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Abstract

Search engines use inverted indices to speed up query resolution. Unfortunately, indices
reside on disk drives with high storage capacity but are extremely slow compared to
main (DRAM) memory. Therefore, resolving full-text search queries over emerging big
datasets promptly demands a large DRAM capacity for hosting inverted indices. On
the other hand, preserving DRAM requires compressed indices, incurring decompression
latency during query evaluation. Beyond DRAM, emerging non-volatile memory (NVM),
disaggregated remote memory over fast ethernet and Infiniband, and fast PCIe NVMe
SSDs promise cost-efficient (memory) capacity expansion.

We rigorously investigate space-time tradeoffs in hosting compressed/uncompressed in-
dices in scalable and byte-addressable non-volatile memory (NVM), which offers better
density but incurs high access latency. Counter-intuitively, we find NVM an attractive
medium to host indices in compressed format. Specifically, state-of-the-art list compres-
sion algorithms hide NVM latency by dramatically reducing the data moved between
CPU and memory (up to 5.75×). Also, queries expose spatial locality as document iden-
tifiers and term frequencies reside sequentially, which on-chip cache prefetchers exploit.
Finally, SIMD accelerates decompression (up to 30.7%), bridging the response time gap
between uncompressed DRAM indices (best speed) and compressed PM indices (most
scalable). We substantiate our findings with a detailed top-down microarchitectural anal-
ysis. Our key findings from this detailed microarchitectural analysis include: (1) fast
SIMD compression reduces the storage capacity required for indexing and enhances QPS
performance on emerging memory technologies, offering a solution to alleviate DRAM
pressure, (2) we demonstrate that using TurboPFor compression and its variants, the
decompression overhead with NVM-backed indices results in only a 4% degradation in
QPS compared to DRAM-based index, while reducing the index size by 82.7%.

Informed by our thorough analysis, we build APCache, a heterogeneous DRAM-NVM
postings cache for search engines that minimizes DRAM utilization for storing disk-
resident and persistent inverted indices in fast (hybrid) memory. It relies on memory-
mapped I/O and operates over an unmodified storage stack, copying term postings from
the OS page cache to a custom NVM cache. It requires a constant amount of DRAM to
aid disk I/O, whereas the baseline system, which consists of disk and DRAM, demands
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DRAM proportional to index size. APCache prefetches postings ahead of the main query
thread into NVM. It employs query workload-aware prefetching, relying on the fact that
today’s systems buffer client requests as the client request rate is higher than the request
processing rate. APCache uses an adaptive lookahead policy to prevent a high cache
eviction rate.

Our detailed evaluation demonstrates that APCache achieves identical performance to
the baseline system which utilizes the OS page cache. It saves DRAM capacity up to
6 GB for a 20 GB index as the baseline system (state of the art) requires OS cache
proportional to index size, whereas APCache requires a fixed 50 MB OS cache for I/O.
Our newly proposed system achieves higher QPS with larger cache sizes, making PM
more advantageous due to its ability to offer larger capacities. Our adaptive prefetching
method ensures that tail latency remains highly comparable to a system with a magni-
tude more DRAM capacity. APCache applies to other emerging memory technologies,
such as remote CXL memory, and offers the potential to conserve costly DRAM capacity
as datasets expand.
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Chapter 1

Introduction

Search engines serve an increasingly important role in modern society. Enabling fast
response times in full-text search is critical to the success of many enterprises, including
Linkedin, Meta, and Twitter (Auradkar et al., 2012; Lin et al., 2012). The next frontier
in text search is generative real-time AI engines and vector search. These advances will
pressure search engines’ memory and storage infrastructures already feeling pressure
from static content on the World Wide Web. In this thesis, we aim to limit the growth
(and cost) of a key hardware component in search engines, namely, DRAMmain memory.
DRAM is used today to host indices in memory, but we believe its growth proportional
to datasets is untenable.

The critical data structure search engines use for locating documents (web pages, so-
cial media posts, or tweets) matching a word (term) is an inverted index (Zobel and
Moffat, 2006). Recent work shows that fast and emerging SSDs with byte-addressable
memory cannot deliver real-time response times for search (Akram, 2021a). Therefore,
service providers host indices in DRAM for better service delivery (Gupta et al., 2023;
Xie et al., 2018). Unfortunately, indices grow proportional to datasets, and large in-
dices put pressure on DRAM. However, DRAM scaling cannot cope with the growth in
datasets (Mutlu and Subramanian, 2014; Handy, 2018; Gupta et al., 2023; Berg et al.,
2020a; McAllister et al., 2021; Chen et al., 2020; Abulila et al., 2019; Huang et al., 2015;
Weiner et al., 2022), and increasing infrastructure cost (Weiner et al., 2022; Chilukuri
and Akram, 2023a). The scaling issues of DRAM have been known for a while, and they
continue to get worse every year.

Key Idea and Thesis: The thesis of this research is that we can overcome DRAM scal-
ing issues by utilizing in-memory vector-powered compression coupled with emerging,
cheap, and dense memory technologies to supplement DRAM. SIMD mitigates decom-
pression latency while saving tremendous capacity. The resulting multi-tiered byte-
addressable memory system can host large inverted indices that outgrow DRAM main
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1 Introduction

memory. We can use this multi-tiered memory as a cache for a disk-resident persistent
index. The key idea is to use a fixed-size DRAM cache only to facilitate I/O transfers
between disk and I/O cache, limiting DRAM growth with the index size on disk. Then,
we hypothesize that using SIMD-powered decompressed index on a cheaper memory
technology will provide the capacity and query evaluation speed that matches a baseline
system with DRAM only. The OS stack remains unmodified for maximum deployment
potential.

It is not simple to build a system and demonstrate good performance in terms of query
evaluation throughput and tail latency, capacity savings, and how one can leave the
OS stack unmodified while still transferring blocks of inverted index from the fast tier
(DRAM) to the slow tier (second memory technology). In the rest of the thesis, we show
how one can build such a system at the application level and show optimizations that
lead to better performance than a naive system.

The road to scaling in-memory indices to large datasets begins with compression. It es-
pecially applies to inverted indices as they consist of integer document identifiers (DIDs).
State-of-the-art industrial algorithms can compress inverted indices to up to 17.3% of
their original size (we verify). However, compression exposes a well-known space-time
tradeoff. Despite its memory efficiency advantage, compression slows down query evalu-
ation due to decompression cost. One possibility to avoid decompression costs is to use
emerging technologies that promise high density and expand memory capacity. These
include 1○ non-volatile memory (NVM), 2○ disaggregated memory, and 3○ NVMe SSDs.
Collectively, we call these technologies expanded physical memory. Unfortunately, these
emerging alternatives are slower than DRAM, exposing high access latency to the proces-
sor. It is non-intuitive if it is better to use DRAM-backed compressed indices (capacity
limited, but backed by faster memory technology) or emerging memory-backed uncom-
pressed indices. Indeed, we believe the most scalable approach is to host compressed
indices in hybrid memory if the resulting query throughput and tail latency are within
acceptable margins. As a first contribution in this thesis, we show, with rigorous mi-
croarchitectural analysis, that emerging alternatives are suitable for hosting inverted
indices in compressed form due to the nature of search queries and the resulting memory
access patterns they generate.

In this work, we investigate these tradeoffs and bring surprising results. We use non-
volatile memory (NVM) or persistent memory (PM) as our emerging memory technology,
as NVM is the fastest DRAM complement to date. (We use NVM and PM interchange-
ably in this thesis.) Our work generalizes to other technologies. We hypothesize that
NVM-backed uncompressed indices provide comparable or better QPS than DRAM-
backed compressed indices. On the contrary, our results indicate that for multi-term
conjunctive queries that form the majority of the queries on the World Wide Web,
NVM-backed compressed indices are only up to 4% slower than DRAM-backed uncom-
pressed indices (using the most space-efficient compression algorithms), and they result
in a competitive QPS to that of DRAM-backed compressed indices. Our detailed analy-
sis shows that inverted indices contain many sorted integers, which modern compression
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algorithms compress aggressively. Consequently, even for popular queries, compressed
indices result in the same QPS with DRAM and NVM-backed indices.

We exploit our empirical observations to inform the design of a system called APCache
capable of hosting large inverted indices in scalable memory. APCache does not require
any modifications to the operating system kernel. Specifically, during query evaluation,
a worker thread prefetches the compressed inverted lists from block storage using the
traditional Linux storage I/O path into the page cache. The worker copies the inverted
lists from the page cache into a large PM-resident postings cache. A query thread
reads the posting lists from the PM cache and decompresses the postings into a DRAM
buffer to serve the query requests. This offers two advantages: (1) avoiding expensive
trips to block storage and (2) mitigating pressure on the DRAM cache. We exploit
our performance analysis to inform decisions, for example, (1) we move compressed
(not uncompressed) postings to the PM cache, noticing the small degradation in query
performance between compressed/uncompressed PM-resident postings, when using the
SIMD-powered compression, (2) we size the page cache just large enough to retain the
compressed lists in DRAM while they are being copied into PM.

We organize PM into segments and drop entire segments from PM once the system runs
out of PM capacity. We use a PM dictionary to quickly locate whether an inverted list
is in PM or disk. We further utilize a PM skip list to accelerate list intersection by
avoiding the compression of list elements that are not likely to result in a match. We
analyze our system for performance improvement using extensive experimentation.

Our research demonstrates that SIMD compression algorithms, particularly StreamVByte,
TurboPFor256, and their delta variants, reduce storage costs while enhancing query eval-
uation performance. We find that these algorithms deliver similar QPS performance on
both DRAM and PM. Our APCache system leverages these findings to build a secondary-
storage-resident index with a PM cache. By incorporating an adaptive prefetching pol-
icy, we achieve optimal performance on SSDs with a small cache size. For disk indices,
prefetching improves performance to match a DRAM cache. Additionally, since QPS
increases with cache size, using PM allows for a larger cache and, thus, better QPS,
thanks to PM’s higher capacity. Finally, using PM enables us to save DRAM capacity.

Our key findings on saving DRAM capacity are as follows.

• By incorporating an adaptive prefetching policy, we achieve optimal performance
on SSDs with a small PM cache. The DRAM capacity is limited to 50 MB regard-
less of the dataset size.

• For disk-resident indices, prefetching with a PM cache (only 50 MB DRAM) im-
proves performance to match that of a DRAM cache (up to 6 GB DRAM or 30%
of index size). Since QPS increases with cache size, using PM allows for a larger
cache and, thus, better QPS, thanks to higher PM capacity offerings.

The main contribution of this work are as follows:
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• Showing through rigorous microarchitectural analysis that fast SIMD compres-
sion reduces the index storage capacity needs and enhances QPS performance on
emerging memory technologies, promising to mitigate DRAM pressure. Specifi-
cally, we show that with TurboPFor and its variants, the decompression cost with
PM-backed index results in only 4% QPS degradation than the DRAM-based index
while reducing the index size by 82.7%.

• Designing and implementing a system called APCache that offers cost-effective
caching using hybrid memory for large disk-resident indices. Our proposed system
limits DRAM growth with index size (not possible today) while leaving the OS
stack unmodified.

• Proposing and analyzing (adaptive) query workload-aware prefetching for search
engines to reduce query search latency. Adaptive prefetching prevents needless
cache evictions prevalent in today’s systems.

1.1 Thesis Roadmap

This thesis is organized roughly into two parts. We first build a sound baseline
system in Chapter 4. We present our newly proposed system, namely APCache in
Chapter 7. We present our evaluation methodology before we discuss the design
and implementation of APCache in Chapter 5. We present a rigorous evaluation
of the baseline system (also before discussion of APCache) to uncover overheads
in the state of the art in Chapter 6. We present a detailed evaluation of our
newly proposed system in Chapter 8. Thus, our evaluation results are divided
across two chapters, and the key new contribution, namely APCache is sandwiched
between the two chapters. The first set of evaluation results inform the design and
implementation of APCache.
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Chapter 2

Background and Motivation

2.1 Indexing and Query Evaluation

The key data structure search engines use for speeding up query evaluation is an inverted
index (Zobel and Moffat, 2006). It maps words (terms) to document locations. It
consists of posting lists and a dictionary. The posting lists are typically stored in a
postings file, and the dictionary is stored in a separate term dictionary file. A posting
list contains postings, identifying documents as sorted integer IDs, and meta-data, such
as term frequency and position. The term dictionary maps each term to an offset into
the postings file where the posting list for that specific term starts.

Typically, the mapping from term to postings list is kept in SSTable-like sorted files
merged in the background as needed (Kleppmann, 2017). The basic idea is similar to a
log-structured merge (LSM) tree (O’Neil et al., 1996). In an LSM tree, the in-memory
table called memtable ingests fresh documents, storing a mapping of words (terms) to
document IDs in a hash table or sorted data structure, such as a red-black tree or
prefix tree. Once the memtable reaches a threshold size, it is serialized (i.e., any virtual
references are removed) and persisted to block storage. As the memtable is sorted before
being persisted to disk, it is called a sorted string table or SSTable.

Evaluating search queries requires finding document IDs (DIDs) matching query terms.
The parsing step identifies query terms, including any conditional operators. Single-
term queries are straightforward, while boolean queries use conjunctions (AND) and
disjunctions (OR) operators. The next step is the dictionary lookup. The dictionary
provides offsets into the postings file. Terms and offsets are stored in the same file
sorted alphabetically (Foundation, 2021a). Since the sorting is alphabetical, terms are
recursively split into prefixes and suffixes, and common prefixes are only stored once.
Typically, the dictionary is a hash table or a key-value store. Once the offsets into the
postings file are available, the next step performs set operations (multi-term queries) to

5



2 Background and Motivation

find matching IDs. Posting list traversal is a linear function of the posting list size and
index size.

The naive approach for evaluating an AND (intersection) query is to scan the posting
lists from left to right and match candidate IDs across the lists. On a mismatch, the
naive algorithm advances one of the lists past the maximum document ID seen so far.
Faster approaches use binary or finger search (Zobel and Moffat, 2006). Using skip lists
to minimize comparisons across postings lists is also typical. (Our index design uses a
skip list in this work.)

2.2 Hybrid Memory

Hybrid memory consists of fast DRAM and high-capacity but slow secondary byte-
addressable memory. The secondary tier is either remote (disaggregated (Lim et al.,
2009, 2012)) DRAM or another scalable technology (Kim, 2008; Lai, 2008). Although
future technologies are possible, we consider NVM the second tier and use Intel Op-
tane DC Persistent Memory (PM) as a real-world NVM prototype. A non-volatile
DIMM (NVDIMM) connects to the memory bus, similar to DRAM. Intel Optane DC
PM exploits 3D XPoint, which stores information as a change in the material’s bulk
resistance (Lee et al., 2010). Production NVDIMMs provide 8× more capacity than
DRAM. It exhibits 10× lower latency than NVMe SSDs, and 2–3× higher latency than
DRAM (Yang et al., 2020a). Communication with Optane DIMM is mediated by the pro-
cessor’s integrated memory controller (iMC) that uses a new DDR-T (64-byte) interface.
Once a request reaches the Optane DIMM, a module controller reads/writes from/to the
media at a 256-byte line granularity. A 16 KB write combining buffer merges adjacent
lines to mitigate high media latency (Yang et al., 2020b; Akram, 2021c). Small (< 256 B)
and random PM accesses are slower than large and sequential ones.

2.3 SIMD

SIMD (single instruction, multiple data) is used in compression to enhance decompres-
sion latency significantly. SIMD involves executing the same operation on multiple data
items in parallel (Thai and Akram, 2023). Intel processors feature specialized processing
units that operate on large vector registers, enabling simultaneous processing of all bits
in the register at once (Intel Corporation, 2023). For example, with 256-bit SIMD reg-
isters, 8 integer operations can be processed using a single instruction. In the best case,
we can achieve a speedup proportional to the vector length because SIMD instructions
can perform at the same speeds as scalar instructions (Hager and Wellein, 2010). How-
ever, in most cases, we cannot achieve the ideal speedup because of a variety of factors,
e.g., the overhead of moving data between memory and SIMD registers, especially when
the address is not aligned to the SIMD length (Hager and Wellein, 2010). On Intel
processors, special functions (intrinsics) are used in C/C++ to access lower-level SIMD
instructions without requiring assembly code (Hager and Wellein, 2010).
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2.4 Compression

2.4 Compression

Compression is crucial for reducing the size of large indices, leading to savings in memory
capacity and bandwidth. Compressed indices also increase memory locality at all levels,
e.g., cache and TLB locality. Here, we discuss both basic and state-of-the-art integer
compression methods and encoding.

2.4.1 Differential Encoding

Differential encoding (delta encoding) is applied before performing a more complex com-
pression algorithm to improve the compression ratio (Thai and Akram, 2023). In delta
encoding, we store the differences between successive integers instead of the integers
themselves (Lemire et al., 2016; Thai and Akram, 2023). This results in a better com-
pression ratio because the difference between adjacent integers is generally smaller than
the value of each integer (Lemire et al., 2016). After decompression, we retrieve the
original integers by calculating the prefix sum (Lemire et al., 2016). Delta encoding
works best when the integers are sorted (Thai and Akram, 2023). This requirement of
having a sorted integer stream is straightforward to satisfy in search engines because
documents arrive in a sorted order. (Each new document is assigned a monotonically
increasing integer identifier.)

2.4.2 VByte

VByte is a very simple but efficient compression technique (Lemire et al., 2018). VByte
compresses integers at byte granularity by eliminating redundant bytes containing lead-
ing zeros in binary representation (Lemire et al., 2016; Thai and Akram, 2023). For each
byte of the compressed integer, the most significant (eighth) bit serves as a “continuation
flag”, indicating whether the number requires an additional byte. The remaining seven
bits store the integer’s data bits (Thai and Akram, 2023).

2.4.3 StreamVByte

StreamVByte is a state-of-the-art compression algorithm that uses the fundamental prin-
ciples of VByte but achieves substantially faster decompression speeds due to two critical
optimizations (Lemire et al., 2018; Thai and Akram, 2023). First, it uses 128-bit SIMD
instructions to decode chunks of 4 integers at a time (Lemire et al., 2018; Thai and
Akram, 2023). Second, it represents the sizes of the compressed integers in a stream of
control bytes and stores them separately from the data bytes to reduce data dependen-
cies (Lemire et al., 2018; Thai and Akram, 2023).

The second optimization improves processor utilization since the position of the next
chunk of integers to be decoded can be determined without decoding the current chunk (Lemire
et al., 2018; Thai and Akram, 2023). VByte interleaves continuation flag bits with data
bits, introducing data dependencies that can increase pipeline stalls (Lemire et al., 2018;
Thai and Akram, 2023).
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2 Background and Motivation

Decoding with StreamVByte can be as much as six times faster than decoding with
VByte across real data sets (Lemire et al., 2018).

01|00|00|11 …Control Bytes

Compressed Integers 0x00 0x0c 0x0a 0x400x04 … 0x00 …

1024 12 10 1073741824

Figure 2.1: StreamVByte algorithm scheme.

Figure 2.1 shows how integers are encoded under the StreamVByte scheme (Thai and
Akram, 2023). The sizes of uncompressed integers, namely 1, 2, 3, and 4 bytes, are
represented by the binary codes 00, 01, 10, and 11, respectively (Thai and Akram,
2023). Each control byte decodes four integers by loading the next 16 data bytes into
a 128-bit SIMD register (Lemire et al., 2018; Thai and Akram, 2023). A vector shuffle
function is applied to extend the next four compressed integers across the whole vector
register (Lemire et al., 2018; Thai and Akram, 2023). The exact shuffle function is
obtained from a look-up table indexed by the control byte (Lemire et al., 2018; Thai
and Akram, 2023).

2.4.4 TurboPFor
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Figure 2.2: TurboPFor algorithm scheme.
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2.4 Compression

TurboPFor256 offers state-of-the-art decompression speeds alongside very high compres-
sion (Stapelberg, 2019; Thai and Akram, 2023). We describe the TurboPFor encoding
and how it is extended using 256-bit SIMD instructions (TurboPFor256).

In the TurboPFor scheme, integers are decoded in blocks of 256 integers (Stapelberg,
2019). The encoding scheme is depicted in Figure 2.2. Blocks are compressed using one
of four methods, the type of method is indicated in the block header (Stapelberg, 2019;
Thai and Akram, 2023):

• 00: bit packing

• 01: bit packing with exceptions (variable byte)

• 10: bit packing with exceptions (bitmap)

• 11: constant

The algorithm chooses the block type that maximizes compression (compression is pri-
oritized over speed) (Powturbo, 2023; Thai and Akram, 2023). The constant and bit
packing blocks are optimal for small integers. The bit packing with exceptions (bitmap)
block is used for larger integers, and bit packing with exceptions (VByte) is used for
large integers with non-uniform exceptions (explained shortly). (Stapelberg, 2019; Thai
and Akram, 2023).

The constant block is used when all elements in the block have the same value (Fig-
ure 2.2) (Thai and Akram, 2023). The value is stored only once, and the bit width is
set to the minimum number of bits required to represent this value (Thai and Akram,
2023).

Bit packing blocks are used when all integers in the block have small values. Bit packing
is a technique that encodes integers within the range [0, 2b) where b is the bit width
of the encoded integers, e.g., if the largest number in the block is 8, then all integers
are encoded using 3 bits (Lemire and Boytsov, 2015; Thai and Akram, 2023). The bits
of each compressed integer are packed together in memory (Lemire and Boytsov, 2015;
Thai and Akram, 2023).

The bit packing with exceptions (bitmap) block uses the widely known PFor (patched
frame of reference) compression scheme (Stapelberg, 2019; Thai and Akram, 2023). It
uses a smaller bit width for bit packing, meaning that the most significant bits of some
large integers are truncated (Stapelberg, 2019; Thai and Akram, 2023). The algorithm
chooses an optimal bit width b such that the majority of integers are smaller than
2b (Wang et al., 2017; Thai and Akram, 2023); in particular, it chooses the optimal
bit width for compression (Powturbo, 2023; Thai and Akram, 2023). The truncated
bits of large integers are bit-packed separately, requiring another bit width header for
exceptions, bit-packing block for exceptions, and an exceptions bitmap for combining
the split integers when decoding (Stapelberg, 2019; Thai and Akram, 2023), as shown
in Figure 2.2. The number of exceptions is obtained by summing the 1s in the exception
bitmap (Stapelberg, 2019; Thai and Akram, 2023).
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2 Background and Motivation

We present a concise example for decoding a bit packing with exceptions (bitmap) block
using Figure 2.2. Our goal is to decode the third integer (zero-indexed). The lower
portion (in yellow) is obtained from the normal bit packing block: 000b (Thai and
Akram, 2023). Since index 2 of the exception bitmap is set, we extract the upper
portion from the exception bit packing block: 10110b. They are combined to obtain the
decompressed integer: 10110000b.

The bit packing with exceptions (variable byte) block is similar to the bit packing with
exceptions (bitmap) block, except we encode the upper portion of exceptions using
VByte (Stapelberg, 2019; Thai and Akram, 2023).

To speed up decompression, TurboPFor is extended with 256-bit SIMD bit packing to un-
pack multiple integers at once (Stapelberg, 2019; Thai and Akram, 2023). For simplicity,
we discuss SIMD bit backing with 128-bit registers. In SIMD bit packing, compressed
integers are packed into a series of 4 consecutive 32-bit words in a round-robin fash-
ion (Lemire and Boytsov, 2015; Thai and Akram, 2023). When the current series is
filled completely, the leftover bits “spill over” to the next series (Lemire and Boytsov,
2015; Thai and Akram, 2023). To decode these integers, we load the first series into
the SIMD register (Thai and Akram, 2023). We then apply shift and mask operations
repeatedly to extract 4 integers at a time, load the next series, and apply similar opera-
tions (Lemire and Boytsov, 2015; Thai and Akram, 2023). The exact shifting and mask
operations depend on the bit width and are slightly more complex when the bit-width
is not a divisor of 32. More details are found in prior art Lemire and Boytsov.

2.5 BM25 Scoring

We employ a popular scoring algorithm called BM25 to rank our query results, it is the
default relevancy algorithm used in Elastic Search (Connelly).

The BM25 formula is given taken from Wikipedia (Wikipedia contributors):

BM25(q,D) =

n∑
i=1

IDF(qi) ·
f(qi, D) · (k1 + 1)

f(qi, D) + k1 ·
(
1− b+ b · |D|

avg dl

) (2.1)

IDF(qi) = log

(
N − n(qi) + 0.5

n(qi) + 0.5

)
(2.2)

In Equation 2.3, q is the query, D is the document, n is the number of terms in the query
q, f(qi, D) is the frequency of term qi in document D, avg dl is the average document
length in the collection, |D| is the length of document D, k1 and b are hyperparameters,
typically set to k1 = 1.2 and b = 0.75, and IDF(qi) is the inverse document frequency of
term qi (Wikipedia contributors). In Equation 2.2, N is the total number of documents
in the collection and n(qi) is the number of documents containing term qi (Wikipedia
contributors).
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2.6 Control Group v2

In our datasets, we use fixed-sized documents, which simplifies the Equation 2.3 to:

BM25(q,D) =
n∑

i=1

IDF(qi) ·
f(qi, D) · (k1 + 1)

f(qi, D) + k1
(2.3)

Note that fixed-sized documents is realistic scenario on many emerging platforms where
search is important feature. For example, X (formerly Twitter) limits the total size of a
tweet to some fixed threshold.

We calculate IDF(qi) once for each query term qi to eliminate redundant calculations.
We use k1 = 1.2.

2.6 Control Group v2

Control Group V2 (called “cgroup” and written in a non-capitalized manner) is a
Linux feature that offers mechanisms for distributing system resources to groups of
processes (Heo). Every process belongs to a single control group (also called ”cgroup”).
The behavior of processes within a cgroup are collectively bound by a shared a set of
rules governing system resource constraints (Heo). Every thread within a process is
assigned to the same cgroup (Heo). We use the cgroup memory controller to regulate
memory usage. We configure a memory (DRAM) usage hard limit by writing the limit
(in bytes) to a cgroup’s memory.max interface file (Heo). The OOM killer is invoked if
the memory usage reaches the limit and cannot be reduced (Heo). The cgroup memory
controller accounts for the following memory usage categories. (1) userland memory
consisting of the page cache and anonymous memory. (2) kernel data structures such as
dentries, inodes, and TCP socket buffers (Heo).
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Chapter 3

Related Work

In this section, we discuss prior work related to capacity expansion (beyond DRAM)
for search engines, exploiting emerging fast storage devices (both non-volatile memory
and PCIe NVMe drives) for storing inverted indices, and tradeoffs at the intersection of
compression and storage technologies. We also discuss prior art related to how key-value
stores and other data-intensive applications exploit emerging storage devices.

3.1 Indices in Hybrid Memory and Fast Storage

Recent work proposes NVM-based software stacks for databases, key-value stores, hash
tables, in-memory caches, and filesystems (Kannan et al., 2018; Kaiyrakhmet et al., 2019;
Yao et al., 2020; Chen et al., 2021; Yang et al., 2020a; Zhang et al., 2021; Benson et al.,
2021; Zheng et al., 2019; Kwon et al., 2017; Xu et al., 2019; Kassa et al., 2021). However,
despite their ubiquity, little prior work focuses on exploiting emerging storage for hosting
search indices. In the closest related work, Akram et al. evaluate Intel Optane PM for
various roles. They evaluate PM for memory capacity expansion, persistent storage, and
universal memory, incorporating both roles as main memory and storage. Unlike many
prior works, their focus is on traditional batch search. Their work motivates rethinking
the software stack for search with PM hardware. Specifically, they find building indices
on PM degrades indexing throughput due to the high latency and limited bandwidth of
PM. However, they find a good role of PM in search engines. They find the performance
of PM-backed inverted index for one-term queries at par with DRAM. They also find
the tail latency of AND queries higher compared to state-of-the-art NVMe SSD (with
buffered accesses via the page cache). Our work is different in two ways. (1) We use
compressed indices which is more realistic than their uncompressed indices. We also
rigorously show the QPS obtainable with DRAM and PM when compressed indices are
backed by them. (2) Their system lacks a dynamic mechanism to bring index segments
from storage to PM. They assumed that indices can be copied into PM using system
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3 Related Work

administration tools. However this approach is unrealistic in datacenters where indices
are preserved on storage, and server hardware may or may not have a second memory
tier. Our software solution for multi-tiered index hosting can be deployed on systems
with or without PM (or second memory tier). Also, even on baseline systems with DRAM
alone, our query workload-aware prefetching mechanism presents a new contribution.

The second closely related work is a recent study on DRAM and PM-backed compressed
inverted indices (Chilukuri and Akram, 2023b). They use a managed search engine,
namely Lucene (Foundation, 2021b), written in Java, to evaluate the behavior of com-
pressed/uncompressed inverted indices in on-heap and off-heap memory. They find that
decompression slows down applications more than memory technology. In observing
that, they agree with one of our crucial findings, but not the other. They also observe
that PM is an attractive medium for storing inverted indices due to the sequential access
pattern of search queries. However, they observe a higher degradation in performance
(QPS-wise) between compression and no compression. First, they use a different search
engine than our in-house C/C++-based engine. Second, they make limited use of SIMD
due to JVM lacking full support of new SIMD intrinsics, and especially Lucene not
keeping up with the latest vector additions to the Intel x86-64 ISA. Finally, they use
a more complicated index design, where different portions of the index are compressed
using different compression technologies. It implies that there is overhead in the appli-
cation code for maintaining and tracking all these compressed portions of the index in
various on-heap buffers. Our design of the search engine is highly optimized with each
component of the index and its corresponding evaluation hand-tuned, using buffers only
when they are necessitated. Our interest is more fundamental level to figure out the true
cost of decompression, and how much of the overhead of decompression is offset by the
improvement in memory locality (both cache and TLB), and also the fraction of cost
offset by SIMD instructions in decompression. Note that SIMD impacts register usage
and cache impacts in critical ways, so it cannot be ignored that although decompression
is extra work on the compute side, it impacts cache locality in a different way, balancing
the cost with an improvement in memory behavior. We should also note that the work
by Chilukuri and Akram also lacks the dynamism of moving the index automatically
from block storage to the second memory tier.

Overall, compared to the most related recent work, this thesis moves the body of knowl-
edge on the performance of compressed inverted indices backed by new memory tiers in
important ways.

3.2 Other Data-Intensive Applications over Hybrid Mem-
ory

Inverted indices are similar to log-structured merge (LSM) trees. Prior work extends
LSM-tree-based key-value stores (Kannan et al., 2018; Kaiyrakhmet et al., 2019; Yao
et al., 2020; Chen et al., 2021) to exploit heterogeneous storage. Existing efforts try
to establish NVM as a new tier in the storage hierarchy, which does not fully exploit
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3.3 Datacenter Caches

NVM’s potential as byte-addressable memory, complementing DRAM. NoveLSM (Kan-
nan et al., 2018) uses an NVM-backed Memtable, while SLM-DB (Kaiyrakhmet et al.,
2019) places a global index in NVM and maintains single-level SSTables, unlike tradi-
tional LSM. MatrixKV (Yao et al., 2020) exploits NVM for fine-grained column com-
paction. SpanDB (Chen et al., 2021) exploits different types of SSDs to offer cost
efficiency. Other works propose NVM-based filesystems (Zheng et al., 2019; Kwon et al.,
2017). Prior art also reconsiders other service components, e.g., caching over hybrid
memory (Kassa et al., 2021). Recent work also optimizes hash tables for NVM (Lu
et al., 2020; Hu et al., 2021; Vogel et al., 2022; Lu et al., 2021; Debnath et al., 2015;
Zuo et al., 2018; Nam et al., 2019). They mitigate NVM writes, and store meta-data in
DRAM.

Recent work exploits fast storage for enabling terabyte-scale managed heaps in big data
frameworks (Kolokasis et al., 2023). They use MMIO to grow the heap over a fast
storage device (NVM or NVMe SSDs). They find that preserving DRAM capacity is
possible if a heap is grown over fast storage. The OS automatically prefetches heap
objects that are needed by the application into the page cache. Identifying objects to
move to the second heap is challenging, and the current best approach is to communicate
programmer’s knowledge expressed through annotations in the Java code to the Java
Virtual Machine (JVM), which then transfers the transitive closure of the so-called root
object to the SSD tier of memory acting as an expansion device. We leave evaluation of
managed compressed indices storing over SSD tier to future work.

3.3 Datacenter Caches

Caches are widely deployed in datacenters for a range of purposes. Companies like
Twitter, Facebook, and Amazon rely on caches to mitigate backend storage and database
latency, improving the service experience for their customers. We believe a customized
postings cache for search engines over hybrid memory is more efficient. Prior art uses and
proposes a number of caches for various purposes Twitter (2023); Berg et al. (2020b);
Services (2023); Sanfilippo (2023); Fitzpatrick (2023). These prior systems offer unique
features and capabilities that cater to specific requirements.

3.4 Persistent Memory Characterization

Prior work characterizes Intel Optane PM for native and managed workloads (Yang
et al., 2020a; Akram, 2021c). Both focus on uncovering Optane’s behavior but for dif-
ferent workloads, and they report Optane’s limited scaling with increasing thread count.
Specifically, Akram (Akram, 2021c) finds that traversal algorithms (e.g., heap traversals
in garbage collection) incur high latency in Optane-backed data structures compared
to DRAM-backed structures. For example, they report that copying from nursery to
mature space happens almost as fast with Optane as with DRAM. On the other hand,
scanning objects to perform the transitive closure is slowed down significantly. In con-
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3 Related Work

trast, we focus on Optane as a high-capacity medium for storing uncompressed indices.
Other prior efforts propose partitioning managed heaps into NVM and DRAM heaps
and placing special objects in the NVM heap to improve write endurance, performance,
and scalability (Akram, 2021c; Wang et al., 2019; Nguyen et al., 2016).
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Chapter 4

Index Organization and Query
Evaluation

Search engines use inverted indices to speed up query evaluation. For this thesis, we
build an inverted index that uses several features found in state-of-the-art search engines.
We decide to build an index from scratch for two reasons. First, we want to rigorously
evaluate a number of compression algorithms, which the popular search engines (e.g.,
Lucene) do not incorporate. Lucene is written in Java, and JVM has limited support for
SIMD intrinsics used by modern compression algorithms. Second, we want to use multi-
tiered memory for which JVM also has limited support. We discuss the organization
and design of our index and the related aspects of query evaluation here (instead of
Chapter 2) because the resulting infrastructure for research on compressed indices is our
contribution.

We now discuss the design of the index and the indexing and query evaluation processes
for single (one-term) and conjunctive (multi-term) queries.

4.1 Indexing

Indexing consists of two stages: (1) ingest and (2) transform. In the first stage, fresh
documents are ingested into an in-memory buffer. Specifically, in the ingest stage, the
indexer builds a hash table of posting blocks. Inside a posting block, we store postings
which contain an integer document identifier (DID) and frequency. Frequency represents
the number of times a term appears in a document. Frequency is useful for scoring each
document against a query term. The DIDs and frequencies are stored in a structure
of arrays format for ease of compression. In the transform stage, the hash table is
compressed and converted into the format shown in Figure 4.1. This transformation
step is akin to serialization, removing all virtual references to in-memory objects. It
compacts the useful fields by allocating them in contiguous storage, and makes the entire

17



4 Index Organization and Query Evaluation
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Figure 4.1: Design and organization of our inverted index on disk.

structure amenable for disk storage. Next, we explain ingestion and transformation in
more detail below.

Ingestion works as follows.

1. The indexer processes a stream of documents. For each document it performs the
following actions.

a) The document is assigned a DID. This mapping from the DID to the docu-
ment’s location on a file system can be stored in a dictionary to retrieve the
document file (Thai and Akram, 2023).

b) The document is processed by creating postings for its terms and adding them
to the hash table (Thai and Akram, 2023). We outline the process for adding
a posting to the hash table below.

i. The term associated with the posting is hashed to obtain an offset to its
corresponding bucket in the hash table. The bucket contains a reference
to a linked list of blocks. A block holds postings stored in a structure of
arrays format (array of DIDs, and array of frequencies).

ii. The new posting is either inserted into the last block of the list, or a new
block if the last block is full. The new block is attached to the end of
the list and becomes the new last block. (Thai and Akram, 2023) We
aggregate postings for the same document using the frequency to avoid
duplicate DIDs.

Next, the index is transformed into the format shown in Figure 4.1 as follows.

1. Separate files are created for the skip list, compressed DID blocks and frequency
blocks. The skip list stores special metadata for each term, including the posting
count, first DID of each block, and the term’s DID and frequency block offsets in
the DID and frequency block files (shown in Figure 4.1). The first DID of each
block is used for the intersection algorithm and decoding blocks with compressed
with delta encodings. We employ a Berkeley DB (BDB) dictionary to store the

18



4.2 Query Evaluation

mapping from terms to its skip list offset (where its metadata is stored). We use
memory-mapped IO to write to the index files.

2. For each occupied bucket (associated with a term), we apply the following process
to create the index:

a) The mapping from the bucket’s term to current the current skip list offset is
stored in the skip list offset dictionary.

b) The skip list offset is incremented to allocate space for the term’s metadata,
shown in Figure 4.1.

c) For each of the term’s blocks:

i. We update the block’s DID and frequency file offset in the skip list. We
write the block’s first DID to the skip list.

ii. The DIDs and frequencies within the block are compressed directly to
the DID and frequency block files.

iii. The DID and frequency block file offsets are incremented.

3. The final DID and frequency file offset is written to the skip list.

Since the TurboPFor256Delta algorithm encodes integers in blocks of 256 integers, we
use a block size of 256 (powturbo).

4.2 Query Evaluation

Now we explain the query evaluation process for this index. The query evaluator returns
the top 1024 results for each query, ranked using the BM25 scoring algorithm. We utilize
the output buffer array, intended for query results, as a min-heap to quickly extract and
replace the lowest scoring posting.

The query evaluator handles two types of queries: single (one term queries) and AND
(two-term conjunctive queries). We explain how each type of query is processed below.

The evaluation of one-term queries involves locating and serving all postings which match
the query term (Thai and Akram, 2023). For each one-term query, we take the following
steps to resolve the query.

1. We obtain the term’s skip list position using the skip list offset dictionary.

2. The term’s posting count is extracted from the skip list and used to calculate the
number of blocks. For each posting block:

a) We obtain the DID and frequency block offsets from the skip list (Figure 4.1).
The DID and frequency blocks are decoded into user buffers using memory-
mapped IO.
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4 Index Organization and Query Evaluation

b) The block’s postings are scored using frequencies, and inserted (copied) to
the min-heap (output buffer).

3. The output buffer is sorted by score.

Serving an AND query involves finding the intersection of postings for two terms, i.e.,
postings for both query terms which contain matching DIDs (Thai and Akram, 2023).

In general, fast algorithms such as binary or finger search to perform intersections for
posting lists (Chilukuri and Akram, 2023a). However, doing this is inefficient for com-
pressed posting lists since it requires decompressing all blocks before performing the
intersection. We utilize the skip list to accelerate intersection queries by bypassing un-
necessary blocks (Thai and Akram, 2023).

Our intersection is based on the powturbo algorithm (powturbo). For each AND query,
we apply the following steps:

1. The skip list offsets for both terms are obtained from two lookups to the skip list
offset dictionary.

2. We obtain the number of postings, first DIDs of each DID block, and DID/frequency
block offsets for each term from the skip list.

3. Next, we perform skip list intersection. By using the first DID of a block and
the first DID of the subsequent block, we determine the range of possible DIDs
within that block. We then perform a traversal of blocks for both terms, checking
if the potential DID ranges intersect. If they do, the blocks are decompressed and
intersected. The traversal process begins by calculating the number of blocks for
each term and initializing a counter to track the current block of each term to zero.
While the block counter for both terms are less than their total block counts:

a) If there is a DID range overlap between both current blocks, the DID and
frequency blocks are decompressed into a user buffer.

b) The DIDs of the block are intersected, and if a match is found, the posting
is scored using the BM25 algorithm. If the score exceeds that of the lowest
scoring posting in the min-heap (output buffer), it is inserted. During the
intersection process, we keep track of our position within each block to avoid
redundant work if the same block is used in the next iteration.

c) The term with the current block having the lower upper DID range advances
to the next block by incrementing its counter. If the upper DID range is the
same, then both terms advance to the next block.

4. The output buffer is sorted by score.

20



Chapter 5

Evaluation Methodology

We now discuss our experimental methodology for (1) performance analysis of DRAM-
Only and NVM-Only indices, and (2) evaluation of APCache.

5.1 Microarchitectural Analysis Methodology

We perform rigorous microarchitectural analysis of various integer compression algo-
rithms for compressing inverted indices. Our goal is to establish if storage technology
has an impact on query evaluation latency. Microarchitectural analysis relates to the
hardware implementation aspects of an instruction set architecture (e.g., Intel x86-64
or ARM A32). For example, it relates to understanding the behavior of caches and
out-of-order pipelining machinery—both of which are transparent to software and pro-
grammers. We discuss our evaluation methodology of the microarchitectural analysis
aspect of the thesis below.

5.1.1 Index Configurations

We use several state-of-the-art compression algorithms and their (SIMD and other) vari-
ations in our experiments. These algorithms are in use in production systems, and they
offer varying degrees of compression. Specifically, we experiment with the following
configurations.

• TurboPFor : TurboPFor encoding (powturbo).

• TurboPFor256 : TurboPFor with 256-bit SIMD bit packing.

• TurboPForDelta: TurboPFor with delta encoding.

• TurboPForDelta256 : TurboPFor with 256-bit SIMD bit packing and delta encod-
ing.
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5 Evaluation Methodology

• TurboVByte: A state-of-the-art implementation of VByte (powturbo).

• TurboVByteDelta: TurboVByte with delta encoding.

• StreamVByte: StreamVByte encoding (Lemire et al., 2018).

• StreamVByteDelta: StreamVByte with delta encoding.

Most of the compression algorithms are sourced from the TurboPFor Integer Compression

library (powturbo), except for StreamVByte and StreamVByteDelta (Lemire et al.,
2018).

One concern is how to deal with frequencies as they are not monotonically increasing
or in sorted order. Therefore, we cannot and do not use delta encoding for frequencies.
Instead, we compress frequency blocks using the same algorithm as DIDs, but without
applying delta encoding.

With these decisions, our experimental configurations and taxonomy is as follows.

• Base: Index is not compressed at all.

• PForDelta: DID blocks are compressed using TurboPForDelta, and frequency
blocks are compressed using TurboPFor.

• PForDelta256 : DID blocks are compressed using TurboPForDelta256. If a block
contains less than 256 integers, it is compressed using TurboPForDelta instead.
Similarly, frequency blocks are compressed using TurboPFor256, or TurboPFor for
incomplete blocks.

• SVByteDelta: DID blocks are compressed using StreamVByteDelta, and frequency
blocks are compressed using StreamVByte.

• VByte: The index is compressed using TurboVByte.

• VByteDelta: DID blocks are compressed using TurboVByteDelta, and frequency
blocks are compressed using TurboVByte.

For each configuration, we experiment with storing the index (both DIDs and
frequencies) on PM and DRAM. The skip list and skip list offset dictionary are
always stored in DRAM on Linux tmpfs.

5.1.2 Intel Top-down Microarchitectural Analysis

We use a Intel’s recommended top-down methodology for performance analysis (Yasin,
2014). The method is designed for identifying performance bottlenecks in out-of-order
processors using performance counters (Yasin, 2014). In out-of-order processors, instruc-
tions execute concurrently, making it difficult to pinpoint the reason for a pipeline stall.
In other words, if in a cycle, the processor is under-utilized, it could be due to one of
many so-called miss operations. For example, an instruction may not be found in the
instruction cache, or a data object may not be found in the data cache, or else, all
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5.2 APCache Evaluation Methodology

Table 5.1: Formulas for top-down metrics from performance counters. (Yasin, 2014)

Metric Name Formula

Clocks cpu clk unhalted.thread p
Slots 4× Clocks

Top-Down (Pipeline Slots)

Front-End idq uops not delivered.core
Bad Speculation (uops issued.any − uops retired.retire slots+ int misc.recovery cycles)
Retiring uops retired.retire slots
Backend Slots− (Front-End+Bad Speculation+Retiring)

Backend-Bound (Clock Cycles)

Core Clocks− uops executed.thread cycles ge 3
Memory cycle activity.stalls mem any + resource stalls.sb

Memory-Bound (Clock Cycles)

External cycle activity.stalls l3 miss
L3 cycle activity.stalls l2 miss− External
L2 cycle activity.stalls l1d miss− cycle activity.stalls l2 miss
L1 cycle activity.stalls mem any − cycle activity.stalls l1d miss

the functional units (e.g., arithmetic logic units or ALUs) are busy occupied by older
instructions. We collect performance counters using the libpfm4 library (Cohen), and
use them to calculate the number of pipeline slots that are (1) retiring, i.e., devoted to
useful work, (2) front-end bound, i.e., un-utilized due to the front-end being unable to
adequately supply its back-end, (3) bad speculation bound, i.e., wasted as a result of in-
correct speculations, (4) back-end bound, i.e., it consists of stalls related memory-bound
and core-bound. The memory-bound stalls are due to instructions waiting for memory
to respond. The core-bound stalls are due to the lack of functional units or reservation
stations (where instructions wait for their operands to become available). Finally, we
calculate the number of clock ticks that are L1, L2, L3 (these three components represent
the on-chip levels of the cache hierarchy), and external memory bound. We show these
calculations in Table 5.1.

5.2 APCache Evaluation Methodology

5.2.1 Server Platform

We conduct experiments on a dual-socket Dell PowerEdge R740 server running Ubuntu
Linux 18.04 LTS. Each socket contains Intel Xeon Gold 6252N running at 2.3 GHz,
each with 24 physical cores (48 logical cores) and 96 cores in the system. Each core
has 35.75 MB of shared L3 cache and an integrated memory controller supporting six
memory channels. Each memory channel connects to a 32 GB Micron DDR4 DIMM
and a 128 GB Intel Optane NVDIMM. With 12× 32 GB DIMMs and 12× 128 GB Intel
Optane DIMMs, the total memory capacity of the system is 384 GB of DRAM and
1.5 TB of Optane PM. The system has a 1.5 TB Intel Optane PCI Express NVMe SSD
(DC P4800X). The system also has a 1 TB, 3.5-Inch, Seagate, SATA (6 Gbps), hard
drive, capable of 7200 rotations per minute. We disable non-uniform memory access
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Table 5.2: This table highlights key features of two storage technologies: the Seagate
ST8000NM0205 Hard Disk Drive (HDD) (ALLHDD.com, 2024) and the Intel
Optane Solid State Drive (SSD) DC P4800X Series (Intel, 2024).

Feature Seagate ST8000NM0205 Intel Optane DC P4800X

Type Hard Disk Drive (HDD) Solid State Drive (SSD)
Capacity 8TB 1.5TB
Interface SATA 6GBPS PCIe 3.0 x4, NVMe
Sequential Read Bandwidth 181MB/s 2200MB/s
Sequential Write Bandwidth 167MB/s 902MB/s
Average Latency 4.16ms < 10/12µs

(NUMA) accesses in all our experiments.

Table 5.2 highlights the key features of the two secondary storage technologies used in
our experiments Seagate ST8000NM0205 (disk) and Intel Optane DC P4800X (SSD).
We measure the sequential read and write speeds using the Linux dd utility (Baeldung,
2024).

5.2.2 Datasets and Ingestion

We evaluate our configurations across two real-life datasets. The first dataset is a 160 GB
corpus we buid from the May 2022 Common Crawl archive (Crawl). The second dataset
is a 30 GB corpus Chilukuri and Akram we build from the full text of English Wikipedia,
with the snapshot taken in March 2021 (Chilukuri and Akram, 2023a). Both datasets
limit each document to 1 KB in size.

5.2.3 Query Formation

We generate two types of queries, (1) conjunctive two-term (AND), and (2) single term
(SINGLE). For both types, we create three workloads containing terms of different fre-
quency classes reflecting their posting count. The high (H) workload consists of terms
with the highest frequency in a corpus, medium (M) with medium frequency, and low
(L) with the lowest frequency.

For the Common Crawl dataset, we obtain a list of the terms that appear in the dataset
and their posting count. We divide the terms into different frequency classes using the
following buckets.

H : [1 000 000,∞)
M : [1 000, 1 000 000)
L : [0, 1 000)

For the Wikipedia dataset, terms are separated into three sets: high frequency terms
(H), medium frequency terms (M), and low-frequency terms (L) using classification from
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the LuceneUtil McCandless (2021). We create one-term and two-term query workloads
by randomly generating queries from the H, M, and L term sets. This results in six
workloads, (1) three one-term workloads, namely L, M, and H, and (2) three two-term
workloads, namely LL, MM, and HH.

For the Common Crawl dataset, we increase the size of query workloads with lower
frequency terms to balance the execution time across all workloads. We use the following
workload sizes for different frequency classes.

H : 1 000
M : 100 000
L : 1 000 000

Finally, for the Common Crawl dataset, we use a parameter called query repetition
probability (RP) to control the regularity of repeated query terms in our query work-
loads (Weerakkody and Akram, 2023). This feature is useful for evaluating the cache
(discussed in Chapter 8). We generate workloads with different RPs for each frequency
class. Specifically, we use two FIFO queues, (1) a queue containing all unique terms (for
a specified frequency class), which we will call the term queue, and a queue from which
we choose repeated queries, which we will call the repeat queue. We limit the repeat
queue size to 100 which is the default setting, effectively setting 100 to be the maximum
number of queries between any two repeating queries (Weerakkody and Akram, 2023).
Given a specified workload size (number of queries), term list of all unique terms in
the corpus, repeat queue size, and frequency class, a single-term workload for SINGLE
queries is generated as follows.

1. All of the terms in the term list belonging to the specified frequency class are added
to the term queue.

2. The term queue is randomly shuffled.

3. Until the workload reaches the desired size, we add terms to the workload:

a) The next term is popped from the term queue.

i. If the repeat queue is empty, then the next term is added to the workload.

ii. Otherwise, with a probability of RP, we add a random term from the
repeat queue to the workload. If not chosen from the repeat queue, the
next term is added to the workload.

b) The next term is added to the repeat queue. If the repeat queue is larger
than its maximum size, the oldest term is popped from the repeat queue.

We generate two-term workloads for AND queries in a similar way, except that after
shuffling the term queue, we split it into two halves. We use the two halves to generate
two one-term workloads (as explained above), and then join terms in a pair-wise fashion,
grouping together elements from each sequence based on their position.
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We set RP for in our experiments as follows. We use an RP of 25% for the microarchitec-
tural analysis. Furthermore, we use a range of RPs (0%, 25%, and 50%) for evaluating
APCache.

5.2.4 Measurement Metrics and Methodology

On the indexing side, we report the time it takes to build the index, i.e., indexer execution
time. We also collect and report the compression ratios and the compressed size of the
index.

On the side of query evaluation, we report queries per second (QPS), tail latency, and
microarchitectural performance counters. We collect performance counters using the
libpfm4 library (Cohen). Using performance counters and Intel’s top-down method-
ology, we determine the number of pipeline slots that are front-end, bad speculation,
back-end (memory and core), and retiring bound (Yasin, 2014). We also use perfor-
mance counters to calculate the number of clock ticks that are L1, L2, L3, and external
memory bound.

For the large Common Crawl dataset, we observe consistent results across several rep-
etitions of the same experiment, i.e., the standard deviation is negligible. We run each
query experiment twice, taking the results of the second repetition. We run each query
experiment for the smaller Wikipedia dataset ten times and take the mean across the
ten experimental runs.

We use an output buffer size of 1024 integers. The search engine returns the top 1024
posting results based on the BM25 scoring algorithm. For this purpose, it uses a min-
heap with 1024 elements.
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Chapter 6

Microarchitectural Analysis

In this section, we discuss motivating analysis at the microarchitecture level to under-
stand the behavior of compressed indices across two memory technologies. This motivat-
ing analysis informs the design of our proposed postings cache, namely, APCache. We
first discuss characterize the indexing process, discuss index size under different com-
pression algorithms, and then discuss the performance of query evaluation. The former
is important for picking the best compression algorithm and understanding the impacts
of cache locality against our index sizes, and the latter informs the design of APCache.

6.1 Indexing Performance

The indexing process consists of two stages: (1) ingest and (2) transform. During the
ingestion stage, the indexer creates a hash table that maps terms to posting blocks. In
the transformation stage, this hash table is converted into the index structure described
in Section 4 to enable faster lookups. We show the breakdown of indexing times into
two components for our configurations in Figure 6.1.

We observe that ingestion takes up a large fraction of the indexing time, and ingestion
times, as expected, are similar across all configurations. Therefore, the cost of com-
pression is low. Nevertheless, we observe that transformation with compressed indices
is faster than the baseline. This speedup in transformation is mostly because com-
pressed indices necessitate transfers of smaller amounts of data to storage. Note that
the time to store data on block storage from memory is included in the transforma-
tion step; we use SSD for block storage. Transformation with compressed indices is
between 4% (PForDelta) and 20% (SVByteDelta) better than the baseline. We also
observe that SVByteDelta and VByteDelta exhibit marginally better performance com-
pared to VByte because more integers can be compressed into a single byte (deltas are
smaller), resulting in a simple and predictable code path and thereby reducing branch
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Figure 6.1: Showing the breakdown of time to build the index into ingest transform
times.

misprediction penalties (Lemire et al., 2018).

6.2 Index Size

We now discuss index sizes with the baseline and different compression algorithms. Fig-
ure 6.2 shows the effectiveness of our compression algorithms in reducing the index size.
Index size is broken down into sizes of the post-compression DID and frequency blocks.
For all configurations, we have a 2.2 GB skip list and 1.25 GB skip list offset dictionary.
It is important to note that frequency blocks are compressed without delta encoding, as
delta encoding requires the integers to be monotonically increasing.

0 50 100
Compressed Size (GB)
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PForDelta

PForDelta256
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VByte

VByteDelta

Frequency Blocks DID Blocks

Figure 6.2: Showing the compressed index sizes and the sizes of DID and frequency
blocks.
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We find compression to be very effective. With the PForDelta configuration, the DID
blocks and frequency blocks are compressed to 25.6% and 9.2% of their original size,
respectively, as seen in Figure 6.2. We find that delta encoding significantly improves
the compression ratio of TurboVByte. TurboVByte compression alone reduces the size
of the DID blocks by 0.2% (Figure 6.2). TurboVByteDelta is much more effective,
reducing the size by 68.2%. TurboVByteDelta compresses large numbers inefficiently
but performs better with smaller deltas.

We find the frequency blocks compress extremely well for PForDelta256 and PForDelta
configurations (Figure 6.2). They are compressed using the TurboPFor scheme, which
uses bit packing, enabling finer-grained compression than byte-oriented algorithms.

The SVByte compresses slightly worse than VByteDelta (Figure 6.2). This result is
expected as prior work reports that StreamVByte uses 0.5 to 2 additional bits per
integer compared to TurboVByte (Lemire et al., 2018).

Overall, the compression ratios for PForDelta and PForDelta256 are 5.76× reduction in
size compared to the baseline, and for VByteDelta, it is 3.5× compared to the baseline.
Other algorithms are less effective at compressing the index. We use PForDelta256 in
APCache later in the thesis, as it offers the best compression ratio and exhibits good
performance because it exploits SIMD intrinsics in modern Intel processors.

6.3 Query Evaluation

We now discuss query evaluation with the index fully allocated in DRAM and PM. Our
goal is to find out if a slower memory technology, such as Intel Optane PM, slows down
query evaluation. If there is a slowdown, we next aim to understand the reason for the
slowdown. If there is no performance degradation, we intend to find out why there is no
degradation.

6.3.1 Roadmap of Results

Explaining the impact of memory technology on high-level application metrics, such as
queries per second and tail latency, is challenging. For example, we need to be able
to explain the changes in QPS with different compression algorithms (with or without
SIMD) and relate the results with the dynamics of the microarchitecture and locality
impacts. For this reason, we collect and show data at the user (high level) and mi-
croarchitectural (low level) layers. Specifically, in Figure 6.4 and Figure 6.3, we show
the space-time trade-off between compression effectiveness and query performance. We
show QPS achieved for various compression algorithms and their compression ratio.
These figures inform us of the best tradeoff since the best compression ratio and the
best QPS cannot be used simultaneously (we discuss this result in more detail later).

We measure the queries per second (QPS) for low (L), medium (M), and high (H)
frequency queries for both AND and one-term (SINGLE) query types. We expect that
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compression slows down query evaluation due to decompression cost. Therefore, we use
performance counters to conduct microarchitectural analysis to be able to explain our
results. In Figure 6.5 and Figure 6.6, we show the number of pipeline slots that are:
(1) retiring - devoted to useful work, (2) front-end bound, i.e., un-utilized due to the
front-end being unable to adequately supply its back-end, (3) bad speculation bound,
i.e., wasted as a result of incorrect speculations, (4) back-end bound, i.e., it consists of
memory bound and core bound. In Figure 6.7 and Figure 6.8, we further break backend
bound into (1) memory bound, i.e., stalled due to memory operations such as load or
store instructions, and (2) core bound, i.e., bound by computational resources. Finally,
we also investigate the number of clock ticks bound by stalls on various levels of the
cache hierarchy, first level (L1), second level (L2), their level (L3), and external memory
in Figure 6.9 and Figure 6.10.

6.3.2 Analysis

As explained above, discussing the various results we gather to understand QPS versus
compression ratio tradeoffs in isolation of each other impedes pinpointing the reasons for
differences in memory technology. We now crystallize findings below from our high-level
application level metrics (QPS and compression ratio) and microarchitectural analysis.

DRAM versus PM Performance

We host the index in DRAM alone and PM alone in the experiments in this section. For
AND H and M queries, we observe that the QPS performance gap between PM (index is
fully hosted in PM) and DRAM (index is fully hosted in DRAM) narrows significantly
for configurations with heavily compressed indices (Figure 6.3a), compared to the gap
between (uncompressed) baseline DRAM and PM. For example, whereas the QPS gap
for H between DRAM and PM is 21% for the baseline uncompressed index, it is only 2%
with PForDelta and the SIMD variant of PForDelta. And it is only 4% for VByteDelta.
We also note that the SIMD variant of PForDelta delivers a higher QPS, but we will
discuss SIMD impacts in detail later.

Similarly, for M queries, the QPS gap with DRAM alone and PM alone is 26% with
uncompressed indices. However, once the indices are heavily compressed, the gap is
5% for PForDelta and 10% for PForDelta256. Similarly, for VByteDelta, the difference
in QPS between DRAM and PM is only 4%. L queries are short queries because the
word typically has very few matching documents in the corpus. The baseline systems
exhibit the same QPS. With PForDelta, PM is 9% slower than DRAM. The overhead
of decompression now outweighs the locality benefits due to compression (more on this
below), and we observe a different tradeoff with L queries. Overall, it is well known that
search engines prioritize optimizing for tail latency, and long queries contribute to tail
queries, and H queries are the longest. Therefore, for L queries, we believe compression
impacts are less critical, and all systems with all configurations (compression or no
compression) satisfy real-time response time constraints that search engines target.
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Next, we discuss the reasons for the small gap in performance (QPS) between systems
with DRAM only and PM only. The top-down analysis reveals that the retiring com-
ponent (as shown in Figure 6.5 and Figure 6.6) is the same for uncompressed (baseline)
DRAM and PM configurations. (We discuss AND H results here.) This component
represents the number of retired instructions, and it is expected that the number of
instructions executed by the baseline configurations is the same. The cycles lost to bad
speculation (branch mispredictions) is the same as expected. The same is the case for
the front-end bound, which represents the instruction fetch bandwidth. However, the
one component where a PM-only system incurs a higher overhead than the DRAM-only
system is the backend-bound component. This component is high either due to the
backend of the pipeline being stalled due to missing ROB entries or lack of entries in
the issue queue (reservation stations) or due to memory being unable to feed data with
enough speed relative to the CPU’s processing of memory instructions. In short, the
component that is higher in PM only is the backend component, and our hypothesis is
that this component is high due to memory latency. This component is 76% (H AND
queries) higher for PM with no compression. Therefore, in the baseline system with
no compression, the high latency of PM is indeed exposed to the application, which we
verify later in this section.

For AND L queries, the DRAM-PM performance gap remains consistent across most
configurations except for VByteDelta (Figure 6.3a). Compared to M queries, the perfor-
mance gap between PM baseline and DRAM baseline is smaller. The top-down analysis
in Figure 6.5 shows a similar breakdown across configurations for AND L queries, with
a substantial increase in the backend component compared to AND H and M queries.
This increase is likely due to more frequent non-sequential memory access patterns.

We note that for M queries, our above observations stand true. The performance gap
between DRAM and PM is more pronounced for AND M queries compared to AND
H queries (Figure 6.3a and Figure 6.3b). We attribute this to enhanced prefetching
efficiency when the query evaluator frequently uses sequential access patterns. AND M
queries involve more queries with fewer postings, which increases random access patterns.

The backend-bound component with M queries is almost twice to that in the DRAM
case for M queries. However, for L queries, the backend bound component is similar in
both DRAM and PM cases because memory accesses are less profound for L queries.
Very few postings are traversed for L queries, as very few documents contain such words.

Many of our findings for AND queries are also true for SINGLE queries. For H queries,
we still find similar performance for PM and DRAM with high compression. We find
a difference with M queries, where the performance of PM and DRAM is more alike
compared to AND queries, possibly due to improved prefetching. Prefetching likely
improves because access patterns are more sequential and predictable, not interleaved
between the postings blocks of two terms. This behavior is related to poor speculation,
which is significantly higher for AND H queries (Figure 6.5 and Figure 6.6). Also, the
backend bound component for SINGLE H queries is 2.3× that of DRAM only.

31



6 Microarchitectural Analysis

We observe that for compressed indices, the gap in the backend bound component be-
tween DRAM and PM is small. For example, the gap in the backend bound shrinks
from 1.76× to 1.11× for PForDelta256 (AND, H). Similarly, the gap shrinks to 1.37×
from 2.28× for one-term high-frequency queries. At this time, we have established that
the QPS gap with DRAM and PM is diminished when compression is employed, and
the reason is a reduction in backend pipeline stalls.

We note that the memory-bound pipeline slots for highly compressed configurations are
comparable for both PM and DRAM (Figure 6.13a), indicating that the type of memory
technology has little impact on these stalls. A further breakdown of the memory compo-
nent shows that the external memory-bound component (Figure 6.14a) is significantly
reduced for highly compressed configurations. This reduction explains the similar per-
formance between PM and DRAM when indices are compressed. We believe it is due to
two reasons. First, data compression decreases memory bandwidth pressure by reducing
the volume of data loaded into memory. Second, it increases cache and TLB locality
because more posting data fits in the cache. The benefits are akin to cache blocking in
matrix multiplication, as an analogy.

The bottom line is that for AND H queries, the performance gap between DRAM and
PM for PForDelta, PForDelta256, VByteDelta, and SVByteDelta is negligibly small
(Figure 6.3a). These configurations utilize delta encoding to compress the index further.
With these configurations, we can leverage PM’s capacity advantage without sacrificing
QPS performance.

SIMD Compression

We find that SIMD significantly enhances QPS performance. As shown in Figure 6.3,
PForDelta256-DRAM consistently outperforms PForDelta-DRAM. For AND H queries,
PForDelta256-DRAM has 30.7% higher QPS than PForDelta-DRAM. This improvement
is due to SIMD accelerating decompression using vector instructions, which increases
throughput.

The combination of compression and SIMD further enhances QPS performance despite
the overhead of decompression. SIMD hides decompression costs and provides greater
throughput, while effective compression reduces pressure on external memory. Notably,
SVByteDelta-DRAM outperforms uncompressed DRAM baseline for both H and M
queries (Figure 6.3a). For H queries, the QPS is 9% higher, which is unexpected given
the typical additional costs associated with decoding integers. SVByteDelta achieves
more retiring pipeline slots (dedicated to useful work) and compensates for the cost by
reducing backend-bound slots (Figure 6.5a).

Figure 6.14a further details the reduction in backend-bound slots for H queries, show-
ing a decrease in memory-bound pipeline slots. Additionally, Figure 6.9a breaks down
memory-bound clock cycles, revealing a significant reduction in the external memory
component when comparing SVByteDelta-DRAM to Base-DRAM. This leads to an
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important insight: we can both improve performance and reduce the index
size with a combination of SIMD and high compression.

Space-Time Tradeoff

We can host compressed indices on PM and achieve similar QPS performance, which
is more scalable for larger indices. SVByteDelta-PM has 2.2% worse QPS performance
than SVByteDelta-DRAM, but still 9.3% better performance than baseline DRAM.

PForDelta256-DRAM offers the best compression ratios while maintaining good QPS
performance. It is only 4% slower than baseline DRAM, but compressing the index to
17.3% of its original size.

We analyze the time-space tradeoff between PForDelta256-PM and SVByteDelta-PM.
PForDelta256-PM provides superior compression, reducing the index size to approxi-
mately half that of SVByteDelta-PM. However, QPS performance is about 10% lower
because StreamVByte is more efficient. By using PForDelta256-PM, we can host larger
indices in memory. When indices are too large to fit entirely in memory, they reside
in secondary storage and utilize memory as a cache. Fetching postings from disk to
memory adversely affects QPS. In this context, PForDelta256-PM allows more postings
to be stored in the cache.

If the priority is minimizing index size, PForDelta and PForDelta256 should be preferred.
If high performance (QPS) is critical, then SVByteDelta-DRAM or baseline DRAM is
more suitable. Balancing both aspects, PForDelta256 offers compelling trade-
offs. Therefore, we propose and use PForDelta256 for building APCache later in this
thesis, our newly proposed caching framework with workload-aware prefetching for search
engines.

6.3.3 Tail latency Results

Tail latency is an important metric for search engines. TABLE 6.1, TABLE 6.2 and
TABLE 6.3 shows the 99th percentile tail latency (p99) results for AND and SINGLE
queries.

For H queries, SVByteDelta has the lowest tail latency for both AND and SINGLE
queries with DRAM and PM systems. Specifically, the tail latency for SINGLE, H is
201 ms on PM, and 195 ms on DRAM. Note that there is more memory bandwidth
pressure on a DRAM system as it hosts the skip list and postings. Whereas, a PM
system, still hosts the skip list in DRAM, while postings reside in PM.

Base (baseline uncompressed) exhibits relatively good tail latency performance on DRAM,
but the worst tail latency results on PM (up to 252 ms compared to 217 ms with DRAM).
This result is expected because of no compression. PForDelta256 has a slightly worse
performance than SVByteDelta and has significantly lower tail latency than PForDelta.
PForDelta has the worst tail latency results on DRAM.
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For M queries, the tail latencies are much smaller than H. SVByteDelta has the best
tail latency results, and VByteDelta has the worst. Finally, the tail latencies are much
smaller for L queries than M. The results are similar for most configurations. PForDelta
performs significantly worse on DRAM than other configurations.

Table 6.1: Tail latency results for H queries.

Tail Latency (E-1 s)

Configuration DRAM PM

AND SINGLE AND SINGLE

Base 1.55 2.17 2.12 2.52
PForDelta 2.23 2.68 2.28 2.73
PForDelta256 1.56 2.14 1.61 2.19
SVByteDelta 1.34 1.95 1.43 2.01
VByte 1.57 2.20 2.09 2.66
VByteDelta 1.70 2.24 1.76 2.33

Table 6.2: Tail latency results for M queries.

Tail Latency (E-3 s)

Configuration DRAM PM

AND SINGLE AND SINGLE

Base 1.46 2.39 2.19 2.76
PForDelta 2.64 3.05 2.73 3.11
PForDelta256 1.84 2.48 1.93 2.56
SVByteDelta 1.48 2.25 1.53 2.29
VByte 1.59 2.38 2.07 2.79
VByteDelta 4.12 4.15 4.30 4.28

6.4 Wikipedia Dataset

To substantiate our claims in this chapter, we analyze a different dataset that is more
widely used for analyzing search engine performance. However, we initially found the
dataset size to be small. Specifically, we experiment with a Wikipedia dataset to further
validate our results. The uncompressed index size is 20.8 GB. The Wikipedia dataset’s
results closely resemble those we observe with the CommonCrawl dataset above.

Our findings reaffirm our previous conclusion: QPS performance is similar for both
PM and DRAM under high compression. For AND H queries, QPS performance is
only 0.76% lower for PForDelta256-PM compared to PForDelta256-DRAM, and 1.68%
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Table 6.3: Tail latency results for L queries.

Tail Latency (E-5 s)

Configuration DRAM PM

AND SINGLE AND SINGLE

Base 1.00 1.50 1.00 1.50
PForDelta 1.00 1.60 1.19 1.79
PForDelta256 1.00 1.60 1.19 1.72
SVByteDelta 1.00 1.60 1.19 1.69
VByte 0.91 1.50 1.00 1.60
VByteDelta 1.10 1.69 1.19 1.72

lower for SVByteDelta-PM compared to SVByteDelta-DRAM (Figure 6.11a). For SIN-
GLE H queries, the gap is slightly smaller, QPS performance is only 0.4% lower for
PForDelta256-PM compared to PForDelta256-DRAM, and 0.49% lower for SVByteDelta-
PM compared to SVByteDelta-DRAM (Figure 6.11b). Figure 6.14 shows that the ex-
ternal memory bound component is similar for PM and DRAM configurations with high
compression.

Once again, we find that SIMD enhances performance. In Figure 6.11, we see that
PForDelta256-DRAM offers 15.9% better performance than PForDelta-DRAM for AND
H queries and 8.3% better performance for SINGLE H queries. We observe in Figure 6.12
that retiring pipeline slots are lower for PForDelta256 than PForDelta due to fewer
instructions.

We find once more that SIMD compression can outperform no compression, even when
accounting for decompression costs. For AND H queries, QPS performance for SVByteDelta-
DRAM is very slightly faster than Base-DRAM (Figure 6.11a), and for SINGLE H
queries, it is 0.1% faster (Figure 6.11b).

For the Wikipedia dataset, the time-space trade-off favors PForDelta256, as its per-
formance is closer to that of SVByteDelta. QPS performance for PForDelta256-PM is
4.9% worse for For AND H queries, and 2.9% worse for SINGLE H queries compared to
SVByteDelta-PM (Figure 6.11).

35



6 Microarchitectural Analysis

0 10 20 30
QPS

0.00

0.25

0.50

0.75

1.00

In
d

ex
S

iz
e

(F
ra

ct
io

n
of

B
as

e)

Base-DRAM

Base-PM

PForDelta-DRAM

PForDelta-PM

PForDelta256-DRAM

PForDelta256-PM

SVByteDelta-DRAM

SVByteDelta-PM

VByte-DRAM

VByte-PM

VByteDelta-DRAM

VByteDelta-PM

(a) H queries.

0 2000 4000 6000
QPS

0.00

0.25

0.50

0.75

1.00

In
d

ex
S

iz
e

(F
ra

ct
io

n
of

B
as

e)

(b) M queries.

0 25000 50000 75000 100000 125000
QPS

0.00

0.25

0.50

0.75

1.00

In
d

ex
S

iz
e

(F
ra

ct
io

n
of

B
as

e)

(c) L queries.

Figure 6.3: Showing the QPS versus compressed index size (as a fraction of uncompressed
index size) for AND queries.
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Figure 6.4: Showing QPS versus compressed index size (as a fraction of uncompressed
index size) for one-term (also called SINGLE) queries.
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Figure 6.5: Showing the top-down breakdown for AND queries.
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Figure 6.6: Showing the top-down breakdown for SINGLE queries.
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Figure 6.7: Showing the backend-bound breakdown for AND queries.

40



6.4 Wikipedia Dataset

Bas
e

PFo
rD

elt
a

PFo
rD

elt
a2

56

SV
Byt

eD
elt

a

VByt
e

VByt
eD

elt
a

0

50

100

150

200

250

300

P
ip

el
in

e
S

lo
ts

(×
10

9
)

Core Memory

PM DRAM

(a) H queries.

Bas
e

PFo
rD

elt
a

PFo
rD

elt
a2

56

SV
Byt

eD
elt

a

VByt
e

VByt
eD

elt
a

0

50

100

150

200

250

300

P
ip

el
in

e
S

lo
ts

(×
10

9
)

(b) M queries.

Bas
e

PFo
rD

elt
a

PFo
rD

elt
a2

56

SV
Byt

eD
elt

a

VByt
e

VByt
eD

elt
a

0

10

20

30

40

50

60

70

80

P
ip

el
in

e
S

lo
ts

(×
10

9
)

(c) L queries.

Figure 6.8: Showing the backend-bound breakdown for SINGLE queries.

41



6 Microarchitectural Analysis

Bas
e

PFo
rD

elt
a

PFo
rD

elt
a2

56

SV
Byt

eD
elt

a

VByt
e

VByt
eD

elt
a

0

10

20

30

40

50

C
lo

ck
C

yc
le

s
(×

10
9
)

External L3 L2 L1

PM DRAM

(a) H queries.

Bas
e

PFo
rD

elt
a

PFo
rD

elt
a2

56

SV
Byt

eD
elt

a

VByt
e

VByt
eD

elt
a

0

5

10

15

20

25

30

C
lo

ck
C

yc
le

s
(×

10
9
)

(b) M queries.

Bas
e

PFo
rD

elt
a

PFo
rD

elt
a2

56

SV
Byt

eD
elt

a

VByt
e

VByt
eD

elt
a

0

2

4

6

8

10

12

C
lo

ck
C

yc
le

s
(×

10
9
)

(c) L queries.

Figure 6.9: Showing the memory-bound breakdown for AND queries.
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Figure 6.10: Showing the memory-bound breakdown for SINGLE queries.
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Figure 6.11: QPS vs. compressed size for the Wikipedia dataset.
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Figure 6.12: Top-down breakdown for the Wikipedia dataset.
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Figure 6.13: Backend-bound breakdown for the Wikipedia dataset.
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Figure 6.14: Memory-bound breakdown for the Wikipedia dataset.
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Chapter 7

Design and Implementation of APCache

We now present APCache, our newly proposed adaptive cache over slow memory tier
(and associated machinery) for disk-resident indices that outgrow DRAM capacity by an
order of magnitude. Our design goals are inspired by our investigation of the space-time
tradeoffs in hosting compressed/uncompressed indices in scalable and byte-addressable
NVM. Specifically, we find that compression algorithms with high compression ratios
deliver similar QPS performance for DRAM and PM-backed indices. We first discuss key
principles behind the design of APCache, and then provide the details of the architecture
of APCache.

7.1 Principles

The design of APCache follows six principles.

Maintain a high compression ratio. The index is compressed using TurboPForDelta256,
providing high performance and significant compression. Although StreamVByte and
StreamVByteDelta offer better QPS performance, we choose TurboPForDelta and Tur-
boPForDelta256 for APCache because they achieve a compressed index size of approxi-
mately half as large.

Use memory-mapped I/O. APCache leverages memory-mapped I/O (MMIO) for
reading the immutable index from storage. MMIO uses virtual memory translation to
read the index and performs better than system call I/O for large indices.

Keep the I/O stack unmodified. Transfer postings from the DRAM OS cache to
the custom NVM cache using an unmodified storage stack for maximum applicability.

Use query-workload-aware prefetching. APCache exploits deep knowledge about
query workload to prefetch postings for terms ahead of the query evaluation engine. It
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employs a workload-aware prefetcher with an adaptive lookahead policy to cache the
necessary NVM index portions.

Use a cheap second-tier for caching. APCache uses a cheap and dense second tier
of memory for hosting the index in memory. We opt for PM over DRAM for three key
reasons: (1) serving queries from PM and DRAM yields similar QPS performance, (2)
PM offers much higher capacities (8 times larger), allowing for larger cache sizes, which
reduces costly cache misses that result in high-latency accesses to secondary storage,
and (2) using PM allows us to conserve DRAM capacity by setting a hard limit on the
amount of DRAM available to the program.

Use a fixed DRAM budget. APCache uses a fixed DRAM budget, and the DRAM
cost does not increase proportionally to the index size.

7.2 Architecture of APCache

In this section, we discuss the architecture of APCache. We first discuss our baseline
system and how we optimize the baseline by adding prefetching, and then discuss the
design of our new system.

7.2.1 Baseline System

There are three important considerations in our baseline system. First, the design of the
index is the same as discussed in Section 4. Specifically, the DID and frequency block
files reside on secondary storage (hard disk or SSD). DID blocks are compressed using
TurboPForDelta256, while frequencies are compressed with TurboPFor256.

The second important consideration is the choice of I/O mechanism. Linux broadly
provides two I/O mechanisms: one based on system calls and the other on virtual
memory (called memory-mapped I/O or MMIO). System calls incur an overhead, and
one cannot compute over the storage-resident file. Therefore, we use MMIO to read the
compressed index for storage. One concern with MMIO is that writes to disk happen
in an unpredictable order, complicating the implementation of database consistency
guarantees. However, it is not a concern in our work as indices are built offline in a
separate step, and thus, there are no writes to the index during reads (query evaluation).
Although Linux offers asynchronous APIs for I/O that can outperform MMIO in some
scenarios, these asynchronous APIs complicate application design and exhibit security
vulnerabilities. We leave the evaluation of new I/O APIs in Linux to future work and
use the established MMIO mechanism in this work.

Finally, we must decide on the skip list and dictionary placement. In our baseline
system (Base), we experiment with different placement strategies for the skip list and
the dictionary and find that PM is the most suitable location. Consequently, we use PM
as the default skip list and dictionary location in all our systems.

The Base configuration uses memory-mapped I/O to serve queries from a disk-resident
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index, as illustrated in Figure 7.1. As discussed above, we experiment with different
storage locations for the skip list and skip list offset dictionary: 1○ secondary storage
(same location as the index), 2○ DRAM, and 3○ PM.

Output 
Buffer

Secondary Storage

DRAM

PM

DictionaryQuery 
Term Skip List

OS Cache

Index

Decompress
DictionaryQuery 

Term Skip List

DictionaryQuery 
Term Skip List3

2

1

Figure 7.1: Showing the baseline system with skiplist on (1) secondary storage, (2)
DRAM and (3) PM.

7.2.2 Optimizing the Baseline System

To mitigate the high latency of secondary storage, we enhance the baseline system de-
scribed above to add workload-aware prefetching. We note that the prefetching mecha-
nism we introduce is called manual prefetching. The OS has an automatic prefetching
mechanism for reading pages from storage ahead of the read requests. The OS page
cache works the best for sequential access patterns, but where the I/O workloads are
random and mixed sequential and random, like any prefetching mechanism, the page
cache cannot predict the access patterns precisely. Therefore, in this work, we introduce
workload-aware prefetching, where we prefetch postings for terms for future queries.

One obvious concern with such workload-aware prefetching is predicting the query terms
beforehand. We exploit the fact that typically, in systems today, client requests are
queued in user and kernel buffers. For example, queuing client requests is why TCP pro-
tocol has a backlog parameter specifying the maximum number of queued connections.
Sending client requests is a much cheaper operation than evaluating the same requests.
Hence, requests are queued up in a typical system, and the system can thus look ahead
at the requests than those currently being served.

In our system (we call it BasePrefetch), we employ an an additional worker thread to
generate I/O and prefetch blocks from secondary storage into the page cache (DRAM)
for the (main) query thread. We show this improved baseline system in Figure 7.2.
As shown, I/O now happens concurrently with query resolution, improving the overall
throughput of the search engine.
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Figure 7.2: Showing the BasePrefetch system.

One important concern with prefetching for query terms ahead of the main query thread
is that needless evictions could happen before the query thread resolves the (current)
query. Unfortunately, we do not have control over modifying the internals of the page
cache. Our principle is to leave the I/O stack and OS code unmodified to maximize
deployment potential. Therefore, we solve this problem in a different way. Specifically,
we limit the lookahead amount to prevent the prefetcher from getting too far ahead of
the current query and causing evictions for postings before the query thread can access
them, which are useful for query resolution. We use a configurable parameter that caps
the maximum number of queries the prefetcher can bypass at any given time.

Our optimized baseline system, BasePrefetch, thus employs a fixed lookahead policy,
maintaining a constant value for this parameter throughout the search engine’s execu-
tion. The decision to employ a fixed lookahead policy is crucial due to the nature of
the page cache that we use as our prefetching target. The challenge lies in not knowing
when or which data has been evicted or how many segments cannot be evicted, as some
page cache data is reserved for user structures.

Additionally, the worker thread prefetches the skip list offset from the skip list offset
dictionary into a dedicated prefetch buffer, which avoids race conditions that could arise
if both the query and worker threads simultaneously access the skip list offset dictionary.

The worker thread prefetches a term’s postings into the page cache by copying portions
of the index into a small fixed-sized user buffer of 4096 bytes. Compared to another
prefetching method which uses posix fadvise(), copying the file data to a user buffer
guarantees that the data is brought into user space and thus into the page cache, gives
us explicit control over reading and managing the data, and can be more portable as it
relies on standard file I/O operations.
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Finally, we must decide when queries are processed in our optimized baseline system. In
our implementation, the query thread waits for a query term, or all terms of an AND
query, to be prefetched before processing the query.

7.2.3 Hybrid APCache

We now discuss the design of APCache. We first discuss a naive implementation of
APCache we call Hybrid. In the next section, we discuss an optimized variant that uses
a smart prefetching and lookahead policy. First, we call our system Hybrid to stress
the fact that the postings are cached in hybrid DRAM and PM memory. Note that in
the baseline systems, the postings are only cached in the DRAM page cache. Figure 7.3
illustrates the flow of data in Hybrid.

Output 
Buffer

Worker

Cache Miss

Secondary Storage

DRAM

PM

DictionaryQuery 
Term Skip List

OS Cache

Index

Segment 
Cache Decompress

Decompress

Cache Hit

Figure 7.3: Showing the Hybrid APCache system.

We add a segmented posting cache backed by PM in Hybrid. Although any cheap
(and slow) memory tier can be used in place of PM, we use it in this work due to its
availability in our in-house systems. In Hybrid, we need a mechanism to move postings
from the DRAM cache to our new segmented PM cache. Linux and other OSs currently
do not provide a mechanism to use a multi-tiered OS page cache. Therefore, we use
an additional worker thread to cache postings from DRAM to PM. Thus, we transfer
postings for terms encountered by the query thread from DRAM to PM at the user
level, leaving the OS unmodified. The query thread serves queries from the PM cache
on a PM cache hit. However, a cache miss necessitates memory-mapped I/O to the
disk-resident index. We note that in Hybrid, the size of the DRAM is fixed, which is a
great advantage of our new system. As indices grow, the DRAM capacity requirements
in Hybrid stay constant, placing a cap on the DRAM cost of the search infrastructure
in the future.

To prevent external fragmentation, we have designed a segmented cache with fixed seg-
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Figure 7.4: Skip list design for cache configurations.

876543210Index 
(Segment #)

-1803-1-1457Next 
Segment #

Term 1 Segment List
1 → 5 → 3

Term 2 Segment List
2 → 4

Segment Free list
6 → 0 → 7 → 8

Global Segment List

Stored in Skip List

Figure 7.5: Array-based linked list design for segment lists and free list. The example
shown is for a cache with eight segments.

ment sizes (see Figure 7.4). This fragmentation can occur because terms have a variable
number of postings, and eviction requires removing all postings associated with a term.
When evicting, the available memory may be fragmented into smaller pieces that cannot
be effectively utilized for storing new terms, even though the total memory might be
sufficient.

We utilize a global segment list shared among all terms in the cache. This global list
includes smaller lists dedicated to each term, indicating which segments store the cached
data for that term and a single list of free segments available for allocation. We imple-
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ment an array-based linked list structure for storing the global segment list to optimize
memory usage and avoid dynamic memory allocation. Figure 7.5 demonstrates this
setup, where the array-based linked list holds segment lists for Term 1 (indices 1, 3, 5)
and Term 2 (indices 2, 3), along with the segment free list (indices 0, 6, 7, 8). The
number stored at a given index is the next segment in the segment list, e.g. we store
the number 5 at index 1, indicating that segment 5 is the next segment in the list after
segment 1. We set the next segment to -1 to indicate a segment is the last segment of
the list.

Access to a term’s segment list is facilitated by the array index of its first segment stored
in the term’s skip list section. For example, in Figure 7.5, the number 1 (for segment
1) would be stored in the skip list for Term 1. To support this, we enhance the original
skip list by allocating an additional 4 bytes per term: 1 bit to indicate if the term is
cached, and 31 bits to store the array index of the first segment (see Figure 7.4).

Access to the free list is achieved by storing a global pointer to the head of the free list.

When the worker thread needs additional free segments, but none are available (i.e., the
free list is empty), we perform a cache eviction. We use an LRU eviction policy. We evict
all segments associated with a batch’s least recently used term. We track the LRU term
using a doubly linked list. We move the recently touched or newly appended nodes to the
beginning of the list while we select the term at the tail for eviction. Eviction involves
inserting a term’s segment list into the segment free list, which we achieve in constant
time through pointer rearrangement. To achieve this, we store additional pointers from
the first node of a term’s segment list, including a pointer to the last segment. For
example, in Figure 7.5, we store an additional pointer from segment 1 of Term 1 to
segment 3. When evicting Term 1, we update the global free list pointer to 1 (segment
1), and set index 3 to 6, to add the original free list segments back to the free list. After
eviction, the present bit in the cache that informs us whether the term is cached (in the
skip list) is set to zero.

An important decision in our design is that the worker thread caches all postings for
a term, including those skipped by the query thread by way of a skip list. We make
this decision because for AND queries (which utilize skipping) that have two terms, the
term a repeated term may be paired with may be different. This may require skipped
postings that must now be loaded into the cache, which is more expensive. We notice
that not many blocks are skipped, so the space overhead is not massively increased, but
we gain this benefit.

An important decision in our design is that the worker thread caches all postings for
a term, including those skipped by the query thread via the skip list. We made this
decision for AND queries, which utilize skipping, because repeated terms may be paired
with a different term. This can necessitate loading postings that were previously skipped
into the cache, which is a more costly operation. However, we observed that skipping
occurs infrequently, so the additional space overhead is minimal compared to the benefits
gained.
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Once a term is cached, we need a way to retrieve the positions of individual blocks within
the cache. In our first iteration of the design of Hybrid, the block offsets in the skip
list served this purpose. We instead store the new cache block offsets in the segmented
PM cache, specifically in the first segment or the first few segments of a term’s segment
list. This decision optimizes eviction, as modifying the original offsets would require
restoring them to point to storage-resident blocks, which is costly.

The query thread communicates with the worker thread about which terms to cache
using a job queue. Each term encountered by the query thread enqueues the term’s skip
list offset. Processing each job in the queue involves the following steps.

1. The worker checks if the term’s postings are already in the cache.

a) The worker skips caching-related work if the term is already present in the
cache (cache hit).

b) If the term is not present in the cache, it is read from storage and cached as
follows.

i. Cache segments are allocated for the cache block offsets.

ii. The term’s compressed DID blocks are copied into the cache, updating
the cache block offsets.

iii. The term’s compressed frequency blocks are copied into the cache, up-
dating the cache block offsets.

iv. The term’s cache present bit in the skip list is set, and the cache segment
number. The cache segment number represents the term’s first segment
in its segment (linked) list.

2. The worker moves the term to the MRU position in the eviction linked-list.

7.2.4 Optimizing the Hybrid APCache

We now present the design of optimized Hybrid that adds prefetching to Hybrid. Our
novel prefetching mechanism adapts to the query workload and thus utilizes the PM
cache in an optimal manner. Specifically, we avoid needless evictions, and also pre-
vent needless I/O to the storage device. More importantly, we automatically tune the
lookahead parameter in BasePrefetch by exploiting knowledge about the internal details
of our PM cache. Eliminating a parameter and tuning it automatically eases system
deployment.

We add prefetching to the Hybrid configuration to hide the latency of secondary storage.
With MMIO, reading fresh postings not present in the OS cache or the PM cache would
incur high latency as MMIO reads are synchronous. Synchronously reading data from
storage in the application code is expensive. We call this optimized Hybrid system,
HybridPrefetch. In this optimized system, the worker thread prefetches posting blocks
into the PM cache. This system and the flow of data is shown in Figure 7.6. We also
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Figure 7.6: Showing the optimized APCache system called HybridPrefetch.

provide a flowchart which shows the execution path for the query and worker threads in
Figure 7.7

A key difference between Hybrid and HybridPrefetch is that, unlike Hybrid, queries are
exclusively served from the PM cache in HybridPrefetch. This places the burden of
handling query resolution traffic on only of tier of memory (the slow tier in our case).
The DRAM tier is used only to enable a path from storage device to the cache.

The query thread waits for a query term (or both terms in the case of AND queries) to
be prefetched before processing the query. Similar to BasePrefetch, the worker loads the
skip list offsets of the terms it processes into a shared buffer (which is later accessed by
the query thread) to minimize redundant work.

Similar to BasePrefetch, we must limit the lookahead amount, i.e., the maximum number
of queries the prefetcher can be ahead in order to prevent evictions of terms before
the query thread can serve them. However, unlike BasePrefetch, we can enhance the
lookahead policy because we have insight into the cache’s internal structure. We employ
an adaptive lookahead policy that dynamically adjusts the limit based on the number
of available cache segments at any given time. We accomplish this dynamic limit by
tracking the number of segments the worker has cached ahead of the query thread. This
count provides a lower bound for the number of segments that cannot be evicted. We use
a rolling sum to track this number and a FIFO queue, which stores the cache segment
count for each term.

We explain adaptive prefetching through a simplified example illustrated in Figure 7.8.
In this example, we show a cache with eight segments and a stream of unique query
terms. We track the rolling sum and the tail term at each time step:

1. time step = 0 : Initially, the query and worker threads are at the same position,
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Figure 7.7: Flowchart for HybridPrefetch showing how key decisions are made and flow
of data until query is resolved.

and the rolling sum is zero.

2. time step = 1 : The worker thread prefetches the first term t0 into the cache. t0
requires four cache segments. This number is added to the rolling sum, and to the
end of the segment count queue. Term t0 is added to the LRU list (for our eviction
policy).

3. time step = 2 : The query thread starts working on t0. Meanwhile, the worker
thread finishes caching t1.

4. time step = 3 : The query thread is still working on t0, and the worker thread
finishes caching the first three segments of t2. At this point, the worker needs to
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Figure 7.8: Example of adaptive prefetching for a cache with eight segments. The query
and worker thread positions (arrows) indicate the current term the thread is
currently operating on but has not completed.
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evict the tail term (t0) to make room for the fourth segment of t2. However, the
query thread is currently working on t0, and the worker must wait. The waiting
condition is:

rolling sum+ tail term segment count > total segments

Unfortunately, we cannot use the waiting condition

rolling sum > total segments

because of a special case we discuss later.

5. time step = 4 : The query thread finishes t0, pops the segment count for t0 from
the front of the queue, and subtracts it from the rolling sum, freeing up segments
for the worker to evict.

6. time step = 5 : At the start of timestep 5, the waiting condition

4 + 1 > 8

is false and the worker evicts t0 and finishes caching t2 with one more segment.

Even when encountering repeated terms, we add the segment count to the rolling sum
to avoid the situation in Figure 7.9. In this example, the term t0 is repeated. If we do
not add to the rolling sum and segment count queue for repeated terms, we may end up
with the situation depicted in time step 3, where the rolling sum is zero. Our waiting
condition is false (0 + 4 > 8), meaning the worker thread could possibly evict the LRU
term, t0, which is currently being processed by the query thread. To avoid this, the
rolling sum should be incremented by 4 in time step 2.
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Figure 7.9: Incorrect example of segment sum for repeated terms for a cache with 8
segments. The rolling sum should be incremented by 4 in time step 2. The
query and worker thread positions indicate the current term the thread is
currently operating on but has not completed.
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Figure 7.10: Example of special case where there is a mismatch between the evicted term
and popped term from the segment count queue.
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We use an example to show why the tail term segment count is required in the waiting
condition. In Figure 7.10, we have a special case where the repeated terms cause a
mismatch between the LRU term (to be evicted) and the segment count at the front of
the segment count queue. In time step 3, the term t0 is repeated, making t1 the LRU
term (next to be evicted). In time step 4, the query thread finishes t0, and subtracts
one from the rolling sum. Finally, the worker prefetches one of two segments for t2 and
needs to perform an eviction to make space for the second one. In this scenario, using
the waiting condition:

rolling sum > total segments

which evaluates to false (8 > 8), will cause the eviction of t1 which the query thread is
currently operating on. Instead we use:

rolling sum+ tail term segment count > total segments

which evaluates to true (8 + 5 > 8) causing the worker to wait for the rolling sum to
decrease, preventing the incorrect eviction. The term t1 should only be evicted once it is
processed and popped from the queue and subtracted from the rolling sum by the query
thread, causing the waiting condition to be false (3 + 5 > 8) and allowing the eviction
of t1.

In summary, the adaptive lookahead strategy allows the worker thread to adapt its
lookahead arbitrarily based on the cache size and term posting block count. For example,
it uses a larger lookahead for large the cache sizes or when terms have small block posting
counts and vice versa. Our adaptive lookahead policy coupled with workload-aware
prefetching brings a new design point for caching in search engines. We next rigorously
evaluate our new cache on a variety of storage systems.
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Chapter 8

Evaluation of APCache

We now present a detailed evaluation of APCache, focusing on average query perfor-
mance (QPS) and tail latency, and we present results from several sensitivity studies to
characterize APCache against baselines.

8.1 Configurations and Parameters

8.1.1 Configurations

We consider four configurations in our evaluation we discuss below.

• Base: The index is compressed using TurboPForDelta256 for DID blocks and
TurboPFor256 for frequency blocks, with trailing blocks compressed using Tur-
boPForDelta and TurboPFor.

• Hybrid : This configuration modifies the Base setup by caching term postings in
PM. A cache miss triggers memory-mapped I/O to the disk-resident index. For
each term, the query thread initiates a job for the worker thread, instructing it to
transfer the term’s postings to the cache using memory-mapped I/O.

• BasePrefetch: This configuration adds workload-aware prefetching to Base. A
worker thread prefetches postings ahead of the main query thread into the page
cache using a fixed look-ahead policy.

• HybridPrefetch: This configuration adds workload-aware prefetching to the Hybrid
setup. A background thread proactively prefetches postings into the cache using an
adaptive look-ahead policy. Our adaptive look-ahead policy eliminates a parameter
from the baseline system, tuning it automatically.
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8.1.2 Parameters

We experiment with the following key parameters.

• Lookahead (LA) is the number of queries the prefetcher can prefetch ahead of the
main thread.

• Repetition probability (RP) is the characterization of the query workload, de-
scribed in Section 8.8.

• Memory Limit (ML) is the memory limit we set using Cgroups. It limits the
available DRAM capacity.

• Index directory is where we place the index for long-term preservation. We ex-
periment with SSD and disk-resident indices to evaluate the performance of our
system for design points with different costs.

• Segment size is the size of each PM segment. We choose a segment size for our
custom cache that minimises the miss rate. We show a sensitivity analysis of this
parameter later.

• Skip list and dictionary placement is where we choose to place the skip list and
dictionary.

In the rest of this section, we rigorously analyze the sensitivity of our results to all
parameters and experimentally choose the ones that maximize performance. We perform
the rest of our evaluation using the rigorously tuned set of parameters.

8.1.3 Skip List and Dictionary Overhead

For all configurations, we have a 1.25 GB skip list offset dictionary. The skip list is
2.2 GB for Base and BasePrefetch. For Hybrid and HybridPrefetch, it is slightly larger
at 2.3 GB since they require an extra 32 bits for cache metadata per term. The cache
metadata overhead is small and does not increase significantly because the total number
of terms in an index tend to remain relatively stable across different index sizes.

8.1.4 Skip List and Dictionary Location

We first decide the placement of the skip list and dictionary. This decision is important
as our plan is to use the same placement policy for the rest of our evaluation. Our
hypothesis is that placing the skip list and dictionary in a slower memory tier does not
degrade the total query evaluation time. The reason is that lookups in the dictionary
and skip list constitute a small fraction of the total query evaluation time. We place the
skip list and dictionary in secondary storage (disk), DRAM, or PM. Figures 8.1 and 8.2
shows the results for AND and SINGLE queries, respectively.
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Figure 8.1: QPS vs. skip list location for AND H queries with RP = 25% and ML =
10%.
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Figure 8.2: QPS versus skip list location for SINGLE H queries with RP = 25% and ML
= 10%.

We observe that hosting these meta-data structures on disk results in a significant degra-
dation in performance measured as QPS (see Figures 8.1 and 8.2). Specifically, for AND
and SINGLE queries, the QPS degrades by 25.9% and 25.0%, respectively, if the skip
list is placed on disk. In contrast, there is less impact on performance (QPS) if the skip
list is stored on SSD due to its significantly lower latency compared to disks.

Finally, we observe comparable QPS if the skip list is backed by DRAM or PM. This
observation is true for both query types, and regardless of where the index is stored
(disk or SSD). From now on, we will use PM for storing the skip list and dictionary to
conserve DRAM capacity.
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8.1.5 Cache Segment Size

The size of the segment in our custom PM-backed postings cache is an important pa-
rameter. We now discuss the impact of segment size on the behavior of the cache.
Specifically, we use cache miss rate (%) to quantify the utility of the cache. Miss rate
represents how many times the request need to travel to the next slower level (e.g., disk)
because the cache is unable to serve the request. This inability is due either to the item
is evicted due to limited cache capacity, or the request is only seen for the first time,
i.e., cold miss.
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Figure 8.3: Miss rate versus segment size for H queries with 10% cache size and RP of
25%.

We evaluate the cache miss rate of our PM cache across different segment sizes. We
use a minimum segment size the same as OS page size, and the largest size as 1 MB.
The segment sizes we evaluate are, 4096, 16384, 32768, 65536, 262144, and 1048576.
The miss rates are measured during the second time we repeat the experiment (i.e., the
system is fully warmed up), and the cache is also warm. Referring to Figure 8.3, Internal
fragmentation occurs when the granularity of allocated space is too coarse, resulting in
wasted space. This happens because larger segments may not be fully utilized, leaving
unused portions within the allocated space. As segment sizes grow, the likelihood of
having these unused portions increases, leading to less efficient use of memory and a
higher miss rate. Based on our evaluation, we identify 32768 as the optimal segment
size and use this setting for subsequent experiments.

8.1.6 Prefetch Lookahead

The prefetch lookahead (LA) parameter is specific to BasePrefetch. We evaluate a
number of settings for LA to pick the optimal setting as BasePrefetch is our optimized
baseline comparison point.

66



8.1 Configurations and Parameters

0 20 40 60
Prefetch Lookahead

0

5

10

15

Q
P

S

RP=25 RP=50

(a) Index location = disk

0 20 40 60
Prefetch Lookahead

0

10

20

30

Q
P

S

RP=25 RP=50

(b) Index location = SSD

Figure 8.4: QPS versus prefetch lookahead for H AND queries with ML = 10%, RP =
25%
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Figure 8.5: QPS versus prefetch lookahead for SINGLE queries with ML = 10%, RP =
25%

We explore different lookahead (LA) settings in Figure 8.4 and Figure 8.5. QPS increases
as we increase LA and stabilizes around LA = 16. For subsequent experiments, we choose
LA = 16 as the lookahead setting, even though LA = 32 shows a slight improvement
(Figure 8.5a), to minimize the risk of cached terms being evicted from the page cache
before the query thread can use them. We use a conservative setting as we observe
cases when aggressive prefetching suddenly drop system QPS. We show one such case in
Figure 8.4b. We observe quite clearly in Figure 8.4b that QPS drops when LA = 64.

8.1.7 Memory Limit for cache

Next, we discuss the impact of DRAM capacity limitation on Hybrid configurations. This
applies exclusively to Hybrid and HybridPrefetch (not Base or BasePrefetch) because we
aim to replace the function of the page cache with our custom cache. Our key principle
is to prevent the growth of DRAM in search engines proportional to index growth.
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Specifically, we use DRAM in APCache only to create a path for data to flow from block
storage to the second memory tier (PM in our case). If the DRAM size is too large,
we risk increasing system costs. On the other hand, if the DRAM size is too small, we
risk generating too much I/O, and degrading QPS. Ideally, we need sufficient DRAM to
prevent evictions of posting blocks prior to their copy from DRAM to PM. We set up a
number of experiments to rigorously find the DRAM size for our index. Other indices
and indices with more documents may require tuning the memory limit. However, the
fundamental principle is the same. We use a fixed DRAM budget in APCache unlike
today’s baseline that grow the page cache as the index grows.
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Figure 8.6: QPS versus memory limit for AND H queries with 10% cache size, RP =
25%
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Figure 8.7: QPS versus memory limit for SINGLE H queries with 10% cache size, RP =
25%

We aim to minimize the memory limit for the cache configurations to conserve DRAM
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capacity, utilizing only what is necessary for the prefetcher to copy from the page cache
to the PM cache, and in-memory data structures such as user buffers for query results,
skip offset buffer, job queue (for Hybrid), cache structures (e.g. global segment list), and
more. We measure QPS for various memory limits for both Hybrid and HybridPrefetch
on SSD and disk.

In Figure 8.6, we show the results of our sensitivity studies for AND queries, and in
Figure 8.7, we show the results for one-term queries. As we change the memory limit
from 50 MB to 1 GB, we observe stable QPS for HybridPrefetch. Therefore, we adopt a
50 MB memory limit for HybridPrefetch.

For the Hybrid setup, we observe an improvement in QPS performance between 50 MB
and 200 MB memory limits in Figures 8.6 and 8.7a (and up to 500 MB for SSD SINGLE
queries in Figure 8.7b). Beyond these limits, performance plateaus. In Figure 8.6a,
performance drops significantly at 50 and 100 MB memory limits. This likely occurs
because, in the Hybrid setup, both the query and worker threads read from the memory-
mapped file. The Hybrid configuration trails the query thread and can cache the postings
loaded into the page cache by the query thread. When the memory limit is too small, the
postings are evicted before the worker thread can process them. This issue is particularly
detrimental for AND queries, as the query and worker threads could be loading postings
for four different terms simultaneously (with each loading two terms).

since it retrieves postings from the memory-mapped file, which may still be in the page
cache. Since our goal is to allocate just enough memory for in-memory data structures,
we also adopt a 50 MB limit for the Hybrid configuration.

For subsequent experiments, we opt to use a 50 MB memory limit for Hybrid configu-
rations. Experimenting with a 10 MB limit resulted in the program being terminated
due to an out of memory error. We suspect this is due to search engine using user-level
buffers for resolving queries, e.g., storing top results in an array for displaying to the
user.

8.2 Query Evaluation Results

8.2.1 Query Workloads

We generate query workloads from the CommonCrawl 2022 dataset, creating workloads
with 0%, 25%, and 50% repetition probability (RP). Figure 8.8 illustrates the portion
of the index touched by AND and SINGLE H queries, showing the ratio of unique to
total postings explored. In the index, there are 15.3 Billion unique postings, we call
this Total Unique in Figure 8.8. In Figure 8.8, we also show Total (the total number
of postings explored in the experiment including repeated but excluding skipped by the
skip list), and Unique (unique postings, i.e. repeated postings are not counted) postings
as a percentage of Total Unique postings.

For AND queries, approximately 56% of the index blocks are explored, and 31% for
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Figure 8.8: Unique and total explored postings as a percentage of all postings.

SINGLE queries. As the repetition probability increases, the ratio of unique blocks to
total blocks decompressed decreases, resulting in smaller working sets.

In this section, we discus results with both hard disks that are still used in datacenters
and emerging PCIe NVMe SSDs, with much higher bandwidth and lower latency com-
pared to old disks and SATA/SAS SSDs. Our aim is to show how our system behaves
for a range of storage devices, and establish its robustness across a variety of scenarios.

As a reminder, Base and BasePrefetch use the OS page cache in DRAM, and Hybrid
and HybridPrefetch use a fixed-size DRAM, and use PM-based cache (called APCache)
for storing postings data. Thus, in Base and BasePrefetch DRAM grows proportional to
dataset size, and in Hybrid and HybridPrefetch, PM grows proportional to dataset size.
The results presented in this section uses H queries as they are long queries contributing
to the query tail response.

8.2.2 QPS Findings

Figures 8.9, 8.10, 8.11 and 8.12 show QPS for different cache sizes. In these figures,
the cache size indicates the memory limit for Base and BasePrefetch. For Hybrid and
HybridPrefetch, it represents the total cache size (number of segments multiplied by
segment size), excluding the fixed 50 MB memory limit. For these experiments, we use
a fixed 50 MB memory limit (ML = 5%), and a segment size of 32768 for Hybrid and
HybridPrefetch. We use LA = 16 for BasePrefetch. Before each experiment, we flush
the OS caches. Tables 8.1 and 8.2 show the 99th percentile tail latency results for query
evaluation on disk and SSD.

We now analyze the results obtained from different configurations. In both disk and
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SSD experiments, we observe that once the cache size exceeds the working set of blocks,
the QPS stabilizes. At this stage, Base and BasePrefetch exhibit identical performance,
while Hybrid and HybridPrefetch show similar performance slightly below that of the
Base configurations. This outcome is expected, as previously demonstrated, since DRAM
indices are marginally faster than PM for PForDelta256. We notice that QPS with disks
is lower than PCIe NVMe SSDs. Specifically, QPS with disk and a 5% page cache is
very low (only 5 queries per second for AND queries). The QPS grows almost 6× with
50% cache. The cache size is proportional to index size. With newer and faster NVMe
SSDs, this gap is only 1.25×.

Our key observation is that as the cache size is increased, whereas Base and BasePrefetch
demand more DRAM for delivering higher QPS, Hybrid and HybridPrefetch uses a
fixed-size DRAM for a similar performance. The result is tremendous saving in DRAM
capacity. We next discuss specific results and provide deeper insights into the behavior
of APCache.

71



8 Evaluation of APCache

5 10 20 30 40 50 60 100
Cache Size (% of Index Size)

0
5

10
15
20
25
30

Q
P

S

Base

BasePrefetch

Hybrid

HybridPrefetch

(a) RP = 0%

5 10 20 30 40 50 60 100
Cache Size (% of Index Size)

0
5

10
15
20
25
30

Q
P

S

(b) RP = 25%

5 10 20 30 40 50 60 100
Cache Size (% of Index Size)

0
5

10
15
20
25
30

Q
P

S

(c) RP = 50%

Figure 8.9: QPS versus cache size for AND H queries with index on disk.
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Figure 8.10: QPS versus cache size for SINGLE H queries with index on disk.
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Figure 8.11: QPS versus cache size for AND H queries with index on SSD.
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Figure 8.12: QPS versus cache size for SINGLE H queries with index on SSD.

Prefetching and Adaptive Lookahead

Prefetching improves QPS performance significantly. With SSD, the prefetch configura-
tions can reach the optimal QPS level with small cache sizes (Figure 8.11 and Figure 8.10)
because prefetching hides SSD latency, and NVMe SSDs are the fastest storage devices
available today. The optimal QPS is one achieved with a DRAM-only system. For cache
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Table 8.1: Showing the tail latency results for disk experiments and H queries.

Tail Latency (s)

AND SINGLE

Configuration Cache Size (%) 0 25 50 0 25 50

Base 5 0.87 0.76 0.69 0.45 0.29 0.39
10 0.91 0.72 0.55 0.44 0.29 0.27
20 0.95 0.73 0.61 0.43 0.21 0.21
30 0.89 0.71 0.17 0.18 0.21 0.21
40 0.89 0.15 0.17 0.18 0.21 0.21
50 0.16 0.16 0.17 0.18 0.21 0.21
60 0.16 0.15 0.17 0.18 0.21 0.21
100 0.16 0.16 0.16 0.18 0.21 0.21

BasePrefetch 5 0.55 0.42 0.46 0.43 0.29 0.28
10 0.55 0.51 0.35 0.43 0.30 0.28
20 0.55 0.43 0.35 0.43 0.22 0.22
30 0.57 0.43 0.17 0.18 0.21 0.22
40 0.56 0.16 0.17 0.18 0.21 0.21
50 0.16 0.15 0.17 0.18 0.21 0.22
60 0.16 0.15 0.17 0.18 0.21 0.21
100 0.16 0.15 0.17 0.18 0.22 0.22

Hybrid 5 1.92 2.38 1.03 0.97 0.53 0.57
10 2.70 2.15 0.88 0.83 0.53 0.49
20 2.45 2.05 0.85 0.90 0.22 0.22
30 2.34 1.86 0.18 0.19 0.23 0.22
40 0.61 0.17 0.18 0.19 0.22 0.23
50 0.17 0.17 0.18 0.19 0.22 0.22
60 0.17 0.17 0.18 0.19 0.23 0.23
100 0.17 0.17 0.18 0.19 0.23 0.22

HybridPrefetch 5 0.52 0.48 0.47 0.40 0.35 0.28
10 0.52 0.43 0.38 0.40 0.36 0.27
20 0.54 0.43 0.31 0.40 0.22 0.22
30 0.52 0.39 0.17 0.19 0.22 0.22
40 0.52 0.17 0.17 0.19 0.22 0.22
50 0.52 0.17 0.17 0.19 0.22 0.22
60 0.17 0.17 0.17 0.19 0.22 0.22
100 0.17 0.17 0.17 0.19 0.22 0.22

size of 5% with AND queries, QPS with BasePrefetch is not optimal. However, this is
because the fixed look-ahead (LA) of 16 is too high. This causes prefetched blocks to
be evicted before the main query thread can serve them. To verify this, we experiment
with BasePrefetch and AND queries, using a cache size of 5% on SSD and reducing the
lookahead amount from 16 to four. We find that QPS increases from 26.22, 28.76, and
30.34 to 31.69, 32.39, and 32.36 for RP = 0%, 25%, and 50%, respectively, verifying
that the fixed LA of 16 is the issue. For HybridPrefetch, we have consistent performance
for all cache sizes. This result is because we use an adaptive LA, meaning that the
prefetcher adjusts its pace based on the relative position of the query thread and the
available cache capacity.

On disk, the performance of HybridPrefetch is similar to BasePrefetch and markedly
better for RP = 0% and 25% AND queries when the cache size is smaller than the
working set. HybridPrefetch uses a DRAM size (also called memory limit or ML) of 50

76



8.2 Query Evaluation Results

Table 8.2: Showing the tail latency results for SSD experiments and H queries.

Tail Latency (s)

AND SINGLE

Configuration Cache Size (%) 0 25 50 0 25 50

Base 5 0.21 0.18 0.20 0.21 0.22 0.21
10 0.21 0.18 0.20 0.21 0.23 0.21
20 0.21 0.18 0.18 0.21 0.21 0.21
30 0.21 0.19 0.17 0.18 0.21 0.21
40 0.21 0.16 0.17 0.18 0.21 0.21
50 0.16 0.16 0.17 0.18 0.21 0.21
60 0.16 0.16 0.17 0.18 0.21 0.21

100 0.16 0.16 0.17 0.18 0.21 0.21

BasePrefetch 5 0.22 0.19 0.19 0.18 0.21 0.22
10 0.16 0.16 0.17 0.18 0.21 0.22
20 0.16 0.16 0.17 0.18 0.22 0.22
30 0.16 0.16 0.17 0.18 0.21 0.22
40 0.16 0.16 0.17 0.18 0.21 0.21
50 0.16 0.16 0.17 0.18 0.21 0.22
60 0.16 0.16 0.17 0.18 0.22 0.21

100 0.16 0.16 0.17 0.18 0.21 0.21

Hybrid 5 0.24 0.20 0.21 0.21 0.24 0.23
10 0.28 0.20 0.18 0.21 0.24 0.23
20 0.25 0.19 0.20 0.23 0.22 0.22
30 0.23 0.19 0.18 0.19 0.22 0.22
40 0.23 0.17 0.18 0.19 0.22 0.22
50 0.21 0.17 0.18 0.19 0.22 0.22
60 0.17 0.17 0.18 0.19 0.22 0.22

100 0.17 0.17 0.18 0.19 0.22 0.23

HybridPrefetch 5 0.17 0.17 0.18 0.19 0.22 0.22
10 0.18 0.17 0.17 0.19 0.22 0.22
20 0.17 0.17 0.17 0.19 0.22 0.22
30 0.18 0.17 0.17 0.19 0.22 0.22
40 0.18 0.17 0.17 0.19 0.22 0.22
50 0.18 0.17 0.17 0.19 0.22 0.22
60 0.17 0.17 0.17 0.19 0.22 0.22

100 0.17 0.17 0.18 0.19 0.22 0.22

MB, which means we can achieve excellent performance while saving DRAM capacity.
We attribute part of this result to HybridPrefetch’s adaptive lookahead, which allows it
to fetch more segments due to its adaptive limit. Figures 8.13 and 8.14 show the looka-
head delta, illustrating how far ahead the prefetcher operates at various points during
the experiment. The method used to generate the query workload results in numerous
repeated queries at the beginning, despite term randomization. HybridPrefetch capital-
izes on this by prefetching further ahead. In Figure 8.14, when we allow BasePrefetch
unlimited prefetching, it can prefetch more queries but still fewer than HybridPrefetch.
We observe this because BasePrefetch cannot determine if a term is in the cache or
evicted from the page cache, so repeated queries are prefetched again, slowing down
the prefetcher. BasePrefetch does not skip cached queries because we lack visibility
into the internal structures of the page cache. Enabling unlimited prefetching boosts
BasePrefetch QPS from 18.41 to 19.46 for the experiment in Figure 8.14. For RP = 25%
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Figure 8.13: Lookahead delta for 20% cache size, RP = 50%, AND H queries.
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Figure 8.14: Lookahead delta for 20% cache size, RP = 25%, AND H queries.

in Figure 8.13, BasePrefetch actually prefetches faster than HybridPrefetch.

Disk versus SSD

On disk, there is a significant drop in performance when the cache size is small, unlike the
consistent performance observed on SSD. This discrepancy arises because disk latency
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is much higher than that of SSD.

For disk (Figure 8.9 and 8.10), it is evident that larger RP improves caching performance.
The increase in QPS with cache size becomes more gradual as we increase the RP.

SINGLE versus AND Queries

For disk, the difference between Base and BasePrefetch is more pronounced for AND
queries than for SINGLE (Figure 8.9 and 8.10). This is likely because of improved disk
access patterns. The prefetcher reads from the disk sequentially, first fetching the DID
blocks and then the frequency blocks. In contrast, Base fetches DIDs and frequencies
using an interleaving pattern, which is likely slower.

Tail Latency

As expected, tail latency decreases as we increase the cache size (TABLE 8.1 and 8.2).
Prefetching improves tail latency significantly. The tail latency of BasePrefetch and
HybridPrefetch is similar. For SSD, the tail latency quickly plateaus for BasePrefetch
and HybridPrefetch.

Anomalies

For AND queries on disk (Figure 8.9), Hybrid performs surprisingly well for cache sizes
of 40 and 50. However, this result is misleading because the worker thread, responsible
for copying to the cache, lags behind the main thread. During the second measurement
repeat, the worker has not finished processing jobs from the first repeat, which means
some terms from the beginning of the first repeat have not been evicted. This issue
cannot be resolved by having the query thread wait for the cache worker to complete all
jobs between repeats; the same lagging issue persists because the worker thread is still
behind. We include this result to highlight a flaw in the Hybrid configuration.

In Figure 8.9, we see that Hybrid performs poorly compared to Base. Because Hybrid
lags behind the query thread, it may access different parts of the disk compared to the
query thread at any given point, leading to concurrent reads from the disk: with small
cache sizes, the worker thread may lag so far behind that the required terms (brought in
by the query thread) are evicted from the page cache. However, for RP = 50%, Hybrid
does not lag behind because repeated terms allow it to catch up to the query thread,
resulting in improved performance.

On disk, for AND queries with RP = 0% and 50% cache size, we observe that Hy-
bridPrefetch QPS performance does not increase as with the other configurations (Fig-
ure 8.9a). The reason for this increase in performance with other configurations is that
all postings fit in the cache. However, for HybridPrefetch, the cache offsets are stored
within the cache itself, which reduces its effective capacity. With RP = 50%, the cache
is not large enough to accommodate all postings. We estimate that the cache offsets
occupy approximately 4.5% of the cache size, considering that each block requires an
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8-byte cache offset, and the average size of a fully occupied compressed block is 177.9
bytes with PForDelta.

8.2.3 Muticore Scalability
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Figure 8.15: Multicore scaling for SSD and disk, for AND H queries with RP = 25% and
30% cache size. The QPS is summed across cores.

Figure 8.15 shows how QPS performance scales with core count. Each core has a query
thread that operates on a shard of the index (we duplicate the index). For BasePrefetch
and HybridPrefetch, we have a worker thread for each core. We eliminate the Hybrid
configuration, which exhibits poor performance.

In Table 8.1 and 8.2, we present the average tail latency across all cores at different
core counts. This data, which has significant implications for system performance opti-
mization, provides a comprehensive view of the performance characteristics of different
configurations.

For disk (Figure 8.15a), our analysis reveals that prefetching techniques (HybridPrefetch
and BasePrefetch) offer the best performance at lower core counts but show limited
benefit with higher core counts. We also observe a sharp decline in QPS when increasing
from 1 to 2 cores, likely due to core interference from reading different parts of the disk,
which operates optimally with sequential reads. As the number of cores increases beyond
2, QPS performance gradually improves, though with diminishing returns. At 16 cores,
Base performance matches that of a single core, while the performance of HybridPrefetch
and BasePrefetch significantly deteriorates. Table 8.1 indicates that tail latency rises
proportionally with core count, further highlighting the performance trends.
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Figure 8.16: QPS performance for 1 and 16 cores for different index locations with RP =
25% and 30% cache size. The QPS is summed across cores. We introduce
a new storage technology, namely SAS SSD, and refer to our original SSD
as NVMe SSD.

For disk, the tail latency is quite similar across configurations. At 16 threads, tail
latency is extremely high, reaching 16.81 seconds for BasePrefetch and 15.0 seconds for
HybridPrefetch.

For SSD (Figure 8.15b), we see that QPS increases with core count with diminishing re-
turns. Prefetching significantly boosts at a single core level but shows limited scalability
beyond 2 cores. HybridPrefetch is marginally better than BasePrefetch.

For SSD, with 16 cores, BasePrefetch achieves 12× the QPS performance of 1 core;
however, Table 8.2 shows that tail latency nearly doubles. The tail latency is quite
similar across configurations and grows with core count.

For SSD, all schemes exhibit excellent scalability with core count, especially Base and
BasePrefetch. HybridPrefetch, although starting strong at a single core, falls slightly
behind as the core count increases.

In Figure 8.16, we compare QPS performance at 1 and 16 cores across different index
locations. We introduce a new storage technology: SAS SSD, and refer to our original
SSD as NVMe SSD.

For 1 core, we observe a significant improvement in performance from Disk to SAS SSD,
with similar performance between SAS SSD and NVMe SSD (Figure 8.16a). This is
because SAS SSD is notably faster than disk.
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Table 8.3: Showing the tail latency for multicore disk experiments for AND H queries
with RP of 25% and cache size of 30%.

Configuration Cores Tail Latency (s)

Base 1 0.68
2 2.23
4 4.42
8 8.49

16 14.31

BasePrefetch 1 0.49
2 2.30
4 4.58
8 8.52

16 16.81

HybridPrefetch 1 0.48
2 2.53
4 4.64
8 8.79

16 15.00

Table 8.4: Showing the tail latency for multicore SSD experiments for AND H queries
with RP of 25% and cache size of 30%.

Configuration Cores Tail Latency (s)

Base 1 0.19
2 0.19
4 0.20
8 0.21

16 0.27

BasePrefetch 1 0.16
2 0.16
4 0.17
8 0.17

16 0.29

HybridPrefetch 1 0.17
2 0.18
4 0.19
8 0.19

16 0.28
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For 16 cores, we find that QPS increases significantly as we move from Disk to SAS SSD
and then to NVMe SSD(Figure 8.16b). As core counts increase, older SSDs (SAS) are less
scalable, while newer SSDs (NVMe) maintain strong performance. This improvement is
due to the significant increase in bandwidth; we measure the sequential read bandwidth
of these storage devices: Disk operates at a bandwidth of 181 MB/s, SAS SSD at
793 MB/s, and NVMe SSD at 2200 MB/s. These bandwidth limitations significantly
hinder performance at large core counts due to the concurrent reading from the storage
technology by many threads.

8.3 Key Takeaways

Our key takeaways from these results are:

• For SSD indexes, we can achieve maximum performance by using a small amount of
DRAM for the cache and prefetching to hide SSD latency. We can achieve a similar
but slightly worse performance using prefetching with PM instead of DRAM.

• For indices on disk, prefetching improves QPS but is not enough to hide disk
latency. In this scenario, PM provides similar performance for the same cache
size. It also has the advantage of managing the internal components and using
adaptive prefetching to fully utilize the available cache capacity, providing better
performance in some scenarios.

• For indices on disk, QPS increases with cache size. Given that PM capacities are
much higher, we should PM for a larger cache, which leads to better performance.

• Since we manage the cache directly in HybridPrefetch, we can implement an adap-
tive lookahead. Fixed prefetching is unreliable because too large a lookahead can
cause excessive prefetching for small caches, while too small can limit performance
for low-frequency queries. With our custom cache, we can prefetch more efficiently
and skip prefetching terms already in the cache.

• We can achieve excellent QPS performance with just 50 MB of DRAM, conserving
DRAM capacity while maintaining high performance. This is only feasible with a
PM cache when using cgroups because, if our custom cache were on DRAM, the
memory limit could cause portions of it to be swapped out to secondary storage.
Since cgroups do not account for PM, this issue does not arise.
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Chapter 9

Concluding Remarks

In this section, we present our key conclusions, and discuss directions for future work.

9.1 Conclusion

Our research demonstrates that SIMD compression algorithms, particularly StreamVByte,
TurboPFor256, and their delta variants, can reduce storage costs while enhancing query
evaluation performance. We find that these algorithms deliver similar QPS perfor-
mance on both DRAM and PM. Our APCache system leverages these findings to build
a secondary-storage-resident index with a PM cache. By incorporating an adaptive
prefetching policy, we achieve optimal performance on SSDs with a small DRAM-PM
cache, where the DRAM component is only 50 MB. (For our workloads and I/O pres-
sure, NVMe SSDs do not require a large total cache size.) For disk indices, prefetching
improves performance to match the DRAM OS cache. Additionally, since QPS increases
with cache size, using PM allows for a larger cache and, thus, better QPS, thanks to
PM’s higher capacity. Finally, using PM enables us to save DRAM capacity. Future sys-
tems should use a fixed-size DRAM mitigating DRAM growth with datasets size and use
prefetching and cache on a cheaper (albeit slower) memory technology. Finally, leaving
the OS I/O stack unmodified is useful to maximize production deployment.

9.2 Future Work

We envision several directions for future work. More specifically, we envision opportu-
nities at the OS, hardware (storage technology), and application levels.
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9.2.1 Considering Linux Asynchronous I/O

In this work, we have considered MMIO for reading the index from block storage. Emerg-
ing Linux APIs, such as asynchronous I/O using the io submit() system call, offer to
exploit the high device bandwidth of today’s SSDs. In one system call, and thus one
entry to the kernel, the application can submit a batch of requests to the storage device.
The kernel maintains two queues, a submission queue and a completion queue, and the
application can poll for events in the completion queue without entry into the kernel.
This new API requires rethinking of the application code but promises high performance
if the implementation is able to exploit the parallelism of the device. In the future, we
would like to use this asynchronous API to enable the worker thread to submit I/Os
by using the lookahead mechanism in APCache. This way, the worker thread copying
compressed blocks from DRAM to the second tier can happen concurrently with device
I/O.

9.2.2 Other Storage Technologies

In this work, we have limited our analysis to Intel Optane persistent memory, using it
as a slow second tier. Unfortunately, Intel Optane PM is now discontinued. On the
other hand, several alternatives are emerging to complement DRAM as mediums for
memory capacity expansion. Among the most promising ones, disaggregated memory
via the emerging CXL interface or remote memory using fast network cards are promising
directions. Today, it is faster to access remote memory via multi-gigabit Ethernet links
than block storage. Hence, remote memory can be shared between several applications
in the data center and used on a need basis. We intend to use remote and disaggregated
memory for storing inverted indices in the future. Our expectation is that block storage
to remote memory transfers through the page cache will be feasible.

9.2.3 Real-Time Search Engines

In this work, we have limited our analysis to batch search, in which indices are built
offline, and the contents of the corpus are known ahead of time. Real-time search involves
ingesting fresh data (e.g., tweets) and evaluating queries on that data concurrently,
leading to complex synchronization and storage challenges. Compression in real-time
is challenging as queries may arrive as soon as data is ingested and is in the middle of
being transformed into compressed form. Also, it is not straightforward to copy freshly
ingested blocks to the second tier while queries are running concurrently. We leave it
to future work to build a dynamic search engine that ingests fresh data and serves it in
real-time across two-tiered memories and also stores indices in a compressed format.

9.2.4 Slow Memory as Page Cache

In this work, we have followed the principle of leaving the Linux kernel unmodified for
maximum deployment potential. A key challenge in APCache is the application logic
for copying compressed blocks from DRAM to PM and the associated code to perform
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prefetching from user space. Hence, it implies that every data-intensive application
aiming to use APCache-style caching on the second tier needs to invest effort repeatedly
to rehash APCache code to fit its purpose. If the OS can offer a two-tiered page cache,
all applications can benefit from the ideas used by APCache. For Linux to spread the
page cache across two memory technologies is not an easy task. It remains an open
challenge, and we leave it to future work. We note that if ideas in APCache can be
moved inside the Linux kernel, the design of the search engine and other applications
wanting to use APCache can be simplified.

9.2.5 JVM-Based Search Engines

Our baseline search engine is developed in a native language runtime (C/C++). Pro-
grammers today prefer to develop search and analytics applications in Java and run them
on top of the Java Virtual Machine (JVM). JVM offers a managed heap that acts as a
sandbox, offering memory safety and security and lifting the burden of manual memory
management from the shoulders of programmers. Implementing APCache in JVM-based
search engines comes with challenges. For instance, copying compressed blocks from the
JVM heap to the second tier (assuming the blocks reside on the heap) is challenging.
Introducing the slow tier to the JVM is also challenging. Also challenging is how best to
partition the DRAM budget between the fixed-size page cache to facilitate I/O and the
managed heap. One would need to analyze the garbage collection (GC) overhead and
I/O overhead, how much the worker thread lags behind (or is ahead of) the main query
threads, and adjust the memory partitions accordingly. We leave all such problems to
future work.

9.2.6 Customized DRAM Cache

In this work, we refrain from changing the internal design and organization of the OS page
cache. The page cache is designed to store disk-resident data at the granularity of pages.
In the future, we aim to study the design of a customized page cache for search engines
that use compressed blocks. We believe operating at the granularity of block sizes (not
disk blocks but compressed blocks) and exposing those blocks to the application-level
skip list would lead to more efficient I/O and fast memory to slow memory transfers. No
prior work studies a customized OS cache for search engines. One complication is that
Linux internally performs all memory operations at the granularity of pages. This work
would require rethinking how application code interfaces with the kernel, tackling the
impedance mismatch between application expectations for interactions with the kernel,
what the kernel considers a convenient granularity internally, and the granularity of the
compressed blocks stored on disk.

9.2.7 Eviction Algorithms

Our work only evaluates the LRU eviction algorithm for the PM-resident cache in AP-
Cache. In the future, we aim to perform a study to find the best eviction algorithm
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for compressed blocks on PM. Specifically, we aim to understand how other eviction
algorithms, including ones based on machine learning approaches, interact with our
prefetching mechanism. Prior work on datacenter caches reports several eviction al-
gorithms (Song et al., 2020; Janardhan and Bhardwaj, 2019; Berger, 2018; Fedchenko
et al., 2019; Belady, 1966; Friedman, 2001; Jiang and Zhang, 2002). We leave analyzing
them in detail to future work.

9.2.8 Generalizing to Other Data-Intensive Applications

In this work, we only consider search engines as a target application for APCache.
NoSQL stores, key-value stores, graph stores, and emerging vector databases exhibit
similar concerns. Specifically, they put pressure on DRAM and would benefit from a
second tier. They use different forms of compression, which we aim to study in the
future. One aspect that is similar between search engines and these emerging databases
is that the memory requirements grow proportional to the dataset sizes on block storage.
We expect the specifics of the prefetching algorithms to require adaptions. We leave
investigating other data-intensive applications and applying APCache to them to future
work.
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