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Abstract

Caching is essential for improving service availability and efficiency in data centers.
Cache stores frequently used user data in a faster, more expensive tier. Caching tier
resides close to users. It is, therefore, paramount that its utility is maximized to avoid
sending requests over the wide area network. In many online services today, caches are
backed by main memory. Furthermore, most data centers today use DRAM (Dynamic
Random-Access Memory) as the main memory. However, DRAM’s capacity is under
pressure due to technology scaling limitations. This trend in memory technology poses
a challenge in accommodating a growing user base producing data that must be cached,
requiring high-capacity memory technologies.

In this thesis, we investigate the case of a hybrid cache that exploits DRAM and emerging
PMem (Persistent Memory). We propose a new hybrid cache architecture, HyperCache,
which combines DRAM’s high speed with PMem’s high capacity. The key features of
our design include:

• Extending state-of-the-art in-memory cache, namely Segcache, to use both DRAM
and PMem to improve efficiency and economy;

• Efficient group-based machine learning eviction algorithms over DRAM and PMem;

• An optional optimization to divide the in-memory hash table for fast look-ups into
smaller parts and store parts of it in PMem.

Our evaluations demonstrate that HyperCache outperforms Segcache in the following
ways:

• HyperCache allows a reduction in DRAM usage by 70%, with only a 20% loss of
performance in throughput.

• HyperCache improves the hit ratio of real-world data-center request traces by 4.5%
for the same DRAM usage.

HyperCache provides a more efficient, high-capacity, and cost-effective cache solution
for data centers. This thesis also provides new insights into the design of data center
caches, presenting a potential path toward more efficient and scalable caching solutions.
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Chapter 1

Introduction

1.1 Overview and Motivation

In this chapter, we provide a comprehensive overview and motivation behind this study.
It discusses the importance of high-capacity data center caches and the potential of
Persistent Memory (PMem). We also provide a brief overview of the problem statement,
the objectives, and the research contribution.

1.1.1 Caches

In the era of digitization, data centers are the engines supporting a large number of
services, from social media to financial systems. Central to their performance is the
efficient management and utilization of vast and exponentially growing volumes of data.
The challenge of high-speed large-volume data processing is becoming increasingly im-
portant.

This is where data center caching steps in: Caching works by storing frequently accessed
data in a high-speed memory, such as Dynamic Random-Access Memory (DRAM), while
the rest of the data are stored in Hard Disk Drives (HDDs) storage. This allows appli-
cations to access the data more quickly, which gives significant improvements in perfor-
mance and user experience.

1.1.2 The Potential of PMem

The emergence of PMem has introduced a compelling alternative to traditional memory
types. PMem surpasses traditional memory devices like flash drives and Solid-State
Drives (SSDs), by offering speeds comparable to DRAM. Moreover, PMem holds a unique
advantage over DRAM due to its lower cost and its non-volatile nature (that PMem can
retain data without power). PMem’s unique combination of advantages makes it a strong
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1 Introduction

candidate as a storage medium for data center cache.

Because PMem is a relatively new technology, its potential in the context of caching
remains largely unexplored, particularly when considering hybrid caching that inte-
grates PMem with DRAM. Most of the existing data center cache systems are de-
signed for DRAM only and do not yet consider PMem. A DRAM-PMem hybrid ap-
proach, equipped with efficient and effective eviction policies, could unlock considerably
many benefits, such as larger caching capacity, higher caching performance, better cost-
efficiency, lower energy consumption, etc.

1.1.3 Group-based ML Cache Eviction

Group-based Eviction

The cache eviction policy of a system determines which data should be removed from the
cache to make room for new data. Such policy is a critical factor in the effectiveness of a
caching system. Traditional heuristic approaches, such as Least Recently Used (LRU) or
First-In First-Out (FIFO), operate on individual data objects. However, while PMem’s
performance exceeds traditional storage options like SSD, there’s still a significant gap
between PMem and DRAM [1]. This implies that the traditional methods may not be
optimal for PMem systems due to their higher read/write latency.

Group-based eviction offers a potential solution to this issue. Twitter’s state-of-art
caching design Segcache [2] employs a Time-To-Lived(TTL)-based object grouping method
which has demonstrated significant performance improvement. By considering related
data objects as a group, eviction decisions and processes can be executed collectively,
greatly reducing the costly read/write operations and thereby enhancing the system’s
performance. This approach can be particularly beneficial when it comes to a hybrid
caching system that uses PMem.

ML Eviction

However, determining which group should be evicted is a complex decision problem.
Traditional heuristic policies, which were designed for individual objects, may not be
suitable for group-based decision-making. Moreover, these heuristic approaches lack the
ability to adapt to dynamic workloads and access patterns, as pointed out by [3].

On the other hand, machine learning approaches can overcome these limitations. By
learning historical data, the ML model can predict future accesses based on current
group information. In essence, group-based ML eviction strategies could lead to more
intelligent, adaptive, and efficient caching systems, compared to traditional heuristic
policies.

2



1.2 Problem Statement

1.2 Problem Statement

Problem 1: Adapting In-Memory Designs for PMem Characteristics

PMem has different physical characteristics from DRAM, such as writing speed and
durability. Most current in-memory1 caching designs are optimized for DRAM and do
not consider these characteristics. Therefore, the existing designs may not be efficient
with PMem, thus posing a challenge in the adoption of PMem into the new model.

Problem 2: Efficient Strategies for Managing Hybrid Memory Layers

The management across DRAM and PMem in a hybrid caching system represents an-
other significant challenge. Traditionally, caching systems are designed for a homo-
geneous memory environment, lacking support for multiple layers of different memory
types.

Therefore, extending an in-memory caching system into a hybrid mode necessitates the
development of novel strategies, algorithms, and potentially a fundamental redesign to
effectively leverage the advantages of both memory types.

Problem 3: Group-Based ML Eviction in Hybrid Caching System

As previously mentioned, Group-based ML eviction strategies have the potential to im-
prove eviction management in a hybrid DRAM-PMem system. However, the various
steps in these strategies, including data collection, training, and forecasting, will in-
evitably impose additional loads on the system. Finding a balance between system
overhead and eviction effectiveness is a considerable challenge.

1.3 Our Objectives and Contribution

Driven by the above challenges, our work extends Segcache [2], a current state-of-the-art
in-memory caching system, to adopt a hybrid approach that integrates both DRAM
and PMem. We aim to explore the benefits of this hybrid caching system, develop
group-based ML eviction algorithms suitable for the system, and evaluate the system’s
performance.

The principal contributions of our work are as follows:

• Modify Segcache to a combination of DRAM and PMem, making the caching
system more flexible and adaptable

• Implement and Evaluate different group-based eviction algorithms powered by Ma-
chine Learning

• Conduct a thorough performance analysis of the proposed hybrid system, compar-
ing it with the traditional DRAM-only system

1In-memory: In our context, in-memory is equivalent as DRAM only
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1 Introduction

• Demonstrate the improved performance and cost-efficiency of the proposed hybrid
caching system

While our study focuses on the DRAM-PMem hybrid model within the context of Seg-
cache, the methodologies and insights derived from our research could also apply to
other hybrid configurations, such as DRAM-SSD. By providing empirical evidence, as
well as establishing generalizable principles and novel strategies for hybrid caching sys-
tems, this work has the potential to contribute substantially to the academic discourse
in this under-studied yet increasingly important area.

1.4 Thesis Outline

In the next chapter, we provide background on data center caching, including key chal-
lenges, and we also discuss memory and storage technology trends. We discuss Segcache,
on which we base our research. Then, after discussing background, in the subsequent
chapter (Chapter 3), we discuss related work, including application of emerging memo-
ries, and machine learning-based cache eviction approaches. We precede the design and
implementation details with experimental methodology. We discuss methodology first
because our key design decisions are informed by quantitative analysis of cache behavior
for realistic data center workloads. We then discuss design and implementation details
(Chapter 5), followed by evaluation results (Chapter 6). We conclude this thesis by
discussing promising directions for future work.
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Chapter 2

Background

This chapter discusses the essential background related to data center caching. We pro-
vide an introduction to the concept of data center caching, its importance, the challenges
it currently faces, and the core component of caching: eviction policies. Next, we explore
the memory technologies applicable in caching, specifically DRAM, PMem, and SSD.
We then go through a detailed explanation of Segcache, the first TTL-indexed cache in
literature, since our work is built on this system. Lastly, we briefly overview machine
learning with its basic concepts.

2.1 Data Center Caching Overview

2.1.1 Introduction to Caching

A caching system in data center is a high-speed storage component, coupled with man-
agement algorithms, that is designed to store frequently accessed data to reduce data
center latency. It is often placed in front of a larger, slower back-end database hosted
on disks or servers. The cache itself is typically implemented using faster memory, such
as DRAM, that provides significantly faster retrievals.

A cache management algorithm refers to a set of strategies and techniques employed
to determine how data is stored, organized, and replaced within a cache. One key
component is the eviction policy: it determines which data should be retained or evicted
(i.e. kept or removed) from the cache to make room for new data.

The goal of a caching system is to hide the high latency of the back-end database, by
residing frequently used data closer to the computational resources, thus reducing the
overall access time and improving system performance.

The two primary requests in caching APIs are: (1) GET request: Retrieving data
object’s value from the system given an object’s key (2) SET request: Inserting data
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2 Background

(i.e. key-value pairs) into the system. While there are additional request types, such as
DELETE (delete data from the system), CAS (Compare-And-Swap), and others that
may be specific to a particular cache design, it would be sufficient to focus on GET/SET
requests from performance perspectives.

The below Figure 2.1 and Figure 2.2 illustrate the basic GET/SET workflow.

Figure 2.1: Basic GET Request Workflow

When a GET request is made for a data object, the system first checks if the object
is available in the cache. If so, the data can be retrieved quickly without visiting the
back-end store. We call such cases as cache hits. If not, then the system needs to retrieve
the object from its back-end store. We call such cases as cache misses. A request that
results in a cache miss usually takes a much longer time to receive its object, compared
to the ones that result in a cache hit.

Figure 2.2: Basic SET Request Workflow

When a SET request is made to insert a data object, the system first checks if there
is enough space in the cache to insert such an object. If so, the object can be inserted
into the cache directly. If not, then the system needs to evict part of the data that was
previously in the cache, where the decision to select these data is done by running the
eviction algorithm; the evicted objects are then deleted from the cache, freeing up space

6



2.1 Data Center Caching Overview

so that the insertion can proceed.

Caching System Evaluation

Caching efficiency is measured in terms of throughput and hit ratio: (1) Throughput is
the rate at which a cache can handle data retrieval and storage operations. A higher
throughput indicates a more efficient caching system with better performance. (2) The
hit ratio is the proportion of requests that result in a cache hit, out of all the GET
requests, i.e., Hit Ratio = # cache hits

# Total GETs . A higher hit ratio indicates a more effective
caching system with fewer cache misses, which means the overall access delay is small.

The Importance of Caching

The fundamental motivation of caching is to serve read/write requests faster. Most data
queries exhibit a certain degree of data localities:

• Temporal locality : Data requested recently is likely to be requested again.

• Spatial locality : Data stored physically close to the data requested is likely to be
requested soon.

Caching exploits such localities by storing the data objects that are likely to be accessed
soon, hence reducing the access latency of these objects.

A well-designed cache can reduce the request traffic to the original data source, boosting
the system to handle more requests. This can create an illusion of fast-large storage for
applications, which leads to many benefits, including higher application performance,
lower database cost, less back-end server load, more predictable performance, and net-
work traffic, better user experience, less network congestion, less server workload, less
energy usage [4], etc., – and ultimately enhance the overall user experience and increase
company profitability [5, 6, 7].

Caching also serves an essential role in system robustness and reliability, as caching can
reduce the load on individual components. Moreover, caching is essential for improving
security and data protection. By storing frequently accessed data in a cache, the back-
end store can be protected from malicious attacks such as Distributed Denial-of-Service
(DDoS) attacks [8].

Other Types of Caching

There are different types of caching of different scales, such as Central Processing Unit
(CPU) caching, Operating System (OS) caching, Content Distributed Network (CDN)
caching, etc. Although they have different scales and usage, the underlying fundamental
principles are similar.

7



2 Background

2.2 Cache Eviction Policy

Cache, by its very nature, employs smaller and faster memory compared to the larger,
slower back-end database storage. Due to its limited space capacity, when a cache
becomes full, it must evict some of its current contents to make room for new data.
Caching eviction policy, also known as caching replacement policy, is a method used to
determine which objects to remove from a cache when it is full.

2.2.1 Policy Objective

The goal of a caching replacement policy is to remove the objects that are least likely to
be used in the future, so that the most frequently used objects can be kept in the cache.
The eviction process involves selecting and removing certain objects. An ideal eviction
policy should minimize cache misses while keeping the computational overhead of the
eviction process at a minimum.

We can formalize the objective of caching using mathematical notations. Suppose that:

h : cache hit ratio

m : cache miss ratio = 1− h

Th : data retrieval delay when there is a hit

Tm : data retrieval delay when there is a miss

H : caching system overhead

Then the objective of an eviction policy is to minimize the average data retrieval delay:
D = h× Th +m× Tm +H.

2.2.2 Heuristic Eviction Policies

Traditional cache eviction policies are heuristic-based, relying on certain predictable
patterns of data use. These policies are simple, easy to implement, and have been
widely used in various caching systems. The most common ones are:

• Least Recently Used (LRU): Evicts the object that has not been used for the
longest period of time.

• Least Frequently Used (LFU): Evicts the object that has been used the least num-
ber of times.

• First In First Out (FIFO): Evicts the object that was added to the cache first.

• Random: Randomly evicts an object from the cache.

While these heuristic-based policies have proven effective in certain situations, they are
based on certain assumptions or heuristics rather than an optimal analysis of the data
access patterns. Therefore, heuristic-based policies may not perform well in scenarios
where access patterns are complex or unpredictable.

8



2.3 Challenges in Data Center Caching

2.2.3 More Advanced Eviction Policies

Caching eviction policies have undergone a significant transformation from traditional
heuristic-based policies. Emerging strategies are characterized by their intelligent adapt-
ability to varying application scenarios and traffic loads, in contrast to the heuristic-based
policies that rely on a single metric.

Some state-of-the-art eviction policies are:

• Adaptive Replacement Cache (ARC): Dynamically adjusts the number of objects
to be replaced based on the recent history of cache accesses [9].

• Cacheus: Supports multiple eviction policies, including LRU, LFU, and ARC; and
dynamically adapts the policies based on the workload [10].

• Segmented LRU (SLRU): A variant of LRU that maintains two lists of objects:
a probationary segment for new objects and a protected segment for objects that
have been accessed more than once [11].

There are also many policies that incorporate external information to enhance caching
performance. For instance, context-aware proactive caching [12] involves learning the
context-specific content popularity of connected users and subsequently updating the
cached content. Similarly, predictive caching policies have also been proposed to antici-
pate the popularity of multimedia content and proactively cache it [13, 14, 15].

Recently, caching policies have been improved by applying machine learning techniques,
which have demonstrated promising outcomes in reducing response times and improving
cache hit rates. A thorough discussion of current research in ML-based caching policies
will be presented in Chapter 3.

2.3 Challenges in Data Center Caching

Designing and managing caches within data centers is a complex task. Despite the
numerous advantages caching systems bring, they also introduce challenges that must
be carefully addressed to ensure optimal system performance:

• Cache Misses:
A cache miss occurs when requested data is not found in the cache, requiring the
system to fetch it from the back-end disk, causing a delay ranging from milliseconds
to a few seconds. Such high latency can result in slower application performance
and low user satisfaction. In order to mitigate cache misses, it is crucial to employ
effective strategies such as optimal eviction policies, prefetching, or increasing cache
capacity.

• Scalability Constraints:
With the ever-increasing data demand in today’s digital world, scalability has
become a crucial challenge. As the volume of data and the rate of data access
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2 Background

increases, it is necessary to design a caching system that can effectively scale up
to handle the growing workload without significantly increasing latency or cost.
In-memory caches, which only rely on DRAM, encounter scalability issues due to
the limited space offered by DRAM.

• Hardware Limitations:
Hardware limitations also present challenges in cache design. Balancing factors
such as memory type, memory cost, cache size, access speed, cost, power con-
sumption, and physical space can be complex.

These challenges demonstrate the complexity of cache design and management. Ad-
dressing these challenges effectively is critical to fully realize the advantages offered by
caching systems in data centers. It sets the stage for our discussion on our HyperCache
design, which attempts to address some of these challenges in innovative ways.

10



2.4 Memory and Storage Hardware

2.4 Memory and Storage Hardware

This section aims to elaborate on the key characteristics of DRAM and PMem, which
serve as the fundamental memory technology used in HyperCache. We will highlight
their respective physical characteristics, strengths and limitations, which justify their
incorporation into a hybrid, high-capacity caching system. We will also discuss SSDs as
a comparable alternative to PMem.

2.4.1 DRAM

Dynamic Random-Access Memory (DRAM) is a type of semiconductor memory that is
widely used in modern computers as primary system memory.

DRAM stores each bit of data in a separate tiny capacitor within an integrated circuit.
The capacitor can either be charged or discharged; these two states are interpreted as
two different values of a bit, 0 or 1, respectively. Because the charge slowly leaks away,
DRAM requires its data to be refreshed periodically to maintain the integrity of its data
[16].

Strengths and Limitations

The primary strength of DRAM is its speed. It provides high-speed data access, typically
in the nanosecond range, making it an excellent choice for applications requiring quick
read/write operations. Its architecture also allows for random access, meaning any data
byte can be accessed without touching the preceding bytes.

However, DRAM has its limitations. It is volatile memory, meaning it requires power
to retain data. If the system is shut down or loses power, all data stored in DRAM is
lost. DRAM also consumes more power compared to non-volatile memory, as it requires
constant power and refreshing to maintain the data stored within.

Moreover, DRAM has a limited capacity compared to other memory technologies, such
as hard disk drives and SSD. The smaller DRAM cell sizes become, the more susceptible
they are to errors caused by electrical interference, charge leakage, and other physical
effects that can cause data corruption and security vulnerabilities such as the “RowHam-
mer Problem” [17]. Therefore, it is physically difficult to expand DRAM’s current space
capacity. This capacity limitation can be a significant barrier for caches that require
high-speed access to large datasets.

Lastly, DRAM, despite advances in manufacturing, still carries a relatively high cost per
gigabyte. As of April 2023, the average cost of DDR5 DRAM1 was around $USD 11.50
per gigabyte [18].

1DDR5 DRAM: Double Data Rate 5 DRAM is the latest (fifth) generation of Double Data Rate
synchronous dynamic random-access memory
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2.4.2 SSDs

Solid-State Drives (SSDs) are non-volatile, block-addressable storage devices that store
persistent data on solid-state flash memory. There are several different types of SSDs
available in the market, including SATA2, SCSI3, SAS4, PCIe5, and PCIe NVMe6. SSDs
utilize NAND-based flash memory with data stored in a grid structure of cells, enabling
fast data retrieval and modification [19].

Strengths and Limitaiton

One key strength of SSDs is their non-volatility, which ensures that data stored in SSDs
is retained even during power disruptions, providing a level of data safety that DRAM
cannot offer. Moreover, SSDs typically offer a lower cost per gigabyte than DRAM,
making them a more affordable option for storing larger amounts of data.

However, SSDs do have limitations. SSDs have a finite number of write cycles, after
which the cells can become unreliable. This phenomenon, known as wear-out, can po-
tentially lead to data loss. Additionally, SSDs are significantly slower in read/write
speeds compared to DRAM and PMem. This slower speed can impact performance in
applications that require high-speed data access [19, 20].

2.4.3 PMem

Persistent Memory (PMem) is a high-capacity, non-volatile memory technology. There
are various kinds of PMem, including Intel’s 3D XPoint technology used in Optane
DC Persistent Memory modules, which can offer memory capacities much higher than
conventional DRAM [21].

Strengths and Limitations

Similar to SSDs, one major strength of PMem is that it can retain data even when power
is off. PMem also has a high space capacity, allowing for the storage of larger datasets
closer to the processor, which can speed up data access times.

PMem offers the additional benefit of being byte-addressable, similar to DRAM. This
attribute enables PMem to function more like memory rather than storage. SSDs, on
the other hand, are block-addressable, which means they must be read or written in
larger chunks.

However, despite being faster than traditional storage options like SSDs, PMem is gen-
erally slower than DRAM in terms of access speed [1].

2SATA: Serial AT Attachment
3SCSI: Small Computer System Interface
4SAS: Serial Attached SCSI
5PCIe: Peripheral Component Interconnect Express
6NVMe: Non-Volatile Memory Express
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Table 2.1 provides a summary of the comparison among these three types of memory
technologies.

Characteristic DRAM SSD PMem

Speed High Medium High (lower than DRAM)

Volatility Volatile Non-volatile Non-volatile

Capacity Low High High

Cost per GB High Medium High (lower than DRAM)

Endurance High Low Low

Byte-
addressability

Yes No Yes

Power
Consumption

High Low Medium

Table 2.1: Comparison of DRAM, SSD, and PMem

In conclusion, PMem represents a middle ground between DRAM and SSDs and inte-
grates the strengths of both: the byte-addressability and near-DRAM speeds of DRAM;
and the non-volatility and high capacity of SSDs. Such characteristics make PMem
a promising solution for handling large amounts of data rapidly and persistently. As a
result, our HyperCache has been designed to use DRAM and PMem in its first prototype.
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2.5 Segcache

Pelikan [22] is a framework engineered by Twitter. It is designed to be fast, reliable,
and modular, providing high-throughput and low-latency caching solutions. Pelikan is
integral to Twitter’s infrastructure, functioning as its production caching system.

Within the Pelikan framework, Segcache [2] stands out as a cutting-edge in-memory
cache specifically designed for the efficient handling of small objects. This makes Seg-
cache optimal for web applications demanding high-throughput and low-latency services.
Our work HyperCache is designed and implemented upon Segcache.

In this section, we provide an overview of Segcache, highlighting its distinctive architec-
ture, features, and benefits.

2.5.1 Segcache Key Motivations

The development of Segcache was primarily motivated by three critical issues identified in
existing in-memory caches, which significantly hindered their performance and memory
efficiency:

• Large metadata overhead
Modern web applications commonly handle small objects ranging from tens to
thousands of bytes [23, 24]. However, traditional in-memory caches are not de-
signed to handle such small objects efficiently, resulting in large per-object meta-
data. These metadata consumes a substantial portion of the memory, thereby
reducing the overall memory available for actual data storage.

• Delayed expiration
In existing caching systems, expired objects are not promptly removed, leading to
these objects occupying valuable memory space.

• Slow expiration speed
In existing caching systems, the process of identifying and removing expired objects
is often slow and resource-intensive, thereby reducing the overall throughput of the
caching system.

2.5.2 Segcache Architecture and Design

Segcache’s architecture is designed to maximize memory efficiency, throughput, and
scalability. It consists of three main components: (1) A TTL-indexed bucket array; (2)
An object-store made up of segments; (3) A hash table for object lookup.

TTL Buckets

Segcache organizes data objects into separate ranges known as TTL (Time-To-Live)
buckets, with each bucket having its specific range. Within each TTL range, every object
is assigned the lower bound of the range as its TTL. This design not only reduces the

14



2.5 Segcache

metadata overhead associated with individual object TTLs, but also facilitates proactive
expiration of objects.

Object Store: Segments

In Segcache, objects (i.e. key-value pairs) are organized and managed in segments.
Segments are the primary data management units. Segcache groups objects based on
their approximate TTL and creation time.

Segments are associated with their corresponding TTL. Each TTL bucket stores pointers
to the head and tail of its time-sorted segment chain, with the head segment being the
oldest. Objects are sequentially appended to a segment’s end, ensuring a chronological
ordering of segments and their internal objects. Segments are linked into chains.

During expiration, Segcache identifies the first expired segment within each TTL bucket,
subsequently considering all parent segments in the same TTL linked list as expired, since
those segments must have an earlier creation time by construction. This streamlined de-
sign enables a collective expiration process, which is highly efficient and straightforward.

Hash Table

Segcache uses a bulk-chaining hash table similar to other systems like MICA [25] and
Faster [26]. objects that share the same hash are grouped into a hash bucket. Each slot
within the bucket records the object’s key tag, the segment it resides in, and its offset
within that segment. The key tag associated with each object plays a crucial role in
reducing hash collisions: Upon object look-up, the query key is hashed into a tag and
compared with the hash table tags. When the tag does not match the provided key, it
becomes unnecessary to inspect the segment and compare the actual object key.

The novelty is that each hash bucket shares common metadata of objects within the
same bucket, such as access timestamp and read/write spin-lock. This “shared info
slot” is allocated at the beginning of each hash bucket for convenience of access. Such
hash bucket design significantly reduces metadata overhead, contributing to the overall
memory efficiency of Segcache.

The below Figure 2.3 from the original Segcache paper [2] intuitively illustrates its
architectural design:

A read request starts from the hash table on the right. The key provided by the request
is used to look up the corresponding bucket in the hash table. If the bucket contains a
slot that has a matching tag with the provided key, then Segcache retrieves the object
from the corresponding segment. A write request starts from the TTL buckets on the
left. The TTL of the object is used to find the corresponding bucket. The object is then
appended to the segment at the tail of the segment chain associated with the bucket. If
the tail segment is full, a new segment is allocated and added to the bucket. The key
and the segment are then inserted into the hash table.
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Figure 2.3: Overview of Segcache [2]

We also provide pseudo-code algorithms for Segcache read, write, and expiration opera-
tions in Appendix A block 1, 2 and 3.

2.5.3 Benefits of Segcache

Segcache’s novel design significantly reduces per-object metadata overhead, leading to
superior memory utilization. This is especially beneficial for caching small data objects,
a common requirement in modern web applications. Furthermore, Segcache’s segment-
based macro management enhances scalability by minimizing locking overhead, thereby
enabling high throughput even under heavy loads.

The segment-based macro management offered by Segcache is a powerful feature that
can be utilized in the design of a hybrid DRAM-PMem cache. This approach enables
efficient data placement and movement between volatile DRAM and non-volatile PMem
by operating at the segment level rather than at the individual object level.
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2.6 Machine Learning

Machine learning (ML) is a type of artificial intelligence that allows computers to learn
without being explicitly programmed. Machine learning algorithms are trained on data,
and they use that data to make predictions or decisions. This ability makes ML a potent
tool in various fields, including data center management and optimization.

In this section, we explore the ML algorithms used to optimize cache eviction decisions
in our HyperCache design.

2.6.1 Supervised Learning

Supervised machine learning is a branch of artificial intelligence that involves training a
model on labeled input-output pairs, by making predictions or decisions by generalizing
from the provided examples. A model is usually trained using algorithms that minimize
the discrepancy between its predictions and the true output values. Once trained, the
model can make predictions on new, unseen data based on the learned patterns from
the training data.

This methodology aligns with our goal of predicting future data object utilization. There-
fore, we employ the following machine learning algorithms in the eviction mechanism of
our HyperCache design.

Linear Regression

Linear Regression (LR) is a simple supervised machine learning algorithm that can be
used to predict a continuous value from a set of features. It works by fitting a straight
line to observed data. The line is determined by minimizing the sum of the squared
differences between the predicted values and the actual values.

The advantages of linear regression include simplicity, ease of interpretation, and com-
putational efficiency. However, it assumes a linear relationship between the variables
and may not perform well with complex or non-linear data patterns.

Decision Tree

Decision Tree is another type of supervised machine learning algorithm that works by
organizing data into hierarchical tree structures, hence the name “decision tree”. Each
internal node represents a feature, and each leaf node corresponds to a predicted outcome
or class label.

Decision trees are easy to interpret and can capture non-linear relationships. However,
they are prone to over fitting, can be sensitive to small variations in the data, and may
not generalize well to unseen examples.

In our work, we use XGBoost (eXtreme Gradient Boosting) [27] which is built on top of
decision trees.
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Neural Network

Neural networks (NN) are more complex machine learning algorithms that can be used to
predict both continuous and categorical values. They are designed to mimic the human
brain’s functioning by using layers of artificial neurons (or nodes). These networks
are capable of learning complex patterns and relationships from large volumes of data,
making them highly applicable to diverse tasks.

However, they require substantial computational resources, and extensive training data,
and can be challenging to interpret compared to simpler models like linear regression or
decision trees.

Algorithm Advantages Disadvantages

Linear Regression Simple and easily interpreted Assumes linear relationship

Decision Tree Easy to interpret Prone to over fitting

Neural Network Learns complex patterns and
relationships

Requires more computational
resources

Table 2.2: Comparison of Linear Regression, Decision Tree, and Neural Network

Table 2.2 provides a brief comparison of these algorithms.

2.6.2 Measuring the Significance of Features

In machine learning, it is important to understand whether a certain feature is related to
the target result. Features are the variables that are used to train an ML model. Effective
pre-analysis and feature selection not only contribute to reducing model complexity, but
also enhance model accuracy by eliminating interference from irrelevant features.

In this section, we will discuss Correlation Analysis and Random Forest Importance,
which are the two methods we used in optimizing ML eviction for HyperCache.

Correlation Analysis

Correlation analysis is a statistical method used to assess the magnitude and direction
of the linear association between two variables. The correlation coefficient, which varies
between -1 and 1, quantifies this relationship correlation. A correlation coefficient of
+1 indicates a perfect positive correlation: it means that as one variable increases, the
other variable also increases. A correlation coefficient of -1 indicates a perfect negative
correlation: it means that as one variable increases, the other variable decreases. A
correlation coefficient of 0 means no correlation between the two variables.
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Random Forest Importance

Random forest is a machine learning algorithm that can be used for both classification
and regression tasks. Random forest works by constructing a large number of decision
trees and then combining the predictions of the trees to make a final prediction [28].

Random Forest Importance, also known as “Gini importance” or “Mean Decrease in
Impurity,” is a technique employed in ML models based on the Random Forest algorithm.
It accesses the importance of a feature by counting the number of times this feature is
used to split a node in the random forest tree. The importance of each feature is then
normalized to a range of 0 to 1. Features with higher importance scores have a more
substantial impact on the model’s output [29].

Therefore both Correlation Analysis and Random Forest Importance can help in fea-
ture selection, identifying relevant variables, and improving model interpretability by
highlighting the most influential features.
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Chapter 3

Related Work

In this chapter, we overview the most popular in-production high-capacity data center
caches, as well as current research on hybrid caches to expand capacity beyond DRAM.
Then, we look into prior studies examining the utilization of PMem in other applications,
such as transaction management, memory management, and file systems. Lastly, we
review recently proposed machine learning techniques for cache evictions, which seek to
further improve cache effectiveness.

3.1 In-Production Data Center Caches

Caches are a critical component of modern data-centric software systems. Companies like
Twitter, Facebook, and Amazon heavily rely on such caches to reduce data access latency
and enhance the performance of their services. This section provides a comprehensive
comparison of five leading cache systems: Pelikan, Cachelib, Redis, Memcached, and
Amazon ElastiCache. Each of these systems offers unique features and capabilities that
cater to specific requirements.

Pelikan [22] is a highly efficient, open-source cache system that stands out for its per-
formance and flexibility. It utilizes a modular architecture that allows for easy cus-
tomization and integration with existing infrastructure. This cache system is designed
to provide low-latency access and high throughput, making it particularly suitable for
demanding applications with complex caching requirements.

Cachelib [30], on the other hand, focuses on optimizing cache efficiency by leveraging
various techniques such as probabilistic filters and compressed representations. This
cache system prioritizes memory utilization and cache hit rates, making it an excellent
choice for scenarios where memory capacity is limited. Cachelib’s emphasis on efficient
resource usage makes it suitable for applications that require high cache utilization and
a low memory footprint.
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Amazon ElastiCache [31], a fully managed caching service provided by Amazon Web Ser-
vices (AWS), offers the convenience of cloud-based caching. ElastiCache supports both
Redis and Memcached. It provides automatic scaling, replication, and backup capabil-
ities, along with seamless integration with other AWS services. ElastiCache simplifies
cache management and deployment, making it an attractive option for organizations
leveraging AWS infrastructure.

Redis [32] and Memcached [33] are generalized cache libraries that offer a wide range
of functionalities for caching, including real-time analytics, session management, and
caching in web applications. Its support for clustering and replication also ensures
high availability and fault tolerance. Redis and Memcached are well-established caching
systems with long histories1 and widely adopted APIs (Application Programming Inter-
faces).

The below Table 3.1 provides a brief comparison across current in-production caching
systems of data centers.

Cache Developed By Used By

Pelikan Twitter Twitter

CacheLib Facebook Facebook

ElastiCache AWS HBO Max, Yahoo, Airbnb

Redis Redis GitHub, StackOverflow, Snapchat

Memcached Danga Interactive Youtube, Wikipedia, Reddit

Table 3.1: Current In-Production Data Center Caches

1Redis was created in 2009 and Memcached was created in 2003
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3.2 Hybrid Caching

The increasing demand for data-intensive applications, coupled with the cost and space
constraints associated with DRAM, has prompted a rising interest in hybrid cache sys-
tems. These systems integrate two or more memory types, such as DRAM and SSDs,
to achieve a balance between cache space capacity, performance and cost.

Several works provide valuable insights into this topic. One notable instance is Face-
book’s RocksDB [34], an embedded hybrid persistent key-value store. However, despite
its innovative design, RocksDB does not adequately account for SSDs, and it presents
higher write and space amplification compared to alternative storage engines.

Further building on this foundation, Facebook introduced “MyRocks” [35], a system
aimed at reducing the DRAM footprint in data centers through the incorporation of
Non-Volatile Memory (NVM). MyRocks is constructed atop the RocksDB storage engine,
resulting in lower DRAM and storage space requirements compared to InnoDB, which
is the default storage engine. However, the researchers of “MyRocks” also noted that
MyRocks is not universally applicable [35].

Another work, “Kangaroo” [36], was proposed in 2021 to address SSDs’ write amplifi-
cation issue in hybrid caches. Kangaroo combines a large, set-associative cache with a
small, log-structured cache to reduce both DRAM usage and flash writes. It is particu-
larly optimized for small objects that are 100 bytes or less. While not yet in production
use, Kangaroo is considered the state-of-the-art for caching tiny objects in large-scale
hybrid caches.

Current Gaps
While existing studies offer valuable insights, hybrid researches and designs often lag
behind in-memory designs due to their inherent complexity. To date, no hybrid caching
system has employed a TTL indexing mechanism as incorporated in the Segcache design
[2]. This represents a gap in the literature that our research intends to address.

Furthermore, given that PMem is a relatively new memory technology, the majority of
studies have focused on SSDs hybrid caches instead. These designs have been optimized
for SSDs-specific characteristics such as their block-addressing feature [37]. Therefore, a
hybrid cache integrating DRAM and PMem could offer meaningful insights, potentially
heralding a new research field in data center caching.
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3.3 PMem Applications

PMem (Persistent Memory) is a new memory technology [21] developed in recent years
that is making a significant impact on the field of computing. It has distinct charac-
teristics combining the advantages of both primary and secondary storage. PMem is
byte-addressable, offering comparable speed to DRAM, while also providing ample ca-
pacity, persistence, and cost-effectiveness similar to secondary storage. A number of
recent studies have proposed software stacks for PMem applications, including trans-
action management, memory management, file system management, and whole system
persistence. These studies provide a valuable foundation for future research on PMem.

3.3.1 Transaction Management

Transaction management is a set of processes and techniques that are used to ensure the
consistency and integrity of data in a database. This study [38] presents an approach that
leverages the byte-addressable nature of PMem to attain high-performance transactions.
Their study not only sets a benchmark for transaction performance in PMem applications
but also demonstrates the potential benefits of PMem’s unique properties in this context.
Similar to this research, “Blurred Persistence” is another frame work that aims at further
enhancing system efficiency through the utilization of PMem [39].

3.3.2 Memory Management

Regarding memory management systems that employ PMem, [40] proposes a novel ap-
proach aimed at ensuring consistency, durability, and safety using PMem. On the other
hand, [41] explores the use of PMem for achieving crash consistency in persistent mem-
ory systems, emphasizing the advantage of PMem’s volatility. The work “Whole System
Persistent” [42] further presents a more ambitious approach that utilizes PMem for the
entire system memory.

3.3.3 File System

In terms of PMem-based file systems, Ziggurat [43], introduces a tiered file system that
combines Non-Volatile Main Memory (NVMM) and slow disks to create a storage system
with near-NVMM performance and large capacity. Ziggurat optimizes disk bandwidth
utilization by leveraging data access patterns, write size, and application stall likelihood
to migrate cold file data from NVMM to disks. Meanwhile, Strata [44] introduces an
innovative file system that leverages the advantages of various storage media, includ-
ing PMem, SSD, and HDD. Strata employs a log-structured method that distributes
responsibilities across user mode, kernel, and storage layers uniquely, achieving high-
performance storage layer management.

In summary, these studies demonstrate the benefits of PMem in terms of performance,
consistency, and durability. They offer us insightful understandings of the effective
utilization of PMem within a wide range of applications.
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3.4 Machine Learning in Cache Eviction

Traditionally, cache eviction has been handled using heuristics. These heuristics are
based on simple rules of thumb, such as the First-In-First-Out (FIFO) and the Least-
Recently-Used (LRU) policies. However, as discussed in Chapter 2, Section 2.2, heuristic-
based eviction policies can be sub-optimal, especially in dynamic workloads.

In recent years, the application of machine learning (ML) techniques to cache eviction
strategies has emerged as a promising area of research. This section discusses three main
categories of studies within this field, including object-level learning, learning from simple
policies, and optimization studies to improve the efficiency of ML in cache evictions.

3.4.1 Object-Level Learning

Object-level learning takes a granular approach to cache eviction by making decisions
based on individual data objects or cache lines. Many studies have been made to predict
data objects’ reuse distance and popularity [3, 45, 46, 47], and evict objects that are less
likely to be accessed again.

A representative work in this field is the “Learning Relaxed Belady Algorithm” (LRB),
introduced in [3]. LRB is a novel cache eviction policy that incorporates machine learning
into the classic Belady Algorithm [48]. LRB utilizes a Gradient Boost Machine [49] to
predict objects’ future access time. It evicts the first object it finds with a future access
time beyond a specified threshold. Compared to the classical Belady algorithm, LRB
reduces computational overhead by relaxing the constraints.

However, despite their relatively high accuracy, these methods are complex and compu-
tationally expensive. Not only do they require a substantial computational overhead for
training and predicting, but they also require significant storage for collecting training
data, which occupies the valuable space of the in-memory cache.

3.4.2 Learning from Simple Policies

Another field of ML in cache eviction involves the use of reinforcement learning (RL)
[50] to adapt decisions among simple policies such as FIFO, LRU, and LFU [10, 51].

For instance, Cacheus [10] employs a collection of experts (i.e. simple eviction policies),
consisting of LFU, ARC, LIRS, SR-LRU (a scan-resistant version of LRU), and CR-
LFU (a churn-resistant version of LFU) [9, 52]. Cacheus uses RL to choose among these
experts and updates experts’ weights based on their past decisions and performance.

However, this approach may not be flexible enough to adapt to dynamic workloads
quickly. The RL model can be impacted by the momentum of previous workloads. Also,
the weight-adjusting process may not be prompt enough. Additionally, RL models can
be complex and computationally expensive.
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3.4.3 Optimisation ML in Cache Eviction

The computational overhead has been a major challenge in applying ML in cache evic-
tion. This has led to interest in studies aimed at improving the efficiency of ML tech-
niques for cache eviction. In this section, we will look at two notable efforts in this
direction: (1) Machine Learning At the Tail (MAT) [53]; (2) Group-Level Learning
(GL-Cache) [54].

MAT aims at reducing the computational overhead in ML caching by using a hierarchical
framework. MAT uses traditional heuristic policies as “filters” to procure high-quality
samples for ML training, significantly reducing the complexity of ML training and pre-
dictions. This work contributes to the field by offering a practical and efficient ML
approach that can be integrated with existing heuristic-based systems. However, this
approach is sensitive to the filter selection. There are instances where other algorithms
(e.g. LRB) demonstrate slightly better performance than MAT [53].

GL-Cache is a unique ML-based cache eviction design that employs a different approach
to predicting future access likelihood. Instead of focusing on individual objects, it op-
erates at the level of groups. This innovative strategy brings several benefits, including
a reduction in the overhead associated with collecting training data, the ML training
process, and the complexity of the ML model.

However, despite its promising framework, GL-Cache still relies on individual object
selections after identifying the target group to achieve a high hit ratio. This makes the
eviction process lengthy and does not fully exploit the potential advantages of group-
level eviction. As a result, in systems that utilize PMem or SSDs, the performance of
GL-Cache might suffer due to the high latency associated with these memory technolo-
gies.

Current Gaps
In the above work, ML-based cache eviction techniques have demonstrated promising
results in improving hit ratios and outperforming traditional heuristic-based policies.
However, these approaches have limitations, including overheads in data collection and
training processes, impacting memory efficiency and cache throughput.

While previous research has explored efficiency improvements in cache eviction, such as
GL-Cache and MAT, this research field remains largely under-explored. The majority
of the existing work in this field primarily emphasizes object-level learning to effectively
utilize the information present in the current cache. However, these approaches may
not be well-suited for scenarios involving a second-level cache. In our specific case, the
costs associated with first-level cache misses are relatively low due to the availability of
evicted objects in PMem. As a result, the current approaches may not be applicable or
suitable for our HyperCache design.
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Chapter 4

Experimental Methodology

In this chapter, we discuss our experimental methodology, setup, the data-center request
traces we use for experimentation, and the evaluation metrics. We discuss methodol-
ogy first as key quantitative findings inform the design of our newly proposed caching
approach.

4.0.1 Experiment Traces

The experiment was conducted using a range of real-world traces recorded from different
sources. This ensures that the experiments mirror realistic workloads and that the
experiment’s requests were predictable and unaffected by external factors. The two
main datasets used are: (1) 14 traces from Microsoft Research Cambridge (MSR)1 [55]
and (2) 53 traces from CloudPhysics2 [56].

4.0.2 Evaluation Platform

All the experiments were conducted on a Dell R740 server with the following specifica-
tions in Table 4.1:

This hardware setup provided the necessary computational power and storage capac-
ity for implementing and testing our HyperCache system and conducting all related
experiments.

The experiments were conducted using the following methodology:

• Each individual trace was executed three times, and the subsequent results were
averaged to ensure accuracy and reliability.

1MSR traces download link:
https://ftp.pdl.cmu.edu/pub/datasets/twemcacheWorkload/fast23_glcache/msr/

2CloudPhysics traces download link:
https://ftp.pdl.cmu.edu/pub/datasets/twemcacheWorkload/fast23_glcache/cphy/
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4 Experimental Methodology

System

Operating System Ubuntu 18.04.1 Linux OS (5.4.0 kernel)
Hardware Dell PowerEdge R740 Server

Processor

Processors Intel Xeon Gold 6252N
Number of cores 48 physical cores (96 logical)
Core frequency 2.3 GHz

Last-Level Cache

L3 cache shared 36 MB (one socket)

DRAM

Capacity 384 GB

NVM

Capacity 1.5 TB
Hardware Intel Optane Persistent Memory

SSD

Capacity 1 TB
Hardware 3.5-Inch, Seagate, SATA (6 Gbps)

Table 4.1: System parameters

• To avoid potential issues from overheating, a minimum gap of 30 seconds was
deliberately maintained between each trace run.

• For data analysis, we used a default 1 GB cache size for the MSR datasets and a
2 GB cache size for the CloudPhysics dataset.

• For performance evaluations, we varied the cache size as later specified.

4.0.3 Evaluation Metrics

In our experiments, we employed two primary metrics to evaluate the performance of
the HyperCache design: hit ratio and throughput, which were mentioned in Chapter
2.1.1.

In the context of this study, it is important to note that we discarded the long latency
of cache misses in our throughput measurement. Hence the throughput is equivalent to
the throughput of cache hits. The throughput unit we use is MQPS (Million Requests
Per Second).

There are two rationales behind this: (1) In our experimental setup, we do not have a
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remote database server from which to retrieve data where there is a cache miss. (2) By
focusing primarily on the throughput of cache hits, we obtain a throughput measure that
is largely indicative of the cache’s own performance, independent of network or database
latencies that might be encountered when fetching data from a remote source upon a
cache miss.
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Chapter 5

Design and Implementation

In this chapter, we explore the possibility of developing a hybrid cache that utilizes
DRAM and PMem. The goal of the system is to take advantage of both DRAM and
PMem, as well as to combine the most efficient eviction algorithm. We discuss the design
principles that guided our work, the architectural framework of HyperCache, and the
optimization techniques in HyperCache’s eviction policy which involves machine learning
and bulk eviction.

The rationale of our design is supported by experimental analysis and observations. In
this chapter, we also highlight the intermediate empirical results that motivate and sup-
port our design and optimization, providing key insights into our development process.

5.1 Design Principles

The conception and design of HyperCache are guided by a set of core principles. We
aim at addressing the challenges in current data center applications which we pointed
out in Chapter 2, Section 2.3. The primary principles shaping the design of HyperCache
are as follows:

• Efficient Usage of DRAM
Given that DRAM has a lower capacity and higher speed than PMem, its usage
should be optimized for maximum efficiency. Thus the allocation in DRAM must
be primarily focusing on data objects that require frequent access.

• Minimize PMem Footprint
HyperCache can potentially have a larger capacity by using PMem. However,
PMem has higher operation latency than DRAM. Therefore, HyperCache needs
to only visit PMem when necessary, efficiently leveraging its large capacity while
minimizing potential latency issues.
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• Simplicity and Maintainability
While our design is complex, we aim for high maintainability in both the design
and implementation. This means that the system should be easy to configure,
manage, maintain, and further develop.

5.2 HyperCache Architecture

In a hybrid cache, DRAM and PMem are combined in a tiered architecture, where
DRAM is used as a cache for PMem. The goal is to keep the frequently accessed data
(i.e. “hot” data) in DRAM, while less frequently accessed data (i.e. “cold” data) is
stored in PMem.

Our HyperCache design builds upon the framework of Segcache’s efficient TTL indexing
and segment-structured design [2]. We integrate two linked lists of segments for each
TTL bucket: one in DRAM and one in PMem.

Data allocation first goes to DRAM. If DRAM becomes full, we evict the data in DRAM
into PMem using a DRAM-eviction policy. When PMem is full, we evict the data in
PMem using a PMem-eviction policy. This policy can be different from the DRAM-
eviction policy and can be designed considering the characteristics of PMem.

Figure 5.1: HyperCache Design Overview

A design overview is illustrated in Figure 5.1. The primary distinction between Hyper-
Cache and Segcache operations lies in the process of data writing. In Appendix A block
4, we present a pseudo-code algorithm for HyperCache write operations.

This design allows us to make full use of the innovative and efficient design of Segcache’s
TTL indexing, where objects are grouped into segments. This grouping facilitates ef-
ficient macro-management, reducing the overhead of managing individual objects and
improving overall system performance.
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5.3 HyperCache Eviction

5.3.1 Machine Learning Eviction

In this section, we will discuss the specifics of how we integrated machine learning into
HyperCache eviction process. This includes integrating ML model, identifying features
that are influencing eviction decisions, and ML algorithm selection.

Feature Selection

The first step in our eviction design is a systematic analysis of segment features, that can
be potentially used in training and predicting future segment visit numbers for eviction.
This design follows a collect-snapshot-collect paradigm, which is a similar technique as
used in LRB Algorithm [3] and GL-Cache [54]. Figure 5.2 provides an illustration of the
data collection workflow.

Figure 5.2: Feature Data Collection Workflow

As shown in Figure 5.2, the steps are as follows:

1. Data Collection:
The first step is to record a feature set that could potentially have an impact on
segment visits: read rate, write rate, number of previous misses, number of live
objects, number of live bytes, age, creation time, the previous number of reads,
and active objects (i.e. objects that have been accessed more than once).
We allocated space in the segment header to record these features. Subsequently,
these features were recorded during cache operations.

2. Snapshot Features:
This step generates a snapshot that captures the current state of segment fea-
tures at a fixed interval. During each snapshot, all features of every segment were
recorded and added to the training set, with each segment having its own feature
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entry. After capturing the snapshot, the features in segment headers were contin-
ually updated to prepare for future snapshots.
In our experiments, we use a 1-minute interval as our snapshot gap.

3. Get “Future” Number of Segment Visits:
Next, we gathered the number of visits to each segment in the following snapshot
and linked them to their corresponding feature entries. This creates the feature-
target training sets.
An ideal prediction algorithm would be able to predict the number of segment
visits, which is the “target”, from the segment features. Combined with the evic-
tion algorithm, this prediction would allow the cache to accurately select the least
useful segment for eviction.

4. Offline Analysis:
We collected the training set by collecting snapshots at regular intervals throughout
the entire experimental trace. We then performed the feature importance analysis,
as detailed in Chapter 2.6.2, to assess the significance of the features.

The experimental results for the MSR dataset and CloudPhysics dataset are shown in
below Figure 5.3 and Figure 5.4.

Figure 5.3: MSR Feature Analysis

The feature analysis of the MSR and CloudPhysics datasets revealed that the live ob-
jects numbers and the active objects numbers are the most important features.
These features have the highest correlation and importance, indicating their substantial
role in the model. Age and previous misses numbers were also relatively important
features.

Although the correlation between the features and their importance is not always con-
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Figure 5.4: CloudPhysics Feature Analysis

sistent, we can conclude that other features in both datasets are less important. Consid-
ering that the collection process of these features also constitutes a large part of cache
operation overhead, so we decided not to include these features in the feature collection
and ML model training.

In summary, based on our feature analysis, we have chosen to include four key features
in the eviction model. These include the number of live objects, segment age, number
of active objects, and previous misses in the eviction decision process.

ML Model Selection

In this section, we compare three ML models: (1) Linear regression; (2) XGBoost; and
(3) A small neural networks of two layers and 10 nodes in total. We aim to observe
the trade-offs associated with different ML models for eviction policy selection. The
objective of this set of experiments is to determine the most efficient and effective ML
model for eviction policy in HyperCache.

Additionally, we used a set of heuristic-based eviction policies as baselines for compar-
isons. They are: Util (Utility: The number of accumulated visits to the Segment), FIFO
(First-In-First-Out), CTE (Closest-To-Expiry).

The workflow of ML eviction follows a similar paradigm as described in Figure 5.2,
with an additional training-prediction step. We inserted an ML training process after
each snapshot, using the current valid feature-target entries as the training set. We
also discard data from earlier snapshots, as it no longer represents the current status
of cache workload traffic. This allows the model to dynamically learn the workload
pattern and make prompt adjustments, such that the eviction decision is accurate and
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dynamically adapts to the cache workload traffic. After training, we rank the segments
by performing predictions using their current features. The ranking is then used in
eviction to determine the segment to evict.

To account for the distinct physical characteristics of DRAM and PMem, we performed
a separate comparison of ML models for eviction in each memory type. This analysis
aimed to capture any differences in the performance of the models across memory tech-
nologies.

Figure 5.5: MSR Eviction Policies Comparison

Figure 5.6: CloudPhysics Eviction Policies Comparison

As shown in Figure 5.5 and Figure 5.6, our experimental findings indicate that ML-based
eviction policies outperform heuristic-based eviction policies in terms of cache hit ratio,
demonstrating their better effectiveness in cache eviction. However, it is observed that
ML models that use XGBoost and Neural Network exhibit lower throughput compared
to heuristic-based models and the linear regression model. This outcome aligns with
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expectations due to the higher complexity and training overhead associated with these
ML models.

The results show that linear regression (LR) is the most efficient and effective ML eviction
policy. This result also aligns with our expectations: We carefully selected features that
exhibit a strong correlation with the prediction of future segment visits. Consequently,
the LR model performs well in making accurate predictions, as the selected features
reveal clear patterns. This highlights the importance of feature selection, as it enables
us to capture meaningful relationships between the input variables and the predicted
outcome. This makes the LR-based eviction policy well-suited for our HyperCache
design.

Another insightful observation is that the LR model demonstrates a higher throughput
compared to the baseline heuristic-based eviction policies. This improvement can be
attributed to the fact that heuristic-based policies require segment re-ranking upon evic-
tion, whereas LR only performs re-ranking during snapshot windows. The ML prediction
process of LR exhibits high accuracy, allowing for less frequent re-ranking. Furthermore,
LR’s simplicity results in minimal overhead, contributing to its higher throughput.

It may seem counter-intuitive that LR performs the best among the advanced ML mod-
els. However, it is important to note that the application of ML in low-level computer
systems requires additional considerations, as in this context high-speed processing is a
priority. This is in contrast to tasks such as natural language processing or computer
vision tasks, which may not be as time-critical. Our work delivers meaningful insights
into this aspect.

5.3.2 Optimization: Bulk Eviction

After selecting Linear Regression as the ML eviction model, we moved on to another
optimization of the eviction policy: bulk eviction. Since our eviction operates in the
unit of segments, we conducted a series of experiments to assess different bulk eviction
sizes, ranging from 1 to 30. Our objective is to determine the optimal configuration that
would yield the highest hit ratio and throughput.

We applied the same methodology as before to assess the efficacy of bulk eviction on
both DRAM and PMem. This allowed us to identify the most suitable configurations
for optimizing our HyperCache.
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The findings, shown in Figure 5.7 and Figure 5.8, revealed that evicting approximately
five segments at a time yielded the highest performance. It was observed that both
larger or smaller bulk eviction sizes had lower performance.

Figure 5.7: MSR Bulk Size Comparison

Figure 5.8: CloudPhysics Bulk Size Comparison

This pattern aligns with our expectations, and it offers two noteworthy insights:

• Bulk size too small:
When the bulk eviction size is insufficient, the cache becomes filled more frequently,
subsequently triggering a greater number of evictions. This frequent eviction pro-
cess can negatively impact cache performance and diminish overall efficiency.

• Bulk size too large:
Conversely, when the bulk eviction size is excessively large, each eviction operation
takes a longer time to complete. Consequently, this prolonged eviction process can
lead to performance degradation and negatively impact the system’s throughput.
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5.4 Hash Table Partition

While much effort has been devoted to reducing the DRAM usage of data objects,
it’s important to note that the hash table itself also consumes a significant portion of
DRAM. Traditional hash table designs, while effective for many applications, can face
challenges in this high-demand context. This concern becomes particularly significant
as the number of elements required for data center caching grows.

For instance, ChatGPT-3.5 and ChatGPT-4 operate with the number of parameters
from billions to trillions [57, 58]. Assuming each parameter uses 8 bytes only in the hash
table by Segcache’s design [2], this would consume terabytes of DRAM only for the hash
table.

chatGPT-3.5 chatGPT-4

Parameters 175 billion [57] 1 trillion [58]

Hashtbable Size (approx.) 1.4 terabytes 8 terabytes

Table 5.1: Hashbucket Usage in First Slots

However, not all data within the hash table is accessed frequently. We observed that
certain parts of the hash table are accessed less frequently, suggesting an opportunity
for optimization.

As a result, we propose a novel hybrid hash table design specifically tailored for our
HyperCache, which more aggressively saves DRAM usage by partitioning the hash table
and migrating a portion of it to PMem.

In this section, we will discuss the design of our hash table, the rationale behind the
design, and the experimental data that supports the design.

5.4.1 Design Overview

Our design is built upon the Segcache [2] hash table design, which was described in
Chapter 2, Section 2.5.2.

The hybrid hash table divides each hash bucket into two distinct partitions: the “hot”
partition and the “cold” partition.

The hot partition is stored in DRAM and comprises three slots for each hash bucket:
(1) A shared info slot containing the metadata about its hash bucket, which is necessary
for every lookup operation; (2) A first object slot that holds the first object info1 in the
hash bucket; (3) A tag slot that stores all the reduced hashtags of the remaining objects.

1Object info in the hash table is metadata of the object, such as its segmentID, offset, access counter,
timestamp etc. Not the actual key-value pair.
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The cold partition of the hash bucket, on the other hand, contains the remaining object
info slots and is stored in PMem. This partition is accessed less frequently. By storing
it in PMem, we can leverage the high capacity and cost-effectiveness of this type of
memory.

The below diagram 5.9 illustrates this hybrid hash table design.

Figure 5.9: Hybrid Hash Table Design

A key innovation in our design is the use of reduced object tags. In the original Segcache
design, each object slot contains a full tag. These tags help to reduce hash collision and
therefore minimize unnecessary visits to the object-store in the cache when the tag
doesn’t match the lookup key.

In our design, we implement a strategy of compressing the reduced tags associated with
the cold slots and concatenating them into a single slot within the hot. By examining
the reduced tag in the compact slot, we can determine the cases when an object is not
in the cold part. In essence, this compact reduced-tag slot functions as a bloom filter
[59].

The algorithm block 5 in Appendix A provides a detailed illustration of the lookup
process in our hash table design.

5.4.2 Design Rational

The design of our partitioned hash table is motivated and supported by empirical analy-
sis. We collected slot usage patterns within hash buckets and the hash collision reduction

40



5.4 Hash Table Partition

effect of hash tags.

Hash Bucket Slot Usage Analysis

In this experiment, we processed two sets of traces to quantify the cumulative usage of
each slot within the hash bucket. We determined the slots visited by each query and
recorded the total number of visits for all slot indices across the entire set of traces.

Figure 5.10: Hash Bucket Slots Usage

Traces MSR CloudPhysics

First Slot Visit 99.83% 99.48 %

Table 5.2: Hash Bucket Usage in First Slots

The experimental results, as shown in Figure 5.10 and Table 5.2, demonstrated a con-
sistent trend: The first object slots in hash buckets are accessed significantly more than
the remaining slots. Additionally, our examination of these traces indicated slots beyond
index 5 are rarely used.

Hash Collision Analysis

In addition to slot usage, our design rationale also considered the impact of hash collisions
on hash table performance. To investigate this, we conducted an experiment where we
varied the length of hash tags and analyzed the resulting hash collisions. We compare
the number of hash collisions with the total number of hash table queries to check the
effect.

We selected five different lengths for the hashtags: 2, 4, 8, and 12. The results in 5.11
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Figure 5.11: Hash Collision Analysis

showed that all lengths of hash tags helped to reduce hash collisions significantly, with
longer tags having a better effect.

To compact the reduced tag into one hash bucket slot (8 bytes), we decided to use 8-bit
per object as its reduced hash tag, and put it in DRAM to mitigate the footprint in
PMem slots visits.

In summary, the rationale behind our design is rooted in two key observations: (1) A
high frequency of access to the first object; (2) A much lower frequency of the rest of the
object slots; (3) A reduced hash tag can still help to reduce hash collision significantly.
Our design aims to address the issue of extensive DRAM consumption caused by the
hash table, thereby optimizing the cost-efficiency of HyperCache.
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Chapter 6

Evaluation Results

We first briefly discuss our final design after various refinements informed by careful
analysis of real-world request traces. We then discuss the result of our evaluation. Our
key aim is to demonstrate the improvement in DRAM efficiency, improvement in hit
ratio, and the benfit of partitioning the hash table in hybrid memory.

6.1 Final Design: HyperCache

After careful analysis and a series of experiments, we present our final design, Hyper-
Cache. This system is a refined hybrid extension over Segcache, utilizing the capabilities
of both DRAM and PMem for optimized caching memory efficiency. It also introduces a
uniquely tailored eviction policy based on Linear Regression and a well-tuned bulk size
for efficient collective eviction.

HyperCache applies a novel approach to cache management, combining the strengths of
Segcache’s Time-To-Live (TTL) grouping with the high-capacity attributes of DRAM
and PMem. It is designed to address the challenges faced in contemporary data centers,
such as the need for larger, faster, and more cost-effective cache systems.

While we initially considered incorporating a partitioned hash table into the design, this
feature was ultimately made optional. The potential reason being, the hash table is a
frequently visited spot in the cache, and relocating part of it to PMem resulted in a
significant decrease in throughput. The potential overhead incurred from partitioning
operations also proved detrimental to overall system performance.

In the following sections, we present a thorough performance evaluation of the Hyper-
Cache system, showcasing the effectiveness of our design decisions. The evaluations are
conducted in the identical setup as described in Chapter 4. To visualize the distributions
of the results from multiple traces, we utilize box plots with percentiles at 25%, 50%,
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and 75%. The whiskers of the box plots represent the 10% and 90% percentiles.

6.2 Enhancement in DRAM Efficiency

We first evaluate the efficiency of DRAM utilization within HyperCache. To do this,
we vary the DRAM usage of HyperCache to be 10%, 30%, 50%, and 70% of Segcache’s
DRAM usage, and we examine how the performance of HyperCache changed in response.
The comparison baselines are Segcache that uses 100% DRAM, and Segache that uses
100% PMem.

Figure 6.1: Throughput Distribution for Different DRAM Usages, MSR Traces

Figure 6.2: Throughput Distribution for Different DRAM Usages, CloudPhysics Traces
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Remarkably, as shown in Figure 6.1 and Figure 6.2, HyperCache’s performance closely
mirrored that of an all-DRAM cache. The throughput differential of HyperCache and
Segcache remains within 20%, despite HyperCache having DRAM usage reduced by
up to 70%. This result demonstrates the effectiveness of our hybrid extension over
Segcache, clearly showing that HyperCache is able to optimize DRAM usage without
substantially impacting throughput. The implications of this finding are particularly
noteworthy for data centers, where efficient utilization of resources is crucial.
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6.3 Hit Ratio Improvement

Next, we assessed HyperCache’s performance in terms of hit ratio, which is a key per-
formance indicator for caching systems. With the same amount of DRAM as Segcache,
HyperCache managed to increase the hit ratio by 4.5%.

Figure 6.3: Hit Ratio Distribution of Segcache and HyperCache Using Same DRAM

Traces PMem Hashtable Hybrid Hashtable

MSR 44.34% 48.87%

CloudPhysics 57.34% 61.87%

Table 6.1: Average Hit Ratio of Segcache and HyperCache Using Same DRAM

This improvement in hit ratio, as in Figure 6.3 and Table 6.1, indicates that HyperCache
is more efficient in managing cached data, leading to fewer cache misses and thus better
overall performance. The enhanced hit ratio directly translates into faster responses for
data requests, making HyperCache a highly efficient cache solution.
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6.4 Benefit of Partitioned Hash Table

To evaluate the performance of the hash table, we use a baseline where all the hash
table is stored in PMem. To solely assess the behavior of PMem with the hash table,
we conduct the evaluation wherein all object-store segments are placed in DRAM. This
allows us to observe the performance of PMem specifically in relation to the hash table
without the influence of other factors.

Figure 6.4: Throughput Distribution of PMem Hash Table and Hybrid Hash Table

Traces PMem Hash Table Hybrid Hash Table

MSR 1.95 MQPS 2.15 MQPS

CloudPhysics 1.43 MQPS 1.58 MQPS

Table 6.2: Average Throughput of PMem Hash Table and Hybrid Hash Table

Figure 6.4 and Table 6.2 show that compared to the baseline, the cache throughput
has a significant improvement, with average throughput improved by around 6.78% and
10.49%. This offers the opportunity to allocate a portion of the hash table in PMem
and reduce memory consumption.

However, we have observed that the throughput of the PMem hash table and the par-
titioned hash table is lower compared to the conventional DRAM hash table. This
observation is based on the examination of the rightmost entry in Figure 6.1 and Figure
6.2. As discussed in the previous section 6.1, this performance degradation could be
attributed to the frequent access of the entire hash table. Consequently, any computa-

47



6 Evaluation Results

tional overhead and latency induced by PMem are magnified due to the sensitivity of
the hash table modification. In our future work, we can address this issue and explore
more practical approaches for partitioning the hash table.
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Chapter 7

Conclusion and Future Work

In this chapter, we discuss key findings from our experience of building and evaluating
HyperCache. Additionally, we outline potential directions for future research, including
exploring different eviction policies and further optimizing the use of hybrid memory
in caching. This chapter highlights the significance of our research in the field of high-
capacity caching systems and sets the stage for further advancements in this area.

7.1 Conclusion

We have now presented the design, implementation, and evaluation of HyperCache, a
novel hybrid extension on top of Segcache that optimizes caching efficiency and through-
put and is targeted at scaling for modern data centers.

We provide a set of design principles informed by careful analysis of cache eviction
for real-world traces. These principles contribute to the optimization of caching-based
service tiers. These principles include the proficient usage of DRAM and the reduction of
footprint in PMem or any secondary layer memory device. These principles can serve as
a guide to improve the performance and efficiency of caches for modern online services.

Our thesis shows the advantages and challenges of deploying hybrid caches, particularly
their potential for cost-effective memory utilization and capacity benefits. We also in-
troduce PMem to a broader range of applications, thereby expanding its utility and
potential impact. Furthermore, our work stands at the forefront of applying machine
learning in low-level computer systems, with many opportunities for further develop-
ment.
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7.2 Limitations

While HyperCache has shown promising results, there are some limitations and incom-
pleteness in our work. These include:

• Lack of generality:
The cache design presented in this study is specifically tailored to Segcache and
ran on a specific hardware platform. We also primarily focus on adapting PMem,
and the configurations used were not general to other types of devices and cache
systems. These specificities limit the generality of our findings.

• Lack of comparison with other caches:
The current study does not compare HyperCache with other in-production caches,
such as Redis and Memcached. Future research should include such comparisons
to provide a more comprehensive evaluation of HyperCache’s performance relative
to other widely used caching systems.

• Performance issue of hybrid hash table:
The performance of the hybrid hash table was found to be lower than expected.
This suggests a need for further investigation and optimization to enhance its
efficiency and effectiveness.

• Load balancing of concurrent tasks:
The current study does not focus on load balancing different concurrent tasks,
such as expiration, eviction, and machine learning tasks. Future work could ex-
plore strategies for effectively balancing these tasks to optimize overall system
performance.

By addressing these limitations in future research, we can continue to refine and enhance
the design and performance of HyperCache, thereby contributing to advancements in the
field of high-capacity caching systems.

7.3 Future Work

Today, memory and storage technology are developing at a rapid pace. The importance
of our work in shaping future cache implementations becomes evident. In this context,
we have identified six key areas for expanding our research. These areas not only build
upon our existing work, but also aim to tackle emerging challenges and opportunities in
the field. They cover a diverse range of topics, such as extending HyperCache’s applica-
bility to different hardware architectures like NVMe SSDs and disaggregated memory,
leveraging machine learning in broader cache contexts, and exploring optimization tech-
niques such as compression for small objects and adaptive strategies.
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7.3.1 Cache over NVMe SSDs

Traditionally, SSDs have been placed behind a slow interface for ease of integration into
disk-based servers. The SSD technology is rapidly evolving, and today’s SSDs that use
the NVMe protocol are much faster than their old (SATA-based) counterparts. Our
work focuses on exploiting PMem for mitigating DRAM pressure in order to optimize
caching for small objects, but growing a cache over block SSDs storage involves new
challenges.

First, SSDs are block devices, which means that the content stored inside is accessed at
a page granularity. Therefore we must group related objects together not just based on
TTL, but also based on access patterns to reduce read/write amplifications. If a small
object access brings an entire page of unrelated data into the OS’s (Operating System’s)
I/O cache1, then performance can degrade compared to a DRAM-only baseline. Further-
more, we must find a way to not pollute the I/O cache due to unrelated data. Growing
caches over SSDs also brings forward a methodological challenge. How to best size the
I/O cache in relevant to the user heap storing cached data is not obvious. In essence, we
must manage the I/O cache efficiently for data center caches. Few prior works looked
into the issues of DRAM partitioning between user-level cache and OS cache, and our
future work can deal with the problem in the context of data center caches for small
objects.

7.3.2 Cache over Disaggregated Memory

Disaggregated (remote) memory offers several advantages compared to local memory
and storage. It enables remote memory to be shared among multiple applications, al-
lowing for efficient utilization based on the memory demands of each application. With
recent advancements in networking technology, we believe there are three competing and
sometimes complementary approaches to expanding main memory capacity: (1) Local
flash storage; (2) New memory technologies, such as phase change memory or PMem; (3)
Remote memory. These technologies offer different trade-offs across multiple dimensions,
including price, performance, and capacity.

Growing a cache over remote memory poses similar challenges as expanding a cache over
SSDs or storage, but it also introduces new considerations. More specifically, one must
decide what background operations to run on the remote server with limited computa-
tion capacity. Tasks such as merging and defragmenting caches can require significant
computational resources. These operations can either be offloaded to a remote server, or
discarded to reduce the computational burden, at the cost of memory inefficiency. We
leave it to future work to evaluate specific mechanisms and policies for growing a cache
over a combination of local and remote memory.

1Prior literature also refer to I/O cache also as page cache or buffer cache
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7.3.3 OS Caching Impacts and Opportunities

As discussed in the previous subsection 7.3.1 “Cache over NVMe SSDs”, proper man-
agement of the OS cache is essential when expanding the cache over local storage. In
addition, a hybrid system with byte-addressable DRAM and PMem can also employ the
OS cache by using a special mount-time feature of modern file systems. In this work, we
use PMem in direct-access mode, bypassing the OS page cache. In our future works, we
can explore the potential benefits of enabling OS caching in PMem, local storage, and
remote memory deployments of HyperCache. One specific challenge will be determining
the appropriate size of the OS cache in relation to the overall DRAM capacity. Addi-
tionally, we can investigate whether the default OS cache eviction algorithm requires
tuning to efficiently operate with HyperCache.

7.3.4 Compression for Small Objects

Compression is another key technique data-centric applications use to conserve memory
usage and improve memory efficiency. Compressing small objects is particularly chal-
lenging, as the entropy of the cached data is high. Prior works have only infrequently
used compression in caching and key-value stores due to the challenge of finding effi-
cient compression algorithms for small objects. We believe that a deep knowledge of
underlying data stored in a cache can open up insights and opportunities for the use of
compression in HyperCache and similar caches for small objects.

We are particularly interested in compression as a knob depending on the type of envi-
ronment cache is deployed. For example, suppose a large number of integers are cached,
then in this case, we can utilize integer compression algorithms (that have advanced a
lot in recent times due to their ubiquitous presence in online services). We can further
optimize memory efficiency by incorporating support for a wide range of compression
algorithms and selecting the most suitable one based on the operator’s understanding of
the environment. More importantly, we can save memory-related expenditure, which is
a crucial factor in the overall cost of modern data-center deployments.

7.3.5 Adaptive Eviction Strategies

In this study, we have focused on dynamic eviction algorithms while statically selecting
the ML algorithms and hyperparameters for a specific cache. This has provided us with
valuable insights into the advantages of dynamic adaptation strategies.

Data center cache operates around the clock for very long periods of time. An even
more robust strategy for long-running workloads is to adapt the caching management
algorithm on a phased basis. It is well-known that caches go through phase behavior,
which is primarily influenced by user behaviors over time. For example, the cache system
for Twitter can exhibit hot-spots on specific topics during special events or on particular
days, giving a spike in demand for tweets related to those topics.

We believe we can construct a more flexible and dynamic system that can change its
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configurations and eviction algorithms automatically. A potential solution is to employ
a “tournament” framework where multiple eviction policies compete with each other.
Furthermore, we can also utilize reinforcement learning agents to choose the eviction
policies, building upon prior research [10, 51] as mentioned in the Related Work Chap-
ter 3, Section 3.4.2. To achieve efficient auto-tuning of hyperparameters and configura-
tions, we can adopt similar ML approaches used in “Competitive Caching with Machine
Learning Advice” [60]. However, effectively balancing these additional algorithms with
the workload of the caching system poses its own set of challenges. In future works, we
can conduct a comprehensive analysis of the underlying motivations as an extension of
HyperCache.

7.3.6 ML Eviction for General Caches

Lastly, within the scope of this work, we have primarily focused on TTL-based caches,
which are common in today’s data centers. However, it is worth noting that other types
of caches, such as Redis and Memcached, use different insertion and grouping strategies.
We can apply the insights from this work to improve the performance and efficiency of
generalized non-TTL-based caches. We can also study software stacks closely related to
caches, such as key-value stores. Although these applications do not employ eviction,
they still require substantial memory capacity. Given the continuous expansion of user
data within online service infrastructures, the benefits offered by the approaches outlined
in this thesis will become increasingly valuable in large-scale cache deployments and
similar services.
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Appendix A

Appendix: Algorithm Pseudo-codes

Algorithm 1: Segcache Read Operation

1: procedure Read(key)
2: tag ← hashtag(key)
3: bucket← hashTable.getBucket(tag) ▷ Go to corresponding hash bucket
4: for each slot in bucket do
5: if slot.tag == tag then ▷ Compare the tag with slots in hashtable
6: segment← segments.get(slot.segID)
7: item← segment.getItem(slot.offset)
8: if item.key == key then ▷ Compare the key
9: if item is not expired then

10: return item.value ▷ Cache hit
11: end if
12: end if
13: end if
14: end for
15: return null ▷ Cache miss
16: end procedure
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Algorithm 2: Segcache Write Operation

1: procedure Write(key, value, ttl)
2: bucket← ttlBuckets.getBucket(ttl)
3: segment← bucket.getTailSegment()
4: if segment is full then
5: if Cache is full then ▷ If there are no free segments
6: Evict() ▷ Perform eviction
7: end if
8: segment← allocateNewSegment()
9: bucket.addSegment(segment)

10: Write(key, value, TTL) ▷ Re-attempt after eviction
11: end if
12: segment.appendItem(key, value)
13: hashTable.insert(key, segment) ▷ Update hashtable
14: end procedure

Algorithm 3: Segcache Expire Operation

1: procedure Evict
2: for each bucket in ttlBuckets do
3: segment← bucket.getTailSegment()
4: while segment is not null do
5: if segment.creationTime + segment.ttl ≤ currentTime then
6: bucket.removeSegment(segment) ▷ Segment is expired
7: for each s in (bucket.head ... segment) do
8: freeSegment(s) ▷ All the parent segments are also expired
9: end for

10: break
11: end if
12: segment← segment.prevSegment
13: end while
14: end for
15: end procedure
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Algorithm 4: HyperCache Write Operation

1: procedure Write(key, value, ttl)
2: bucket← ttlBuckets.getBucket(ttl)
3: DRAMsegment← bucket.getTailDRAMSegment()
4: if DRAMsegment is full then
5: if DRAM is full then
6: if PMem is full then
7: EvictFromPMem() ▷ PMem also full
8: end if
9: EvictDRAMToPmem()

10: end if
11: DRAMsegment← allocateNewSegmentInDRAM()
12: bucket.addSegment(DRAMsegment)
13: Write(key, value, ttl) ▷ Re-attempt after eviction
14: end if
15: DRAMsegment.appendItem(key, value)
16: hashTable.insert(key, segment)
17: end procedure

Algorithm 5: Hybrid Hashtable Read Operation

1: Hb : hot slot of hashbucket b
2: Cb : cold slot array of hashbucket b
3: Tb : reduced tags associated with cold slots of hashbucket b
4:

5: procedure Read(key)
6: t← hashtag(key)
7: b← hashTable.getBucket(t) ▷ Go to corresponding hash bucket
8: if Hb.tag == t then
9: return Segments.get(Hb) ▷ Cache hit

10: else ▷ Item is not in the hot slot
11: for i in len(Cb) do
12: if Tb[i] == reduced(t) then
13: return Segments.get(Cb[i]) ▷ Cache hit
14: end if
15: end for
16: end if
17: return null ▷ Cache miss
18: end procedure
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