIVITY.STALLS MEM ANY

+ RESOURCE STALLS.SB) / Clocks

External Memory Bound Proportion of cycles where the CPU is stalled while at
least one demand load to main memory is outstanding

CYCLE ACTIVITY:STALLS L3 MISS / CPU CLK UNHALTED

LLCMPKI The number of last level cache misses per 1000 instruc-
tions executed

PERF COUNT HW CACHE MISSES

×1000/ PERF COUNT HW INSTRUCTIONS

Table 5.3: Defining the metrics used for the top-down approach to performance analysis (Yasin, 2014; Kleen, 2022)
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5.4 Summary

In this chapter, we benchmark the performance of the uncompressed and compressed
indices on non-volatile main memory. We developed a methodology and found that our
new approach of placing an uncompressed index on NVM outperforms the state-of-the-
art compressed index on DRAM by 30% for single term queries and 33% for 2-term
AND queries. We found only a 10% degradation for the uncompressed index when using
NVM in place of DRAM. Further, we found that NVM shows no performance difference
from DRAM as a compressed index storage medium. All our findings are validated over
multiple core-counts: multi-core search scales equally well on DRAM and NVM. Based
on these findings we recommend two approaches for index storage on NVM:

• The fast approach: placing the uncompressed index in the NVM-backed heap.
This approach provides faster average latency for single term queries and 2-term
AND queries, reducing the cost of search engine infrastructure needed to service
the same customer base. This approach also provides a faster 35% faster 99th

percentile search latency for 2-term AND queries, improving user experience.

• The scalable approach: placing the compressed index as a file on an NVM-backed
filesystem. This approach allows search implementers to store larger indices en-
tirely on main memory by exploiting NVM’s massive capacity, while providing a
performance is comparable to the performance of the current approach taken in
industry.

The top-down methodology to performance analysis designed by Yasin that we followed
in this chapter is superior to the ad-hoc bottom-up performance counter analysis that
is common in systems research. Using the top-down methodology, we systematically
verified our results and explained on a conceptual level why the 2–3× difference in mi-
crobenchmark performance between NVM and DRAM only translates to a 10% real
performance difference for practical text-search systems. We conclude that search is
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5.4 Summary

a cache-friendly application. We observe this because text search interleaves memory-
intensive posting list traversal with computationally intensive scoring and ranking, re-
ducing cache miss rates and allowing the out-of-order processor to hide memory access
latency.
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Chapter 6

Scaling Text Search on Non-Volatile
Memory

In chapter 5, we found that NVM is a scalable, performant alternative to DRAM for
placement of search indices. Our approach of searching on an uncompressed index stored
on NVM gave at least 30% search performance improvement over the state-of-the-art
approach. In addition, we also found that searching the compressed index on NVM gave
equivalent search performance to searching the compressed index on DRAM.

In this chapter, we validate these surprising findings on large search indices. We create
indices of various sizes from a web-crawl data set and perform search on them. Our
results show that for a 35GB compressed search index, by storing it in uncompressed
form on NVM, we achieve performance improvements of 32% for single term and 38%
for 2-term AND query over the state-of-the-art approach.

6.1 Methodology

We design the methodology to create a set of Lucene indices of different sizes to test
search performance as index sizes scale. We obtained the January 2022 CommonCrawl
data set (Nagel, 2022), a large open repository of web crawl data, and constructed search
indices of various sizes using subsets of the data set.

6.1.1 Experimental Setup

We test the same four setups from chapter 5 on the hardware platform defined in sec-
tion 4.1.2:

1. Compressed DRAM : We place the compressed index on an SSD-backed file system,
and warm it up into the DRAM-backed OS page cache. This is the state-of-the-art
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6 Scaling Text Search on Non-Volatile Memory

approach for search.

2. Compressed NVM : We place the compressed index on an NVM-backed EXT4
direct access (DAX) file system. This is our novel scalable approach.

3. Uncompressed DRAM : We place the uncompressed index to the DRAM-backed
Java heap.

4. Uncompressed NVM : We place the uncompressed index to the NVM-backed Java
heap. This is our novel fast approach.

In this chapter, we measure performance over different index sizes by creating two sets
of indices, uncompressed and compressed, over six index sizes ranging from ≈ 760MB
to ≈ 87GB. The code Lucene provides for decompressing an index to the program heap
requires the index to have been created using a specific format called DirectPostings-
Format. The DirectPostingsFormat is identical to Lucene’s default index format called
Lucene84PostingsFormat when the index is stored compressed on the file system. How-
ever, we must create one index in each format for each index size we test.

Since Lucene does not offer a reliable way to measure index sizes while indexing is
occurring, we constructed the indices by adding documents until the index size on the
file system reaches a limit. We then stop indexing new documents at this point and run
a final segment merge. As a result of this methodology, there are some slight differences
in index size and number of segments of the compressed and uncompressed indices. A
description of all the indices we created is provided in Appendix A.

As the uncompressed indices are placed on heap, we size the heaps to use the entire
available memory for the uncompressed format tests. We summarise the heap sizing
parameters we used for this experiment in table 6.1.

Compressed Uncompressed
DRAM NVM DRAM NVM

Initial Index Size 2GB 2GB 2GB 2GB
Maximum Index Size 32GB 32GB 180GB 585GB

Table 6.1: Uncompressed vs compressed search index experiment: Heap size settings

We use all 48 logical cores for multi-threaded search using the single term and 2-term
AND query sets we defined in section 4.1.4. All experiments are run on the hardware
platform defined in section 4.1.2.

6.2 Results

We graph the search performance (i.e. average query latency) of our different setups of
the single term query set in figure 6.1 and the AND query set in figure 6.3. We note
that the missing results for large indices using the uncompressed setups are caused by
the index not fitting in the maximum heap space allocated.
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6.2 Results

Figure 6.1: Single term query performance on indices of varying sizes (lower is better)

We focus first on the single-term query set (figure 6.1). For the largest index size of 87GB,
Compressed NVM is 13% slower than Compressed DRAM. Nevertheless, for this small
performance hit compared to the state of the art, using NVM allows the programmer to
store much larger indices entirely on main memory. Our approach is much more scalable
to large indices. To show this, we measured the performance of the compressed index
on a warm-up run (when it is being read from SSD into the filesystem cache), and find
a 16% performance improvement using NVM. For extremely large indices that do not
fit on the available DRAM, the cost of reading the parts of the index needed for a query
from the SSD must be factored into the performance of the state-of-the-art approach.

We observe that the Uncompressed NVM performs poorly for small index sizes but
outperforms the state-of-the-art as we increase the index size. For the largest index we
can fit in uncompressed format on NVM (35GB), we observe 32% improvement over
Compressed DRAM with Uncompressed NVM our fast approach.

In figure 6.2a, we present the rate of last level cache misses per 1000 instructions (LL-
CMPKI) for single term queries. LLCMPKI of single term search decreases as the index
size increases. Single term search on both the compressed and uncompressed indices in-
volves sequentially accessing every posting in a posting list to score and rank all the doc-
uments containing that term. Larger indices contain longer posting lists. When longer
posting lists are sequentially accessed, we expect the hardware cache-line prefetcher to
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6 Scaling Text Search on Non-Volatile Memory

(a) Last level cache misses per 1000 instructions
(LLCMPKI; lower is better)

(b) External Memory Bound Metric (lower is
better)

Figure 6.2: Performance analysis of single term queries over indices of varying size

predict which cache lines are needed for search with greater accuracy. Figure 6.2b shows
the external memory bound metric for the single term queries which and represents
the proportion of execution time the core is stalled waiting for a main memory access to
complete. Since cache misses occur less frequently as the index size increases, we observe
a reduction in the external memory bound metric. In particular, the prefetchers reduce
the external memory bound metric of search on Uncompressed NVM from 45% to 8%
as we increase the index size from 760MB to 35GB. Therefore, our performance analysis
shows that because of prefetching, single term search scales well on large, NVM-backed
uncompressed indices.

We turn our focus to the 2-term AND query set (figure 6.3). For all the index sizes,
there is no difference in performance between the Compressed NVM and the Compressed
DRAM. The performance of the Uncompressed NVM is similar to the performance of
Uncompressed DRAM for indices larger than 760MB. Uncompressed NVM consistently
outperforms the state-of-the-art Compressed DRAM.

In figure 6.4a, we observe that the LLCMPKI of 2-term AND query search stays con-
stant as the index size increases for the uncompressed indices. However, the LLCMPKI
decreases as index size increases for the compressed indices. This difference we observe
between search on the compressed indices and uncompressed indices is because both
setups necessarily use different algorithms fo AND query evaluation. To compute AND
queries on either index format, the postings must be repeatedly searched for candidate
document IDs (refer back to figure 2.6 for an example). Searching for candidate doc-
ument IDs on the uncompressed index requires a binary search on the posting list, an
algorithm which has a random memory access pattern. As the index size increases,
search on the uncompressed index performs the binary search over increasingly longer
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6.2 Results

Figure 6.3: 2-term AND query performance on indices of varying sizes (lower is better)

posting lists, which is a cache-unfriendly operation.

However, figure 6.4b paints a contradictory picture: the external memory bound metric
goes down significantly, particularly for the NVM-backed uncompressed index. While
the last-level cache miss rate stays the same, the proportion of clock cycles stalled on
a last-level cache miss decreases as we increase the index sizes. This is an interesting
observation that we want to examine in future work. More specifically, we want to
answer the question: using the same memory hardware (NVM) and the same algorithm
(posting list intersection on uncompressed indices), when the index size changes, why do
we see a constant rate of last-level cache misses (LLCMPKI) but see a reduction in the
proportion of clock cycles the core is stalled on a last-level cache miss? If the cache-line
prefetchers are improving performance, why do we not see a matching reduction in the
LLCMPKI as the index size grows? Nevertheless, the bottomline is that Uncompressed
NVM outperforms the state-of-the-art for 2-term AND query execution on large indices.

Focusing on the compressed index setups in figure 6.4a, we observe that the LLCMPKI
of 2-term AND query search decreases as the index size increases. This observation
can be explained by understanding the AND query evaluation algorithm on compressed
indices. The compressed index format stores the posting list in blocks and uses a multi-
level skip list to find which block contains a posting matching a candidate document
ID. The multi-level skip list was designed specifically to avoid random memory accesses
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(a) Last level cache misses per 1000 instructions
(LLCMPKI; lower is better)

(b) External Memory Bound Metric (lower is
better)

Figure 6.4: Performance analysis of 2-term AND queries over indices of varying size

Compressed DRAM (SoA) Compressed NVM (scalable) Uncompressed NVM (fast)

Single Term 65 (±8) 76 (±7) 42 (±6)
2-Term AND 904 (±38) 873 (±53) 548 (±37)

Table 6.2: 99th percentile latency (+/- confidence interval) for the state-of-the-art, scal-
able and fast approaches

inherent to the binary search algorithm. Using a multi-level skip list shows better cache
locality than binary search by ensuring only one access to the posting list is needed to
find a candidate ID. The high levels of the multi-level posting list are likely to stay in
the CPU cache as they are frequently accessed during posting list traversal.

In table 6.2, we explore the 99th percentile latency of search queries over the three
setups: the state-of-the-art DRAM-backed compressed index, the scalable NVM-backed
compressed index, and the fast NVM-backed uncompressed index. We present data for
the largest index (35GB) on which we tested all three setups. For 2-term AND queries,
we see a 325ms (37%) improvement in latency of the 99th percentile slowest queries on
our fast approach. The scalable approach provides a comparable 99th percentile latency
to the state-of-the-art.

6.3 Summary

In this chapter, we verified our surprising findings in chapter 5 by replicating our exper-
iments on search indices of varying size. We found that our proposed fast approach of
placing the search index in uncompressed format on the NVM-backed heap scales well
in performance as index size increases. For the largest index (35GB) we tested on the
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fast approach, we report a 32% improvement for single term and 38% improvement for
2-term AND queries over the state-of-the-art DRAM-backed compressed index. This
performance improvement enables the industry to downsize the search engine infras-
tructure needed to service the same customer base. Our fast approach also improves
99th percentile latency of search by 325ms (37%) over the state-of-the-art, improving
the user experience significantly. The scalable approach of placing the search index in
compressed format on the NVM file system shows minimal performance difference to the
state-of-the-art across all index sizes and query sets. Our scalable approach has similar
99th percentile latency to the state-of-the-art.
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Chapter 7

Concluding Remarks

7.1 Conclusion

In this thesis, we used the new non-volatile memory (NVM) to optimise a state-of-the-art
search engine library. NVM is a high capacity, byte addressable memory technology that
can be used as main memory, however, it is 2×–3× slower than Dynamic Random Access
Memory (DRAM). Our experimentation found that searching on an uncompressed in-
dex stored on NVM provides a 30% performance improvement over the state-of-the-art.
We also found that searching on a compressed index stored on NVM had comparable
performance to the state-of-the-art. We explain these surprising findings with a thor-
ough performance analysis using hardware performance counters. We find that search
algorithms are cache-friendly, meaning the longer latency of memory accesses on NVM
only slightly affects the practical performance of a search engine. We validate our find-
ings across different search index sizes and over multiple cores. We find that both our
approaches scale well to large index sizes, and for multi-threaded search. Using our
observations, we present the following approaches to implementing search indices on
NVM:

1. the fast approach: placing the uncompressed index on the heap, where the heap
is memory-mapped to NVM. This approach makes search queries 30% faster com-
pared to the state-of-the-art. The fast approach has two major benefits:

a) it provides a reduction in average query latency that allows each node in a
search server farm to resolve more queries per second, reducing search infras-
tructure costs

b) it provides a reduction in 99th percentile latency that improves user experience
drastically for long running queries.

2. the scalable approach: placing the compressed index on a file in an NVM-backed
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file system. This approach provides search performance that is comparable to the
state-of-the-art. The scalable approach makes best use of NVM’s large capacity
to store colossal indices entirely on NVM, where the processor can access these
indices with no IO costs. This approach enables search over evergrowing datasets
which are infeasibly expensive to place on DRAM.

7.2 Future Work

We provide avenues for future work that arose from our background readings and ex-
periments.

7.2.1 Exploring the Effect of Non-Uniform Memory Access

Microbenchmark results by Yang et al. (2020) show that NVM’s memory access perfor-
mance is poor for a system with non-uniform memory accesses (NUMA). Large search
indices will necessarily have to be placed on computers with multiple processor sock-
ets that exhibit NUMA. We would like extend our work in this thesis to investigate
how search algorithms are effected by NUMA on the multi-socket systems commonly
employed in search infrastructure.

7.2.2 Designing New Compression Schemes for Non-Volatile Memory

An interesting challenge would be to design compression algorithms for search indices
that make use of NVM’s unique memory tradeoffs. On the search side, decompression
should be optimised for the read performance of NVM. The compression algorithm also
affects the memory access patterns of indexing process. Search index storage formats
must be designed to avoid NVM’s unique performance pathologies. The indexer must
make best use of NVM’s low write latency, without causing write amplification or DIMM
contention for writes. We would like to explore these tradeoffs by analysing the perfor-
mance of compression schemes employed by search engines in greater depth on NVM.
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Appendix A

Appendix: Description of Search Indices

We describe the search indices we used for all our experiment in chapter 6. We report
the characteristics of the compressed indices in table A.1. We report the characteristics
of the uncompressed indices in table A.2. Since the uncompressed index is also stored
on the file system in compressed form (before being decompressed into the heap), we
report the size of the index in compressed form on the file system, along with the size of
the uncompressed index on the heap. The largest index was too large to fit on the heap
in uncompressed form since we had constrained ourselves to only using half the available
memory on the system (to discard any NUMA effects on performance results).
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Index Size on Disk Number of Documents Indexed Total Size of Web Documents Indexed Number of Index Segments

766 MB 255 K 1.86 GB 33

3.71 GB 1.34 M 9.80 GB 17

6.49 GB 2.36 M 17.28 GB 16

12.54 GB 4.63 M 33.78 GB 26

36.94 GB 13.86 M 101.11 GB 23

87.60 GB 33.12 M 241.28 GB 35

Table A.1: Describing the compressed indices tested in the scalability study
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Index Size on Disk
(Compressed)

Number of Documents
Indexed

Total Size of Web Docu-
ments Indexed

Number of Index Seg-
ments

Decompressed Index Size
(on heap)

Memory Cost of Decom-
pression

753 MB 249 K 1.82 GB 30 5.60 GB 7.44 ×

3.69 GB 1.31 M 9.55 GB 36 28.67 GB 7.76 ×

7.22 GB 2.61 M 19.05 GB 36 56.49 GB 7.82 ×

15.63 GB 5.82 M 42.43 GB 27 123.62 GB 7.91 ×

33.77 GB 12.67 M 92.42 GB 30 268.56 GB 7.95 ×

87.02 GB 32.89 M 239.58 GB 29

Table A.2: Describing the uncompressed indices tested in the scalability study
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