
Exploiting Intel Optane Persistent Memory for
Full Text Search

Shoaib Akram
Australian National University

Canberra, Australia

Abstract
In our information-driven societies, full-text search is

ubiquitous. Search is memory-intensive. Quickly searching
massive corpora requires building indices, which consumes
big volatile heaps. Search is storage I/O-intensive. Limited
main memory necessitates writing large partial indices on
non-volatile storage, where they finally live in merged form.
These indices reside in memory, in full or in part, during
query evaluation. Memory and I/O intensity make it hard to
index and search content rapidly and efficiently. On the hard-
ware side, the recently introduced Intel Optane DC persistent
memory (PM) offers byte-addressability, high capacity, and
non-volatility. This paper evaluates and exploits Optane PM
for text indexing and search on multicore platforms.

We identify essential structures in inverted indices (hash
table, merge tree, and key-value store), where they reside
(memory or storage), and key operations over them (sort,
flush, and merge). We allocate these structures in DRAM,
Optane PM, and block storage by modifying an existing
search engine. We then evaluate a myriad of hybrid memory
and storage configurations. Our findings include: 1 careful
placement of index structures across DRAM, Optane PM, and
SSD, speeds up indexing with a single core compared to a
high-performance baseline but does not scale to many cores,
2 crash-consistent indexing with Optane PM is feasible
without incurring a high overhead, and 3 the tail latency of
the longest multi-term conjunctive queries is lower with a
PM-backed index than an SSD-backed one. This paper opens
up persistent memory to a practical role in full-text search.

CCSConcepts: • Information systems→ Search engine
indexing; Phase change memory.

Keywords: Text search, inverted index, persistent memory
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ISMM ’21, June 22, 2021, Virtual, Canada
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8448-3/21/06. . . $15.00
https://doi.org/10.1145/3459898.3463906

ACM Reference Format:
Shoaib Akram. 2021. Exploiting Intel Optane Persistent Memory
for Full Text Search. In Proceedings of the 2021 ACM SIGPLAN In-
ternational Symposium on Memory Management (ISMM ’21), June
22, 2021, Virtual, Canada. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3459898.3463906

1 Introduction
Text search powers vital services in the modern world. Pop-
ular engines, such as Google and Bing, deliver new infor-
mation to individuals and enterprises every day. Equally
prevalent is searching short, rapidly generating social media
content (e.g., Facebook and Twitter) in real-time. Due to its
wide use, improving search speed and efficiency is urgent.

Trivial search tools serially scan each word in a corpus
to match documents to queries. However, for large corpora,
such as the world wide web or real-time tweets, full-text
search consists of (1) text indexing and (2) query evaluation.

Text indexing builds an inverted index of the corpus that
maps terms (words) to postings (document identifiers). In-
dexing speeds up query evaluation, but unfortunately, it is
memory and storage I/O-intensive. Building an index re-
quires large heaps, and storing it results in large amounts
of storage I/O. Also, evaluating search queries in real-time
demands fast access to inverted indices. The current practice
is to cache large indices in memory [20]. On the hardware
side, persistent memory (PM) offers byte-addressability, scal-
able capacity, and non-volatility. This paper exploits and
evaluates Intel Optane DC PM for text indexing and search.

Building and storing inverted indices on persistent mem-
ory has four advantages. 1 To store words and postings
temporarily, indexers require large hash tables, well-suited
to scalable memories. 2 Periodically, indexers sort the tables
and flush them to a storage device, where they merge them
into a large index. The costly I/O due to flushing andmerging
is avoided by direct access to fast persistent memory. By-
passing the OS buffer cache, the resulting stack is also clean,
simple, and efficient. 3 Current indexers waste significant
effort to offer fault-tolerance over traditional storage [18].
Persistent memory offers, instant-on and crash-consistent
preservation of state. More importantly, programmers can
reason the guarantees for fine-grained persistence from the
user space without the intricacies of coarse-grained block
updates and OS caching [11, 12, 40]. 4 The query evalu-
ators today either read the index from a solid-state drive
(SSD), risking poor response time, or keep them in main

https://doi.org/10.1145/3459898.3463906
https://doi.org/10.1145/3459898.3463906

ISMM ’21, June 22, 2021, Virtual, Canada Shoaib Akram

memory, wasting DRAM capacity. Keeping inverted indices
in persistent memory introduces novel space-time tradeoffs.

We introduce Intel Optane PM in a commodity server and
empirically evaluate the rich space of hybrid memory and
storage configurations for text indexing and search. Empiri-
cal evaluation of nascent technologies can betray intuition.
Consider, for example, a configuration with a DRAM-backed
hash table, PM-backed postings, and SSD-backed dictionary.
This configuration outperforms more straightforward ways
of exploiting persistent memory. Exhausting the rich space
demands a fast and flexible text indexing and search tool.
We build upon a high-performance and native (C++) search
engine, namely Psearchy [9, 31]. Prior art uses it in industrial-
strength search services [21, 44].

We modify the engine to build, update, and store inverted
indices across different memory and storage types. Specif-
ically, we place the critical (volatile) index structures in
DRAM or PM and non-volatile ones in PM or an SSD. (Our
server has an Intel Optane NVMe SSD.) We focus on execu-
tion time and scalability (indexing) and tail latency (search)
of different query types. We discover and report new, some-
times surprising, performance versus device-type and ca-
pacity tradeoffs. We propose and evaluate crash-consistent
text indexing at a finer granularity. Also, we use hardware
performance counters to gain insight into the behavior of
Optane PM. Finally, we uncover performance pathologies in
the state-of-the-art PM software.

In summary, this work is the first to evaluate Intel Optane
PM as themainmemory, as an extension of themainmemory,
persistent storage, and a universal memory (main memory
and storage) for full-text search.
The main findings of our evaluation are:
• Persistent memory slows down indexing with one thread
by more than 30% as the primary and universal memory,
compared to a DRAM-SSD composite and stock search
engine. Poor scaling with rising core count renders its
main and universal roles at a supreme disadvantage.

• With careful placement of the hash table, the partial and
merged postings, and the dictionary, a hybrid approach
with DRAM and PM, speeds up single-threaded indexing
by 20%. At high core count, this hybrid solution performs
only as well as the stock.

• For text indexing, the premium for fine-grained crash con-
sistency with persistent memory is between 18% to 30%.
This overhead due to persist-ordering instructions, sur-
prisingly, diminishes at high core count.

• Updating an existing PM-backed index is 10× faster than
an SSD-backed index. The primary advantage is due to the
removal of filesystem I/O operations.

• The PM-aware key-value storage engines perform up to
60% worst than Berkeley DB (BDB) for dictionary storage.
The analysis points to the untapped potential for perfor-
mance gains over the BDB engine.

• The tail latency distribution for single-term queries is sim-
ilar with PM and SSD-backed indices. However, persistent
memory reduces the tail latency of the longest-running
multi-word conjunctive queries substantially. This trend is
due to the access patterns the query workloads generate.

2 Background
We provide background on our baseline search engine and
justify our choice.We provide a tutorial on the inverted index
and briefly discuss Intel Optane DC persistent memory.
2.1 Baseline Search Engine
Our baseline search engine is Psearchy [9, 31, 44]. It con-
sists of a parallel, scalable text indexer and query evaluator
written in C++. It powers OverCite in prior work [44], a dis-
tributed, community-driven variant of CiteSeer [21]. Prior
work also exploits its distributed hash tables (DHTs) to eval-
uate peer-to-peer search [31]. Prior efforts make it multicore
scalable [9], and rigorously evaluate its scalability [2]. We
download Psearchy from the MOSBENCH suite [10].
We use Psearchy for three reasons. 1 It is written in

C/C++, which eases integration with persistent memory li-
braries, such as Intel PMDK [13]. 2 Managed search engines,
such as Solr [17] and Elasticsearch [16], complicate perfor-
mance analysis, especially with hybrid memories. Specifi-
cally, controlling the perturbation due to garbage collection
and just-in-time compilation is tedious [6, 7, 25]. 3 Teas-
ing apart the indexing time is critical for understanding the
interaction between text search and Optane PM. This de-
construction is challenging with industrial-strength engines.
The closest effort provides a coarse-grained breakdown of
query evaluation only [26].
2.2 Inverted Index Tutorial
We show the high-level structure of an inverted index and
discuss an efficient way for constructing such an index.
2.2.1 Structure. An inverted index consists of a dictionary
of terms (words) and postings. Postings record the position
and frequency of words in documents. The dictionary maps
terms to posting lists. Postings are linked together in an or-
dered or unordered list. Figure 1 shows an example inverted
index for a corpus with two documents. Each word has one
or more postings that record its position and frequency in
each document. Psearchy stores postings as unordered lists.
Lucene-based engines offer skip lists to jump over posting
lists and improve search speed [45, 49]. The query evaluators
iterate over postings to rank matching documents [44].
2.2.2 Construction. The indexing engine in Psearchy is
multithreaded. We show the per-core data structures it uses
in Figure 2. A document map contains document ids and
their location on a filesystem. Modern indexing engines for
full-text search use a structure similar to a log-structured
merge-tree (LSM). During indexing, an in-memory hash ta-
ble, also called memtable, first records the words and their

Exploiting Intel Optane Persistent Memory for Full Text Search ISMM ’21, June 22, 2021, Virtual, Canada

Document 1 : Never arrive late.
Document 2 : Never say never.

term
arrive
late
never
say

offset
Dictionary Postings file

1
1
1
2

2

Figure 1. High-level structure of an inverted index.

posting lists. Typically, the memtable is not searchable [38].
On exhausting the memtable, the indexer writes its contents,
including the terms and postings on persistent storage. The
table is then available for reuse. In popular engines, the terms
(keys) and posting lists (values) are organized into key-value
pairs and kept in SSTable-like sorted files. These files are also
called segments, or partial postings file (PPF) [38, 44]. Unlike
Lucene, the partial files in Psearchy are not searchable. The
indexer merges several PPFs into a binary file. Merging also
results in a dictionary that tells the queries at which offset
in the sorted file they need to look for a term.

Core 0

Core 1

…

…
Mem
Table Partial Postings

M
er

ge
d

Po
st

in
gs DictionaryDoc

Map

Figure 2. The global and per-core data structures for index-
ing in Psearchy.

Psearchy indexes incoming documents in three stages
(Figure 3). The single-threaded Name-to-docId stage assigns
each document an integer docId, which it inserts into a
shared work queue. Psearchy stores the mapping of doc-
ument names (and their location on a filesystem) to docIds
in a Berkeley DB (BDB) file. We show this structure as a
document map in Figure 2.

Name-to-
docId

Pass0
Hash

Sort

Flush

do
cI

d
Q

ue
ue

Pa
rit

al

In
di

ce
s

Merge Inverted
Index

Pick next word
Add to dictionary
Write postings to file

1 2 3 1 2 3

Figure 3. The stages in the construction of an inverted index.

The next stage is Pass0 in which a per-core indexer makes
the first pass over each new document. Specifically, each
core picks a docId from the shared queue, parses it, and

notes each word’s positions in a hash table. The table con-
sists of several buckets. Each bucket stores a unique word
(term) and pointers to the first and the last block. A block
contains a pointer to the next block and pointers to a series
(n) of postings. (In the baseline engine, n is equal to 128.)
A large n risks wasting unused block memory, and a small
n risks instantiating too many blocks. The hash table uses
open addressing and inserts a new bucket in one of several
locations. When the hash table is full, the indexer sorts the
table (qsort from the C library) and flushes the sorted table
to block storage. The resulting PPF resembles an SSTable and
forms the first level of LSM. The memtable absorbs random
writes in DRAM and transforms them into sequential writes
on storage, improving I/O throughput.
During the next stage, namely Merge, each core merges

all PPFs into a per-core postings file. Merging also results in
a BDB dictionary. The merge procedure either creates a new
index from scratch or updates an existing index.
We next discuss the I/O behavior of flush and merge op-

eration. Both operations are I/O-intensive. Eliminating the
I/O overhead, including the system call, slow device access,
context switch, is one of the advantages of Optane PM.

Flushing hash table to disk. The flush procedure writes
the in-memory hash table as a PPF on block storage. This op-
eration results in sequential write I/O. The procedure picks
a bucket and first writes the term, then an integer n (num-
ber of postings), and then the term’s postings. The indexer
opens a file stream and calls OpenBSD putc() for writing
each posting list. The writes first arrive in a C library buffer
(DRAM). On exhausting the table’s flush, the indexer closes
the file, which implicitly calls fflush(), flushing file contents
to the OS buffer cache. The indexer does not call fsync(),
avoiding device writes. The OS performs device I/O asyn-
chronously. These details are critical for interpreting the
results of performance evaluation against Optane PM.

Merging partial indices. The merge procedure reads a
term from one of the many PPFs, calling fread() on an open
file stream and checking which other files contain the same
term. Merging may benefit from the OS buffer cache. It then
reads the number of postings (n) stored in each partial file,
copying character-wise all postings to a single (merged) post-
ings file. It writes each term’s postings count in the merged
file to ease query evaluations. The procedure also inserts
the term and an offset to the posting list in a BDB file. Once
merged, the indexer closes the index, flushing writes to the
buffer cache without ensuring crash consistency.
2.3 Simplifying Assumptions
Text search is highly inter-disciplinary. For example, our en-
gine supports the semantic cleanup of search queries through
a stop word file and relevance-aware document ranking.
However, we ignore architectural issues due to distribution
and focus on indexing and search on a single multicore ma-
chine. Prior work from Twitter evaluates similarly [32]. On

ISMM ’21, June 22, 2021, Virtual, Canada Shoaib Akram

the query evaluation side, we leave out load balancing and
caching for frequent queries.
2.4 Intel Optane DC Persistent Memory
A non-volatile DIMM (NVDIMM) connects to the memory
bus, similar to conventional DRAM. Intel Optane DC PM
is the most scalable and cost-effective NVDIMM to date. It
exploits a new storage medium called 3D XPoint, which
stores information as a change in the material’s bulk re-
sistance [30]. 3D XPoint is more scalable than DRAM, and
the current NVDIMM capacity is up to 512 GB (8× that of
DRAM.) Communication with Optane DIMM is mediated
by the processor’s integrated memory controller (iMC). iMC
uses a new DDR-T (64-byte) interface. DDR-T enables asyn-
chronous command and data timing. Once a request reaches
the Optane DIMM, a module controller reads and writes
to the actual media at a 256-byte line granularity. A 16 KB
write combining buffer merges adjacent lines to mitigate
high media latency [57].

Optane PM has two operation modes. The memory mode
turns DRAM into a direct-mapped cache for PM, and the host
memory controller transparently manages the DRAM cache.
Unlike the memory mode, the App Direct mode exposes the
hybrid of DRAM and Optane PM to the software. The PM
media is abstracted by a light-weight filesystem [48, 56]. Our
evaluations use the App Direct mode.

Recent work finds Optane PM between 2×-3× slower than
DRAM [57]. More slow are random accesses compared to
sequential accesses. Optane PM’s bandwidth is also lower
than DRAM. Its read-to-write bandwidth ratio is higher than
DRAM. Interleaved Optane PM delivers higher bandwidth
than non-interleaved one. More background on Intel Optane
PM is found in recent work [1, 57].

3 Baseline Characterization
This section characterizes the baseline Psearchy across four
dimensions: 1 multicore scalability of indexing, 2 teas-
ing apart indexing overheads, 3 latency of index updating,
and 4 tail latency distribution of query evaluation. Our pri-
mary goal in this characterization is to pinpoint potential
acceleration targets for Optane PM.
Figure 4 (a) shows the time in seconds for indexing the

large dataset. We allocate the hash table in DRAM and store
the postings (partial and merged) on an SSD. (See Section 5
for details about our datasets, search workloads, and method-
ology.) We show the indexing time with increasing core
count. Psearchy’s indexer is fast and takes only 500 seconds
to index a 20 GB corpus. We observe good scaling up to
eight logical cores with the indexing time reducing by 5.8×.
The indexer’s scalability is limited beyond eight cores. Still,
indexing the large corpus takes under one minute with 32
cores. We also show the breakdown of single-threaded index-
ing time into five components in the same figure. (Refer to
Figure 3 and Section 2 for the meaning of each component.)

We observe that assigning docIds to incoming documents
(DocId) is fast (4% of total time). The indexer spends a sub-
stantial 22% of the time looking up the hash table (Hash) and
inserting new entries in it. Sorting the table (Sort) takes up
the most time (35% of total). Flushing partial postings on SSD
(Flush) takes 24% of the indexing time. Merging the partial
postings into an inverted index (Merge) consumes 17% of
the time. The C memory allocator’s overhead is negligible.

The breakdown of the indexing time changes at high core
count (not shown). The docId assignment is single-threaded,
and with 32 cores, it consumes 40% of the time. Both Hash
and Sort make up a smaller percentage of time (13% and 28%
respectively). Each core in multicore execution instantiates a
fixed-size hash table. With more cores and the same dataset
size, parsing and looking up words in the hash table, flushing,
and sorting are parallelized, thus reducing the total index-
ing time. Flushing makes up 12% of the indexing time with
32 cores. Flushing leads to sequential disk writes and thus
benefits from multicore execution. Finally, merging takes up
7% of the indexing time with 32 cores.

Quickly updating an existing index is critical [45]. Figure 3
(b) shows the update time with an SSD-backed index. We
use a single thread to add a document to the large and the
small dataset’s index. We observe substantially high update
latencies. Updating an index involves: (1) reading the old
index into memory and (2) writing the new index on storage.
TheOS buffer cache hides the latency of a slow storage device.
However, the filesystem I/O operations waste precious CPU
cycles. Merging consumes most of the update time.

So far, we have analyzed the performance of the Psearchy’s
indexer. We now discuss tail latency distribution for search
queries served by the Psearchy’s search engine. We use the
S1 query workload that sends 10,000 single-term queries
to a server with our large SSD-backed inverted index. (We
will evaluate multi-term query workloads in a later section.)
Figure 4 (c) shows the distribution of tail latency. Each query
is served by one instance of a single-threaded Psearchy query
evaluator. The total query workload saturates our 96-core
server. We observe that around 12% of the queries resolve
in 10 milliseconds (ms) or less. Around 50% of the queries
take less than or equal to 100 ms. Finally, the query evaluator
resolves 95% of the queries in one second or less. Less than 1%
of the queries run for 10 seconds or more. Our 90th percentile
tail latency matches the one reported in recent work with an
industrial-strength search engine [22, 23]. The longer tail in
our evaluation is due to scoring and reporting all matches.

Acceleration opportunity. Our analysis reveals three op-
portunities to exploit Optane PM in full-text search. The first
two pertain to indexing and the third to query evaluation.
1 Flushing partial postings to a storage device and later
merging them consumes between 20% (32 cores) and 40%
(one core) of the execution time. Backing the partial postings
by Optane PM can speed up flushing and merging. 2 The

Exploiting Intel Optane Persistent Memory for Full Text Search ISMM ’21, June 22, 2021, Virtual, Canada

Indexing time

(a) Indexing Time in Seconds (b) Index Update
Time in Seconds

(c) Tail Latency Distribution of Query
Evaluation

0
5

10
15
20
25

1 2 3 4 5 10 50 10
0

20
0

30
0

40
0

50
0

10
00

20
00

30
00

10
00
0

%
 o

f R
eq

ue
st

s

Query Evalua=on Latency (ms)

0
100
200
300
400
500

Large Small

Up
da

te
 T

im
e

(s
)

Dataset

0
100
200

300
400
500

1 4 8 16 32

In
de

xi
ng

 T
im

e
(s

)

Core Count

DocId Hash Sort Flush Merge

Figure 4. Characterizing the baseline indexing and search engine: (a) Multicore scalability and teasing apart the indexing time
with a single thread, (b) Index update time in seconds, (c) Tail latency distribution of single-term queries in the S1 workload.

capacity advantage of Optane PM provides an opportunity to
allocate a much larger hash table in memory. 3 The query
evaluator can respond faster with PM-backed indices. We
particularly anticipate a significant reduction in tail latencies
for queries that generate random storage I/O.

4 Exploiting Persistent Memory
We now discuss incorporating Intel Optane persistent mem-
ory (PM) in full-text search. Not all configurations lead to a
performance gain. Our objective is to explore the rich space
of configurations that a system with hybrid DRAM and Op-
tane PM and traditional storage offers.
4.1 Indexing with Optane PM
4.1.1 Optane PM as Main Memory. The prime advan-
tage of Optane PM as the main memory is its high capacity.
This high capacity is beneficial for allocating the per-core
hash table that temporarily stores words and postings. We
allocate this per-core hash table in Optane PM. Compared
to a DRAM baseline, we use tables between four to sixteen
times larger. We then evaluate if PM’s high capacity reduces
the indexing time.

The hash table is split into four contiguous regions. Each
region is dynamically allocated. The four regions contain
hash table buckets, linked lists of blocks with pointers to
postings, the posting lists, and the words in documents. The
indexing engine takes a user-specified heap size (e.g., one
gigabyte), splits it into four parts, and allocates each part to a
separate region. When one of the regions is full, the indexer
flushes the table to disk.
Different datasets stress a different table region. For in-

stance, a dataset in which a few terms repeat in one bil-
lion documents stresses the postings region. The region that
stores the words stays mostly unoccupied. On the other hand,
a large corpus in which each document contains unique
terms stresses all regions. Realistic datasets fall between the
two extremes. The nature of the dataset thus impacts the sort-
ing and flushing frequency. Both these operations impact the

indexing performance with Optane PM. In particular, sort-
ing requires frequent main memory accesses as it compares
words stored in different buckets in the hash table.

Similarly, the flush operation first reads hash table entries
in a user-level buffer from which it copies the entry into a
separate disk-bound buffer. Overall, the tradeoff between
PM capacity and indexing performance is not a simple one.
We empirically analyze this tradeoff in this work.

In addition to the hash table, the indexer allocates several
small data structures, for example, strings for storing tem-
porary file names, the work queue, and temporary buffers
for holding dictionary entries. We allocate these structures
in DRAM in evaluating Optane PM as the main memory.
Storing them on PM-backed files increases fragmentation
and meta-data overhead.

Memory allocation. The C librarymalloc() is unavailable
for PM allocations. Therefore, to allocate tables in Optane
PM, we first pre-allocate files on it. We find that allocat-
ing large files by writing zeros in Optane PM is prohibitive
performance-wise. We instead use posix_fallocate() to create
files of a specific size. We then map the newly created file in
virtual memory by calling mmap() with the MAP_SHARED
and MAP_SYNC flags.
4.1.2 Optane PMas aMemoryExtension. Our baseline
search engine flushes partial postings to block storage. The
reason is limited main memory (DRAM). Across different
datasets, we observe the volume of partial postings to be
around 60% of the dataset volume. A 1 TB dataset would
require amassive 600 GBDRAM footprint. In essence, DRAM
alone does not scale to large datasets.

Instead of flushing the partial postings to block storage, we
store them in Optane PM instead. One option is to change the
indexer’s design and use a single large hash table, obviating
the need to flush entirely. However, this is challenging for
two reasons: (1) large PM-backed tables increase lookup
latency, (2) they demand large amounts of virtual memory.
Similar to baseline Psearchy, we use a fixed-size DRAM hash
table, and once it is full, we flush its contents to a separate file.

ISMM ’21, June 22, 2021, Virtual, Canada Shoaib Akram

To flush the contents, we first allocate a small file on Optane
PM and map it into the indexer’s virtual address space. We
grow this file as flushing progresses, calling ftruncate().
The flush operation in the baseline engine essentially se-

rializes the hash table buckets and writes them to a storage
device. It first writes the term, then the postings, followed by
meta-data. Figure 5 lists the xwrite() procedure in Psearchy
that writes words and postings data (as bytes) to a file. The
procedure writes n bytes, pointed to by xptr, to a file stream,
namely fp unless it encounters the end of the file. The bytes
first arrive in a library buffer and then move to the OS buffer
cache. Writing more than one byte in a single call does not
impact performance. In fact, for frequent short writes, the
OpenBSD fwrite(), is slower than putc().
1 int xwrite(const void *xptr, int n, FILE *fp) {
2 const char *ptr = (const char *) xptr;
3 for(int i = 0; i < n; i++) {
4 if(putc(ptr[i], fp) == EOF)
5 return(EOF);
6 }
7 return(i);
8 }

Figure 5.Writing partial postings to file streams in Psearchy.

1

2 int op_xwrite(const void *xptr, int n, char **fp) {
3 const char *ptr = (const char *) xptr;
4 for(int i = 0; i < n; i++) {
5 *(*fp + i) = ptr[i];
6 }
7 *fp += n;
8 return(i);
9 }

Figure 6. Writing partial postings to memory-mapped
Optane PM files in modified Psearchy.

Next, the op_xwrite() procedure in Figure 6 stores bytes to
Optane PM. This procedure receives a pointer to the location
holding the memory-mapped file’s address. It writes n bytes
to PM and also advances the file pointer by n bytes.

Implementation lessons. Migrating from file streams to
memory-mapped (PM) files demands care. Correctly advanc-
ing the memory-mapped file’s pointer is vital. Sometimes,
the same pointer requires context-specific conversion to the
correct data type. Manually placing end-of-file markers in
text manipulation is another source of errors.
4.1.3 Optane PM as Persistent Storage. So far, we have
explored Optane PM as the main memory or its extension.
We now explore it as fast storage for persistent data. Our
indexer merges the partial postings into an inverted index.
This index consists of a binary postings file and a dictionary.
We use Optane PM as fast storage in two ways: (1) storing

the merged binary file and (2) replacing the Berkeley DB
store (dictionary) with persistent memory stores.
We now discuss the merge operation with our modifica-

tions. There are two scenarios: (1) the partial postings reside
on block storage, (2) the partial postings reside in persistent
memory. In the first case, the indexer gathers the postings
for each word from multiple files, reading them into DRAM,
one word (and its postings) at a time, and then writes them to
Optane PM. On the PMmedia, this process is write-intensive.
In the second case (partial postings in Optane PM), the in-
dexer reads these partial indices from Optane PM and writes
the merged index. Each core merges its partial indices. A mix
of reads and writes stress PM’s limited bandwidth.

We also replace the BDB dictionary with a persistent mem-
ory key-value store. We use the Intel-backed pmemkv store
in this work. The pmemkv store provides various storage
containers (or engines). The concurrent non-volatile hash
map (CMap) engine provides crash consistency across key
and value updates. On Intel 64, persisting a cache line re-
quires one flush instruction, e.g., clflush_opt and one store
fence (sfence) [42]. This persist-ordering instruction sequence
(so named because it imposes an order on the writes to per-
sistent memory) introduces extra overhead [29]. To relax
crash consistency, we also experiment with a volatile hash
map (VCMap), a fairer comparison to the native engine that
does not guarantee crash consistency. We also use a third
storage engine, namely Hollow, to evaluate the minimum
overhead of a PM-backed dictionary.

Optane PM as persistent storage offers fine-grained crash
consistency. The CMap-backed dictionary updates are in-
stantly visible, transactional, and crash consistent. However,
for this to be useful also requires crash-consistent flushing
and merging (see Figure 3). In this work, we explore one
approach for a crash-consistent indexing scheme. The de-
sign space is rich, but our primary interest is to uncover
the overhead due to persist-ordering instructions. We leave
more sophisticated schemes for future work.

Crash consistent indexing scheme. To flush the partial
postings in a crash-consistent way, we call Intel PMDK’s
pmem_persist() after the flush operation in Pass0 in Figure 3.
(pmem_persist() implies clflush_opt and sfence.) We pass
the starting address and size of the partial postings file. We
also write a unique marker to the partial file. On recovery,
the indexer ignores partial files without this marker and re-
processes the associated documents. We then set and persist
single-bit entries in a PM map to remember the fully pro-
cessed documents. If this last step is interrupted, the indexer
reprocesses some of the documents. Otherwise, in recovery
mode, the indexer processes the unprocessed documents.

To merge partial indices, the indexer first writes the term
to a binary file, then inserts it in the dictionary, and then
writes the postings to the file. This mechanism is shown in
Figure 3. We switch the ordering of the dictionary insertion

Exploiting Intel Optane Persistent Memory for Full Text Search ISMM ’21, June 22, 2021, Virtual, Canada

and postings’ write for instant-on visibility. Otherwise, a
valid entry in the dictionary leads the query evaluator to an
incomplete and possibly non-existent posting. Next, to flush
the postings from the cache lines, we use pmem_persist() and
pass the starting address and the byte count. We also persist
offsets to remember the last processed term in each partial
file. We use a valid bit to ensure the atomic durability of
offsets. The recovery protocol reads the offsets and replays
the last merge operation. It locates the offset to the final
merged file from the dictionary. Merging then continues as
in the normal indexing mode.
Native Psearchy neither guarantees instant-on preserva-

tion of index entries nor crash consistency. A local or remote
process accesses the fully merged index from the buffer cache
or storage. The OS flushes its cache asynchronously. One
can imagine scenarios where a query evaluator reads two
versions of the index, before and after the crash. Unlike PM,
fine-grained and instant-on indexing in the stock engine is
tedious. A straightforward solution of inserting fsync() after
line 7 in Figure 5 substantially slows down indexing.
4.1.4 OptanePMasUniversalMemory. Persistentmem-
ory is byte-addressable and non-volatile. These features
make our systems closer to having universal memory. Unfor-
tunately, its high latency and limited bandwidth are likely
to degrade performance over a classical storage stack. We
evaluate Optane PM as universal memory. We allocate the
hash table and then sort it in place in Optane PM. Large hash
tables induce high latency. Therefore, we copy the table into
a file that we map in virtual memory. We merge the indices
in PM and use pmemkv to store the dictionary.
We envision two challenges for Optane PM as universal

memory. 1 The indexing engine generates a mix of read
and write traffic, especially during the flush and merge oper-
ations. PM’s bandwidth should be able to cope with a heavy
workload of reads and writes. 2 The in-memory hash table
is semantically a temporary structure, not requiring non-
volatility. Prior work shows a tradeoff between PM write
latency and retention time [60]. The latency of updating the
hash table on Optane PM is likely to be significant. Unfortu-
nately, in today’s PM offerings, a knob to trade non-volatility
off for lower write latency is unavailable.
4.2 Query Evaluation with Optane PM
We also exploit Optane PM for query evaluation. We place
the inverted index in PM and evaluate the tail latency distri-
bution for different query types. We compare these distribu-
tions to ones with DRAM and SSD-backed indices.

On receiving a query request, the Psearchy query evalua-
tor first reads the dictionary entry. It then opens a file stream
and verifies that the matched term resides in the postings file
at the offset returned by the dictionary. It uses a combination
of fread() and fseek(). The evaluator then maps the post-
ings in virtual memory and evaluates the query, giving each
document a score based on terms’ location and frequency.

To evaluate queries with Optane PM, we eliminate the file
I/O operations and instead map the postings file upfront to
read both the term and postings. The baseline evaluator ag-
gressively prefetches in DRAM the index pages required for
serving a query. We disable this feature for query evaluations
with PM-backed indices.

5 Experimental Methodology
We discuss our evaluation platform, datasets, memory and
storage configurations, and measurement methodology. We
also discuss how we form query evaluation workloads.
5.1 Platform
Our server is a dual-socket Dell PowerEdge R740 running
the Ubuntu 18.04.1 Linux OS (5.4.0 kernel). Each processor
is an Intel Xeon Gold 6252N operating at 2.3 GHz with 48
physical cores (96 logical) and a 36 MB shared Level-3 cache.
Each host iMC supports six memory channels. Each memory
channel is attached to a 32 GBMicron DDR4 DIMM and a 128
GB Intel Optane DIMM. The system thus has approximately
400 GB of DRAM and 1.5 TB of Optane PM. The system has
a 1.5 TB Intel Optane PCI Express NVMe SSD (DC P4800X).
Interestingly, both the SSD and NVDIMMs use 3D XPoint
as a storage medium but sit behind different interfaces. The
system also has a 1 TB, 3.5-Inch, Seagate, SATA (6 Gbps),
hard drive, capable of 7200 rotations per minute.
5.2 Datasets and Ingestion
We download and use Wikipedia’s English corpus from the
Luceneutil website [37]. They provide a line-terminated
(1 KB each) file of the corpus. We extract lines to individual
files, which Psearchy reads. Indexing the entire corpus is
tedious. To evaluate the rich space of memory and storage
configurations, we construct a small and a large dataset: (1)
2 GB volume with 500,000 files (small), and (2) 20 GB volume
with five million files (large). For the large dataset, the post-
ing lists in the resulting index consume approximately 12 GB,
the document map takes up 310 MB, and the dictionary is
170 MB in size. The document map stores file names, which
takes up more space than dictionary terms.
We store the corpus in DRAM on the tmpfs filesystem.

Using tmpfs ensures reading the corpus is not the bottleneck.
Removing this bottleneck is good practice for evaluating
search engines [36]. Also, new content resides in DRAM in
contemporary real-time search [45, 59].
5.3 Configurations
We evaluate six configurations on our multicore server with
hybrid DRAM and Optane PM and a disk and SSD. Table 1
lists the configurations and where they place the hash table,
partial postings, and the (final) inverted index. The last col-
umn shows the role of Optane PM in each configuration. First,
stock runs the unmodified indexer with a DRAM-backed
hash table, SSD-backed postings, and inverted index. Unless
otherwise stated, we use a per-core hash table of 1 GB.

ISMM ’21, June 22, 2021, Virtual, Canada Shoaib Akram

The remaining five configurations use Optane PM. Two
configurations, namely table-pm and pm-only allocate the
table in Optane PM. Furthermore, pm-only uses Optane PM
for storing the partial postings and the index. As the name
suggests, it evaluates a system with Optane PM only in a
universal role. Flush-pm uses Optane PM only for storing
partial postings in a DRAM extension. Hybrid and hybrid+
place the table in DRAM and store the postings (partial and
merged) in Optane PM. (They are named to reflect PM’s dual
use as extension and storage.) Hybrid stores the dictionary
in Optane PM, and hybrid+ stores it in an SSD-backed BDB
dictionary. Besides, we evaluate cc-hybrid, a crash-consistent
variant of hybrid.

Table 1. Our evaluated configurations.

Name of Placement of Table, Postings, and Dictionary Role of

Configuration Table Partial Pt Merged Pt Dict Optane PM

stock DRAM SSD SSD SSD none

table-pm PM SSD SSD SSD main memory

pm-only PM PM PM PM universal

flush-pm DRAM PM SSD SSD extension

hybrid DRAM PM PM PM ext + storage

hybrid+ DRAM PM PM SSD ext + storage

5.4 Measurement Methodology
We use execution time to quantify the indexer’s performance.
We perform each experiment eight times and report the arith-
metic mean. Our measurements are statistically sound, and
the coefficient of variation is less than 1% across eight runs.
For query evaluation, we report the tail latency distribu-
tion from executing 10 K concurrent user-facing queries. We
perform each experiment multiple times, confirming the sta-
tistical soundness of our observations. We clear the page and
directory caches before each experiment.
We use best practice guidelines for Optane PM use from

recent work [57]. 1 We use interleaved PM. 2 For indexing,
we bind threads, and memory (both volatile and non-volatile)
to CPU 1, avoiding non-uniform memory accesses. To ex-
pose Optane PM to our search engine, we use the ext4-DAX
filesystem [48]. ext4-DAX bypasses the buffer cache and
provides direct access to Optane PM. It also disables data
journaling and eliminates other metadata writes.
5.5 Query Formation
We use two query types: (1) single-word queries (S1) and
(2) multi-word conjunctive queries with two words (M2).
Our query evaluation workloads are homogeneous. We do
not mix S and M queries. To construct the workload for the
evaluator, we pick a random word (S1) or words (M2) from
the list of commonly used English words [15]. We validate
critical findings for workloads with up to 100 K queries. For
ease of experimentation, especially with disk-backed indices,

we show results with 10 K query workloads. Multiple queries
run concurrently. A single query is resolved sequentially.

Our query evaluator obtains the matching documents by
traversing the posting lists of each keyword. For M2, the
evaluator finds and reports the matching documents by in-
tersecting the posting lists of multiple terms. The evaluator
scores each result based on document ranks, the file off-
set where the term appears, the closeness of terms in the
document. Prior literature has more details [9, 44]. We set
stopearly to 0, reporting all matches. The average rate of zero
matches for S1 and M2 queries are 0% and 1%, respectively.

6 Evaluation Results
This section evaluates hybrid memory and storage across
three dimensions: 1 Performance and multicore scalability
of full-corpus indexing. 2 Latency for updating an existing
index. 3 Tail latency distribution of two query workloads.
Unless otherwise stated, we use the large dataset.
6.1 Full Corpus Indexing
We first discuss the results for indexing an entire corpus.
6.1.1 Single-Threaded Performance. We evaluate the
different roles of Optane PM for text indexing. Figure 7 shows
the indexing time with one core normalized to pm-only. Our
two datasets reveal similar findings. We observe that both
table-pm and pm-only are 30% slower than stock. This slow-
down is because Optane PM has higher latency and lower
bandwidth than DRAM. Compared to direct PM accesses in
table-pm and pm-only, the baseline engine uses the OS buffer
cache. With current technology, the main and the universal
roles of Optane PM do not perform well. It is critical to place
data structures in hybrid memory and storage carefully.

0.0

0.2

0.4

0.6

0.8

1.0

Small Dataset Large Dataset

N
or

m
al

ize
d

In
de

xi
ng

 T
im

e

stock table-pm pm-only flush-pm
hybrid hybrid+ cc-hybrid

Figure 7. Single-threaded indexing time for all configura-
tions normalized to pm-only.

Flushing the partial postings to Optane PM, as flush-pm
does, results in a speed-up of 43% over pm-only and 17% over
stock. However, it consumes DRAM, Optane PM, and SSD ca-
pacity. Although inefficient, spreading the memory and I/O
activity across three devices results in a performance gain.
Unfortunately, a hybrid DRAM and Optane PM approach,

Exploiting Intel Optane Persistent Memory for Full Text Search ISMM ’21, June 22, 2021, Virtual, Canada

namely hybrid performs, 9% worst than stock. We expect bet-
ter performance with a hybrid approach. We find that replac-
ing the PM-backed dictionary in hybrid with an SSD-backed
BDB dictionary (hybrid+) results in a 20% speed-up compared
to stock. (Section 6.1.4 investigates the performance patholo-
gies in PM-aware dictionaries.) Overall, for single-threaded
indexing, the best-performing configurations, flush-pm and
hybrid+, both use Optane PM.
Besides performance, PM offers instant-on preservation

of the state and crash consistency. The final configuration
in Figure 7, namely cc-hybrid, offers crash-consistent index
updates, but at a cost, a 15% slowdown over hybrid, 56% over
hybrid+, and 25% over stock.

We next tease apart the single-threaded indexing time into
various components and then discuss multicore scalability.
6.1.2 Breaking Down Indexing Time. We break down
the single-threaded indexing time into different components
to better understand the impact of Optane PM. Figure 8
shows the five components of indexing time, with each com-
ponent normalized to the total indexing time with pm-only.
From the bottom, DocId takes up 4% of the indexing time
with stock. For configurations with a PM-aware dictionary,
e.g., pm-only and hybrid, this time increase 5×. Also, there is
a 44% increase in Hash in table-pm and pm-only due to high
PM latency. For the same two configurations, Sort increases
35% due again to the PM-backed table. Flush is highest in
table-pm because the indexer flushes a PM-backed table
to an SSD. Compared to table-pm, flushing the table is 2×
faster with pm-only. Flushing in pm-only is essentially an
in-persistent-memory copy. Flush is lowest in hybrid and
hybrid+ (15% of indexing time) because of fast DRAM-PM
copies through pointer manipulations. With cc-hybrid, flush-
ing takes 23% longer due to persist-ordering instructions.
Next, Merge is lowest in hybrid+, consuming 7% of the in-
dexing time. Merging is also fast in flush-pm in which the
indexer reads PM-backed partial postings and writes them to
an SSD-backed binary file. Merging is 2× slower in pm-only
and hybrid, mainly due to a PM-aware dictionary. Merging
takes the longest in cc-hybrid due to crash-consistent index
updates. Overall, faster single-threaded indexing with PM is
due to accelerated flushing and merging of partial postings.
6.1.3 Multithreaded Scalability. We now evaluate the
multicore scalability of full-corpus indexing. Figure 9 shows
the indexing time with increasing core count normalized to
one core. Unfortunately, beyond eight cores, table-pm and
pm-only scale poorly. The execution time with pm-only from
eight cores to 32 cores increases by 1.8×. Therefore, Optane
PM, as the main or universal memory, does not gracefully
handle concurrency. The three hybrid configurations scale up
to 16 cores, reducing indexing time by 4×. From 16 to 32 cores,
they do not further reduce the indexing time. The reason for
their poor scalability is the limited bandwidth of Optane PM.
Specifically, for hybrid+with 32 cores, there is a 1.7× increase

0.0

0.2

0.4

0.6

0.8

1.0

sto
ck

table-pm

pm-only

flu
sh

-pm
hybrid

hybrid
+

cc-
hyb

rid

N
or

m
al

ize
d

In
de

xi
ng

 T
im

e

DocId Hash Sort Flush Merge

Figure 8. Breaking down single-threaded indexing time (nor-
malized to pm-only) into various components.

in Flush, and 8× increase inMerge, compared to stock. We
analyze this result further in Section 6.1.6 with hardware
performance counters. The most scalable configurations are
stock and flush-pm. Between one and 32 cores, flush-pm
reduces the indexing time by 9.3×. Stock scales better with
increasing core count, speeding up indexing by 11.5× with
32 cores than a single core.

0.0

0.2

0.4

0.6

0.8

1.0

1 4 8 16 32N
or

m
al

ize
d

In
de

xi
ng

 T
im

e

Core Count

stock table-pm pm-only
flush-pm hybrid hybrid+
cc-hybrid

Figure 9. Scalability of indexing with increasing core count
for selected configurations. The Y-axis is normalized to the
indexing time with a single core.

Figure 10 shows the indexing time with different core
count normalized to pm-only. We observe that flush-pm
is slower (3%) than hybrid+ with one thread, but it scales
better than hybrid+. With 32 cores, flush-pm is 38% faster
than hybrid+. Also, with increasing core count, table-pm
performs better than pm-only. This better scaling is due to a
reduction in flushing andmerging time compared to pm-only.
We also observe that the performance gap between hybrid
and cc-hybrid bridges with increasing core count. This result
is surprising because cc-hybrid executes clflush and sfence
instructions regardless of core count. (See Section 6.1.5 for
a deeper analysis). Finally, we observe that as core count
grows, stock performs better than hybrid+, eliminating the
single-core advantage of hybrid+ over stock.

ISMM ’21, June 22, 2021, Virtual, Canada Shoaib Akram

0.0

0.2

0.4

0.6

0.8

1.0

1 4 8 16 32

N
or

m
al

ize
d

In
de

xi
ng

 T
im

e

Core Count

stock table-pm pm-only flush-pm
hybrid hybrid+ cc-hybrid

Figure 10. Normalized indexing time with increasing core
count (n). The Y-axis is normalized to n-core pm-only.

PM’s capacity advantage. We evaluate PM’s capacity
advantage as the main memory. We increase the hash ta-
ble’s capacity in table-pm up to 16× compared to stock. We
use eight cores, beyond which table-pm does not scale. The
slowdown with table-pm is 2× with a similarly-sized hash
table. With a 16× advantage, table-pm is still 1.6× slower
than stock. PM’s capacity advantage cannot make up for its
high latency and low bandwidth relative to DRAM.

6.1.4 Performance of PM-aware Stores. We now inves-
tigate the performance of PM-aware key-value storage en-
gines for dictionary storage. Figure 11 shows the change in
execution time with three pmemkv storage engines. We nor-
malize to execution with hybrid+, that uses a BDB dictionary,
at the same core count. The concurrent hash map (CMap)
engine has a high overhead, especially with increasing core
count. It increases indexing time by up to 84%.

-100
-80
-60
-40
-20

0
20
40

CMap VCMap Hollow

%
 D

ec
re

as
e

in
 In

de
xi

ng

Ti
m

e
ve

rs
us

 B
DB

Persistent Backend Store

1 4 8 16 32

Worst

Better

Figure 11. Showing the change in indexing time with three
pmemkv storage engines across different core count.

The CMap engine guarantees crash-consistent dictionary
updates. To relax the consistency requirement, we also eval-
uate the volatile concurrent hash map or VCMap. We find
that, for multicore indexing, VCMap reduces indexing time
over CMap (hybrid+). Each indexing thread has a private dic-
tionary, and multicore execution distributes the dictionary

workload across cores. One caveat in our VCMap evalua-
tion is that we retain the term dictionary after indexing. The
original VCMap requires closing and deleting the database.
Surprisingly, closing the database increases the indexing
time by up to 2×, and the DocId time 7×. We also evaluate
Hollow in Figure 11. This engine measures only the inter-
facing (binding) overhead as internally, it drops information.
Overall, depending on the engine, the indexing time with 32
cores is between 84% worst to 23%, better than hybrid.
6.1.5 Overhead of Crash Consistency. We investigate
in detail the impact of crash-consistent indexing. Figure 12 (a)
shows the increase in the indexing time with cc-hybrid com-
pared to hybrid. The 15% increase (one core) is due to persist-
ordering instructions that the indexer execute while flushing
and merging partial postings. This overhead decreases with
increasing core count, as the workload is parallelized across
cores. Surprisingly, the performance of crash-consistent in-
dexing improves by 3%with 32 cores. We suspect that persist-
ing a cache line invalidates it and prevents future writeback.
Later in the execution, the cache eviction policy prioritizes
such (dead) lines for a new allocation, leaving other more
useful lines in the cache. We analyze this result further in
Section 6.1.6 with hardware performance counters.

-5
0
5

10
15

1 4 8 16 32

%
 In

cr
ea

se
 in

In

de
xi

ng
 T

im
e

Core Count
(a) Overall Indexing

-20
0

20
40
60
80

0 8 16 24 32
%

 In
cr

ea
se

 in
Ti

m
e

Core Count

Merge Flush

(b) Flushing and Merging

Figure 12. Performance impact of crash-consistent indexing
with increasing core count: (a) Increase in total indexing
time, (b) Increase in flushing and merging time.

We isolate the change in flushing and merging time with
cc-hybrid compared to hybrid (similar core count) in Fig-
ure 12 (b). Compared to hybrid, the flushing time increases
from 25% to 70%. The increase is highest for four cores. With
more cores, the per-core flushing workload is reduced, re-
ducing the overhead of pmem_persist calls. Merging (single-
core) is 34% slower than hybrid. With 16 and 32 cores, how-
ever, crash-consistent merging is faster than hybrid.
6.1.6 Microarchitectural Analysis. We use Linux’s perf
utility to analyze full-corpus indexing from the processor
microarchitecture perspective. We configure perf to obtain
the aggregated cycles across all cores.We further break down
cycles into three components: (1) all cycles during which
the core is stalled and waiting for load requests to resolve
(Load), (2) the core is stalled due to a fully occupied store
buffer (Store), and (3) the remaining cycles (Rest).

Exploiting Intel Optane Persistent Memory for Full Text Search ISMM ’21, June 22, 2021, Virtual, Canada

We show in Figure 13 the breakdown of total cycles for
stock and three hybrid memory configurations with one
core and 32 cores. First, we observe that, with one core,
compared to stock, hybrid exhibits 12% more Load stalls,
and 2.25× more Store stalls. These stalls are due to the PM-
aware dictionary. On the other hand, Hybrid+ exhibits fewer
Load stalls over stock, but still incurs 25% greater Store stalls.
Interestingly, we observe that Rest is smaller in both hybrid
configurations compared to stock. Rest is smaller because
PM-based configurations use memory-mapped files instead
of explicit I/O. Indeed, we find that faster indexing with PM
in hybrid+ (single-core) is mainly due to avoiding explicit
I/O. As expected, we observe a significant (3.5×) increase in
Store stalls with cc-hybrid compared to hybrid.

0.0

0.5

1.0

1.5

sto
ck

hybrid
hybrid

+

cc-hybridN
or

m
al

ize
d

Cy
cl

es

Load Store Rest

(a) One core

0.0
0.5
1.0
1.5
2.0
2.5

sto
ck

hybrid
hybrid

+

cc-hybridN
or

m
al

ize
d

Cy
cl

es

Load Store Rest

(b) 32 cores

Figure 13. Breakdown of total cycles into memory-related
stalls, normalized to the total cycles with stock.

With 32 cores, hybrid+ observes a significant increase in
Load and Store stalls. This increase is due to the limited
bandwidth of Optane PM. We observe a much more signif-
icant increase in Store stalls than Load ones. Figure 13 (b)
also provides an insight into the reduction in indexing time
with cc-hybrid at high core count compared to hybrid. As
hypothesized in Section 6.1.5, the reason for the reduction
in indexing time for cc-hybrid is 15% fewer Load stalls. In-
validating cache lines where newly written postings reside
informs the LLC controller to reuse these (dead) lines instead
of evicting other useful lines.
6.2 Index Updating
Rapidly updating an existing index is critical, especially in
real-time search [45]. We evaluate the latency of updating
an SSD-backed index with stock and PM-backed index with
pm-only and variants of hybrid. Figure 14 shows the update
time in seconds for adding between one to 10 K documents
with a single thread. We use the small dataset’s index, but
our conclusions are unchanged for the large index.
Updating an SSD-backed index (stock) takes 60 seconds.

A PM-backed index reduces this high latency by 2×. This
result is consistent with faster single-threaded indexing with
Optane PM. Adding a few documents to an index does not
stress the temporary data structures, including the hash table
and partial postings. Thus, the DRAM-PM latency gap is less

0
10
20
30
40
50
60

1 1K 10K

U
pd

at
e

Ti
m

e
in

 S
ec

on
ds

Number of Newly Added Documents

stock pm-only hybrid hybrid+ cc-hybrid

Figure 14. Showing the index update time in seconds with
an SSD and a PM-backed index.

critical. All the time in updating is due to merging, which
is storage I/O intensive. Thus, it happens faster on Optane
PM than on the SSD. The PM latency is lower than SSD, and
manipulating the memory-mapped PM-backed index is more
efficient than filesystem I/O with an SSD-backed index.

An update latency of 30 seconds is still high [45]. Hybrid+
reduces the update latency by a further 5× to only six seconds.
It achieves this low latency by replacing theCMap dictionary
in hybrid with a BDB dictionary. A crash-consistent PM-
backed index update (cc-hybrid) takes 35 seconds, which is
16% slower than hybrid, and 71% faster than stock. Except
hybrid+ reaching up to 6.6 seconds, update latencies stay
stable with increasing document count.
6.3 Query Evaluation
We now discuss the performance of query evaluation. We
show the distribution of tail latency across two query work-
loads. In addition to SSD and PM-backed indices, we evaluate
queries from aDRAM-backed index.We use the tmpfs filesys-
tem for emulating a DRAM-backed index. We always use a
BDB dictionary and place it in DRAM.
The first query workload dispatches S1 queries with a

single term. Analysts report that S1 queries constitute 21%
of all Google queries [8]. Figure 15 (a) shows the tail latency
distribution for such queries.We observe a similar tail latency
distribution with SSD, PM, and DRAM-backed indices. At
first, this outcome surprised us. However, we find that on
a dictionary match, an S1 query generates sequential read
accesses because the postings for the matching term are
stored contiguously. The sequential read latency of both the
SSD and the PM is much lower than random latency [50, 57].
The 99th percentile latency is three seconds. Our modified
query evaluator serves 90% of the queries in under 500 ms
across the three devices and a half in under 80 ms. These
findings reveal a rich choice for optimizing the placement of
inverted indices in data centers.

We show the 99th tail latency for the shortest 50% and the
longest 50% queries in Table 2. As a reference, we also report
tail latencies with a disk-based index. The SSD is slightly

ISMM ’21, June 22, 2021, Virtual, Canada Shoaib Akram

0

1000

2000

3000

Ta
il

La
te

nc
y

(m
s)

% of Requests

DRAM PM SSD

50 991

(a) S1

0

500

1000

1500

Ta
il

La
te

nc
y

(m
s)

% of Requests

DRAM PM SSD

50 991

S

P
SSD < PM

(b)M2

Figure 15. Distribution of tail latency for S1 and M2 query
workloads with a DRAM and an PM-backed index.

slower (10%) than PM in serving queries. The tail latency
with a disk-backed index violates the real-time response time
constraint. In our setup, a PM-backed index resolves queries
11% faster than a DRAM-backed index. We suspect this is due
to the use of tmpfs in the DRAM evaluation. This filesystem
is not optimized to handle large amounts of concurrency.

Table 2. 99th percentile tail latency (milliseconds) of shortest
and longest 50% of requests.

Po
st

in
g

lis
ts

 in S1 M2

Short Long Short Long

DRAM 90 2900 5.0 70

Optane 80 2700 40 500

SSD 90 3000 9.0 1400

Disk 20000 80000 60000 140000

The M2 queries result in a different trend. In Figure 15 (b),
we divide their tail latency distribution into two regions. In
the first region, the SSD is faster in serving theM2 queries. Its
99th percentile tail latency for short queries is 9 ms. Optane
PM is 4.4× slower in serving the 50% shortest queries. This
region continues for 70% of the queries on the horizontal
axis. At that point, a different trend emerges. Optane PM now
responds faster than the SSD. Initially by a small percentage
margin, and ultimately, for the longest 50% of the queries,
its 99th percentile tail latency is 2.8× lower.

We investigate the two regions in Figure 15 (b). First, the
M2 query workload generates random read requests for the
SSD and PM controllers. The read access pattern is random
because the M2 (conjunctive) query evaluator first obtains
the posting lists for each of the two terms. Each posting list
is sorted from the rarest occurrence of a term to the more
common. Then, the query evaluator advances the lists, in
turn, switching between them until it finds all documents
that contain both terms. Advancing two or more lists results
in random read accesses.

Optane PM does not handle large amounts of concurrent
random requests gracefully [57]. Thus, many queries in the
left region in Figure 15 (b) suffer a high latency with a PM-
backed index. The SSD-backed index partially resides in

the OS (DRAM) cache. The SSD-bound queries that find
postings in DRAM resolve faster. (To observe DRAM reads
in all experiments, we use Intel’s pcm-memory.x utility [27].)
The queries that access the SSD media traverse the PCIe
interconnect and resolve slower than a PM-backed index.
Finally, DRAM is the fastest to serve M2 queries. Its tail

latency for the M2 query workloads is 8× and 20× lower than
PM and SSD, respectively. DRAM’s random access latency is
lower than Optane PM and SSD. Overall, our analysis opens
up new tradeoffs in placing indices in data center servers.

7 Related Work
Intel Optane DIMMs appeared two years ago. Few efforts
characterize their main memory and storage roles. Yang et al.
compare Optane PM’s latency and bandwidth to DRAM [57].
They also characterize its persistent nature for key-value
stores. Jian et al. report the performance of in-memory and
embedded database workloads with Optane PM [54]. Intel
Optane SSDs and DIMMs use the same 3D XPoint media.
Recent work evaluates Optane SSDs for data-intensive work-
loads [28, 51, 58]. Our work is the first to evaluate Optane
PM and SSDs for full-text search.
On the programming side, Memaripour et al. introduce

Pronto, a library for transforming volatile data structures
into non-volatile ones [40]. They use real persistent mem-
ory. A flurry of prior work uses emulation to propose and
evaluate persistent memory libraries, filesystems, and pro-
gramming models [11, 12, 14, 24, 46, 53, 55, 56, 61]. Early
efforts focus on native support for persistent memory re-
quiring manual intervention for identifying persistent data.
Recently, researchers have explored managed language sup-
port for automatically persisting data [43, 52].
Prior literature discusses in detail various techniques for

constructing an inverted index [62]. Real-time search is gain-
ing attention, and especially relevant is the approach at Twit-
ter [32]. Other works improve search latency with better
index managers, specialized memory allocators, and faster
query evaluators [3–5, 19, 26, 33–35, 39, 41, 47]. Our special
focus in this paper is on emerging non-volatile memory.

8 Conclusion
We have now evaluated Intel Optane DC persistent memory
(PM) for text indexing and search. Optane PM delivers mixed
results against a traditional storage stack. At low core count,
it reduces the time it takes to build or update an index. Its tail
latency is lower for long-running conjunctive queries. Unfor-
tunately, PM-backed indexing does not scale to a high core
count due to limited bandwidth. Also, conjunctive queries
suffer longer tail latencies for the shortest queries. Some
performance pathologies exist in the PM software stack. The
overhead of crash-consistent indexing is low at a high core
count. Hardware and software for persistent memory must
continue to evolve to realize its full potential in the future.

Exploiting Intel Optane Persistent Memory for Full Text Search ISMM ’21, June 22, 2021, Virtual, Canada

References
[1] Shoaib Akram. 2021. Performance Evaluation of Intel Optane Memory

for Managed Workloads. ACM Trans. Archit. Code Optim. 18, 3, Article
29 (Apr 2021). https://doi.org/10.1145/3451342

[2] S. Akram, M. Marazakis, and A. Bilas. 2012. Understanding Scalability
and Performance Requirements of I/O-Intensive Applications on Fu-
ture Multicore Servers. In IEEE International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems
(MASCOTS). https://doi.org/10.1109/MASCOTS.2012.29

[3] N. Asadi and J. Lin. 2013. Fast candidate generation for real-time tweet
search with bloom filter chains. ACM Trans. Inf. Syst. 31 (2013), 13.
https://doi.org/10.1145/2493175.2493178

[4] N. Asadi, J. Lin, and M. Busch. 2013. Dynamic memory allocation
policies for postings in real-time Twitter search. In Proceedings of the
19th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mmining. https://doi.org/10.1145/2487575.2488221

[5] Hannah Bast and Björn Buchhold. 2013. An Index for Efficient Se-
mantic Full-Text Search. In Proceedings of the 22nd ACM Interna-
tional Conference on Information & Knowledge Management. https:
//doi.org/10.1145/2505515.2505689

[6] Stephen M. Blackburn, Perry Cheng, and Kathryn S. McKinley. 2004.
Oil and Water? High Performance Garbage Collection in Java with
MMTk. In Proceedings of the International Conference on Software En-
gineering (ICSE). https://doi.org/10.1109/ICSE.2004.1317436

[7] Stephen M. Blackburn, Kathryn S. McKinley, Robin Garner, Chris
Hoffmann, Asjad M. Khan, Rotem Bentzur, Amer Diwan, Daniel
Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony
Hosking, Maria Jump, Han Lee, J. Eliot B. Moss, Aashish Phansalkar,
Darko Stefanovik, Thomas VanDrunen, Daniel von Dincklage, and
Ben Wiedermann. 2008. Wake Up and Smell the Coffee: Evalua-
tion Methodology for the 21st Century. Commun. ACM 51, 8 (2008).
https://doi.org/10.1145/1378704.1378723

[8] Conor Bond. 2020. 27 Google Search Statistics You Should Know
in 2019. https://www.wordstream.com/blog/ws/2019/02/07/google-
search-statistics

[9] Silas Boyd-Wickizer, Austin T. Clements, Yandong Mao, Aleksey
Pesterev, M. Frans Kaashoek, Robert Morris, and Nickolai Zeldovich.
2010. An Analysis of Linux Scalability to Many Cores. In Proceedings of
the 9th USENIX Conference on Operating Systems Design and Implemen-
tation (OSDI). https://www.usenix.org/conference/osdi10/analysis-
linux-scalability-many-cores

[10] Silas Boyd-Wickizer, Austin T. Clements, Yandong Mao, Aleksey
Pesterev, M. Frans Kaashoek, Robert Morris, and Nickolai Zeldovich.
2021. MOSBENCH. https://pdos.csail.mit.edu/archive/mosbench/

[11] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Ra-
jesh K. Gupta, Ranjit Jhala, and Steven Swanson. 2011. NV-Heaps: Mak-
ing Persistent Objects Fast and Safe with Next-generation, Non-volatile
Memories. In Proceedings of the Sixteenth International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems (ASPLOS). https://doi.org/10.1145/1961295.1950380

[12] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek,
Benjamin Lee, Doug Burger, and Derrick Coetzee. 2009. Better I/O
Through Byte-addressable, Persistent Memory. In Proceedings of the
ACM SIGOPS 22nd Symposium on Operating Systems Principles (SOSP).
https://doi.org/10.1145/1629575.1629589

[13] Intel Corporation. 2021. pmem.io: Persistent Memory Programming.
https://pmem.io/pmdk/

[14] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip
Lantz, Dheeraj Reddy, Rajesh Sankaran, and Jeff Jackson. 2014. System
Software for Persistent Memory. In Proceedings of the Ninth European
Conference on Computer Systems (EuroSys). https://doi.org/10.1145/
2592798.2592814

[15] EF. 2021. 3000 most common words in English. https://www.ef-
australia.com.au/english-resources/english-vocabulary/top-3000-

words/
[16] Elastic. 2021. Elastic Enterprise Search. https://www.elastic.co/

elasticsearch/
[17] The Apache Software Foundation. 2021. Apache Solr 8.8.2. https:

//solr.apache.org/
[18] The Apache Software Foundation. 2021. Welcome to Apache Lucene.

https://lucene.apache.org/
[19] L. Gao, Y. Wang, Dong sheng Li, Junming Shao, and Jingkuan Song.

2017. Real-time social media retrieval with spatial, temporal and social
constraints. Neurocomputing 253 (2017), 77–88. https://doi.org/10.
1016/j.neucom.2016.11.078

[20] Radu Gheorghe, Matthew Lee Hinman, and Roy Russo. 2015. Elastic-
search in Action.

[21] C. Lee Giles, Kurt D. Bollacker, and Steve Lawrence. 1998. CiteSeer:
An Automatic Citation Indexing System. In Proceedings of the Third
ACM Conference on Digital Libraries (DL). https://doi.org/10.1145/
276675.276685

[22] Md E. Haque, Yong hun Eom, Yuxiong He, Sameh Elnikety, Ricardo
Bianchini, and Kathryn S. McKinley. 2015. Few-to-Many: Incremen-
tal Parallelism for Reducing Tail Latency in Interactive Services. In
Proceedings of the Twentieth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS).
https://doi.org/10.1145/2775054.2694384

[23] Md E. Haque, Yuxiong He, Sameh Elnikety, Thu D. Nguyen, Ricardo
Bianchini, and Kathryn S. McKinley. 2017. Exploiting Heterogeneity
for Tail Latency and Energy Efficiency. In Proceedings of the 50th An-
nual IEEE/ACM International Symposium on Microarchitecture (MICRO).
https://doi.org/10.1145/3123939.3123956

[24] Swapnil Haria, Mark D. Hill, and Michael M. Swift. 2020. MOD: Mini-
mally Ordered Durable Datastructures for Persistent Memory. In Pro-
ceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS).
https://doi.org/10.1145/3373376.3378472

[25] Matthias Hauswirth, Peter F. Sweeney, Amer Diwan, and Michael
Hind. 2004. Vertical Profiling: Understanding the Behavior of Object-
Priented Applications. In Proceedings of the 19th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA). https://doi.org/10.1145/1028976.1028998

[26] Jun Heo, Jaeyeon Won, Yejin Lee, Shivam Bharuka, Jaeyoung Jang,
Tae Jun Ham, and Jae W. Lee. 2020. IIU: Specialized Architecture for
Inverted Index Search. In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). https://doi.org/10.1145/3373376.3378521

[27] Intel. 2021. Processor Counter Monitor (PCM). https://github.com/
opcm/pcm

[28] Y. Jia and F. Chen. 2020. From Flash to 3D XPoint: Performance
Bottlenecks and Potentials in RocksDB with Storage Evolution. In
IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS). https://doi.org/10.1109/ISPASS48437.2020.00034

[29] A. Kolli, J. Rosen, S. Diestelhorst, A. Saidi, S. Pelley, S. Liu, P. M.
Chen, and T. F. Wenisch. 2016. Delegated persist ordering. In 49th An-
nual IEEE/ACM International Symposium on Microarchitecture (MICRO).
https://doi.org/10.1109/MICRO.2016.7783761

[30] Benjamin C. Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo Zhao, Engin
Ipek, Onur Mutlu, and Doug Burger. 2010. Phase-Change Technology
and the Future of Main Memory. IEEE Micro 30, 1 (Jan. 2010). https:
//doi.org/10.1109/MM.2010.24

[31] Jinyang Li, Boon Thau Loo, Joseph M. Hellerstein, M. Frans Kaashoek,
David R. Karger, and Robert Morris. 2003. On the Feasibility of Peer-
to-Peer Web Indexing and Search. In Peer-to-Peer Systems II. https:
//doi.org/10.1145/2808194.2809489

[32] J. Lin, P. Lok, B. Larson, K. Gade, S. Luckenbill, and M. Busch. 2012.
Earlybird: Real-Time Search at Twitter. In 2013 IEEE 29th International
Conference on Data Engineering (ICDE). https://doi.org/10.1109/ICDE.
2012.149

https://doi.org/10.1145/3451342
https://doi.org/10.1109/MASCOTS.2012.29
https://doi.org/10.1145/2493175.2493178
https://doi.org/10.1145/2487575.2488221
https://doi.org/10.1145/2505515.2505689
https://doi.org/10.1145/2505515.2505689
https://doi.org/10.1109/ICSE.2004.1317436
https://doi.org/10.1145/1378704.1378723
https://www.wordstream.com/blog/ws/2019/02/07/google-search-statistics
https://www.wordstream.com/blog/ws/2019/02/07/google-search-statistics
https://www.usenix.org/conference/osdi10/analysis-linux-scalability-many-cores
https://www.usenix.org/conference/osdi10/analysis-linux-scalability-many-cores
https://pdos.csail.mit.edu/archive/mosbench/
https://doi.org/10.1145/1961295.1950380
https://doi.org/10.1145/1629575.1629589
https://pmem.io/pmdk/
https://doi.org/10.1145/2592798.2592814
https://doi.org/10.1145/2592798.2592814
https://www.ef-australia.com.au/english-resources/english-vocabulary/top-3000-words/
https://www.ef-australia.com.au/english-resources/english-vocabulary/top-3000-words/
https://www.ef-australia.com.au/english-resources/english-vocabulary/top-3000-words/
https://www.elastic.co/elasticsearch/
https://www.elastic.co/elasticsearch/
https://solr.apache.org/
https://solr.apache.org/
https://lucene.apache.org/
https://doi.org/10.1016/j.neucom.2016.11.078
https://doi.org/10.1016/j.neucom.2016.11.078
https://doi.org/10.1145/276675.276685
https://doi.org/10.1145/276675.276685
https://doi.org/10.1145/2775054.2694384
https://doi.org/10.1145/3123939.3123956
https://doi.org/10.1145/3373376.3378472
https://doi.org/10.1145/1028976.1028998
https://doi.org/10.1145/3373376.3378521
https://github.com/opcm/pcm
https://github.com/opcm/pcm
https://doi.org/10.1109/ISPASS48437.2020.00034
https://doi.org/10.1109/MICRO.2016.7783761
https://doi.org/10.1109/MM.2010.24
https://doi.org/10.1109/MM.2010.24
https://doi.org/10.1145/2808194.2809489
https://doi.org/10.1145/2808194.2809489
https://doi.org/10.1109/ICDE.2012.149
https://doi.org/10.1109/ICDE.2012.149

ISMM ’21, June 22, 2021, Virtual, Canada Shoaib Akram

[33] L. Lin, Xiaohui Yu, and N. Koudas. 2013. Pollux: towards scalable
distributed real-time search on microblogs. In Proceedings of the
International Conference on Extending Database Technology (EDBT).
https://doi.org/10.1145/2452376.2452416

[34] A. Magdy, M. Mokbel, S. Elnikety, S. Nath, and Yuxiong He. 2014.
Mercury: A memory-constrained spatio-temporal real-time search on
microblogs. IEEE 30th International Conference on Data Engineering
(ICDE). https://doi.org/10.1109/ICDE.2014.6816649

[35] Giorgos Margaritis and S. Anastasiadis. 2014. Incremental Text Index-
ing for Fast Disk-Based Search. ACM Trans. Web 8 (2014), 16:1–16:31.
https://doi.org/10.1145/2560800

[36] Michael McCandless. 2021. Apache Lucene performance on 128-core
AMD Ryzen Threadripper 3990X. https://www.ef-australia.com.au/
english-resources/english-vocabulary/top-3000-words/

[37] Michael McCandless. 2021. Luceneutil: Lucene benchmarking utilities.
http://blog.mikemccandless.com

[38] Michael McCandless, Erik Hatcher, and Otis Gospodnetic. 2010. Lucene
in Action, Second Edition: Covers Apache Lucene 3.0. Manning Publica-
tions Co., USA.

[39] Sergey Melink, Sriram Raghavan, Beverly Yang, and Hector Garcia-
Molina. 2001. Building a Distributed Full-Text Index for the Web. ACM
Trans. Inf. Syst. 19, 3 (2001), 217–241. https://doi.org/10.1145/502115.
502116

[40] AmirsamanMemaripour, Joseph Izraelevitz, and Steven Swanson. 2020.
Pronto: Easy and Fast Persistence for Volatile Data Structures. In Pro-
ceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS).
https://doi.org/10.1145/3373376.3378456

[41] G. Mishne, Jeffrey Dalton, Zhenghua Li, A. Sharma, and J. Lin. 2013.
Fast data in the era of big data: Twitter’s real-time related query sug-
gestion architecture. ArXiv abs/1210.7350 (2013).

[42] Sanketh Nalli, Swapnil Haria, Mark D. Hill, Michael M. Swift, Haris
Volos, and Kimberly Keeton. 2017. An Analysis of Persistent Memory
Use with WHISPER. In Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). https://doi.org/10.1145/3037697.3037730

[43] Thomas Shull, Jian Huang, and Josep Torrellas. 2019. AutoPersist: An
Easy-to-Use Java NVM Framework Based on Reachability. In Proceed-
ings of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI). https://doi.org/10.1145/3314221.
3314608

[44] Jeremy Stribling, Jinyang Li, Isaac G. Councill, M. Frans Kaashoek, and
Robert Morris. 2006. OverCite: A Distributed, Cooperative Citeseer. In
Proceedings of the 9th USENIX Conference on Networked Systems Design
and Implementation (NSDI).

[45] Nico Tonozzi and Dumitr Daniliuc. 2020. Reducing search indexing
latency to one second. https://blog.twitter.com/engineering/en_
us/topics/infrastructure/2020/reducing-search-indexing-latency-to-
one-second.html

[46] Haris Volos, Andres Jaan Tack, and Michael M. Swift. 2011.
Mnemosyne: Lightweight Persistent Memory. In Proceedings of the
Sixteenth International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS). https://doi.org/10.
1145/1961296.1950379

[47] Y. Wang and J. Lin. 2015. The Feasibility of Brute Force Scans for Real-
Time Tweet Search. Proceedings of the 2015 International Conference
on The Theory of Information Retrieval (2015). https://doi.org/10.1145/
2808194.2809489

[48] Matthew Wilcox. 2014. Add Support for NV-DIMMs to Ext4. https:
//lwn.net/Articles/613384/

[49] Alan Woordward. 2019. What’s new in Lucene 8. https://www.elastic.
co/blog/whats-new-in-lucene-8

[50] Kan Wu, Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. 2019.
Towards an Unwritten Contract of Intel Optane SSD. In Proceedings
of the 11th USENIX Conference on Hot Topics in Storage and File Sys-
tems (HotStorage). https://www.usenix.org/conference/hotstorage19/
presentation/wu-kan

[51] Kan Wu, Andrea Arpaci-Dusseau, Remzi Arpaci-Dusseau, Rathijit
Sen, and Kwanghyun Park. 2019. Exploiting Intel Optane SSD for
Microsoft SQL Server. In Proceedings of the 15th International Work-
shop on Data Management on New Hardware. https://doi.org/10.1145/
3329785.3329916

[52] Mingyu Wu, Haibo Chen, Hao Zhu, Binyu Zang, and Haibing Guan.
2020. GCPersist: An Efficient GC-Assisted Lazy Persistency Framework
for Resilient Java Applications on NVM. In Proceedings of the 16th
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments (VEE). https://doi.org/10.1145/3381052.3381318

[53] Mingyu Wu, Ziming Zhao, Haoyu Li, Heting Li, Haibo Chen, Binyu
Zang, and Haibing Guan. 2018. Espresso: Brewing Java For More Non-
Volatility with Non-volatile Memory. In Proceedings of the International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). https://doi.org/10.1145/3173162.3173201

[54] Jian Xu, Juno Kim, AmirsamanMemaripour, and Steven Swanson. 2019.
Finding and Fixing Performance Pathologies in Persistent Memory
Software Stacks. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). https://doi.org/10.1145/3297858.3304077

[55] Jian Xu and Steven Swanson. 2016. NOVA: A Log-structured File
System for Hybrid Volatile/Non-volatile Main Memories. In Proceed-
ings of the 14th Usenix Conference on File and Storage Technologies
(FAST). https://www.usenix.org/conference/fast16/technical-sessions/
presentation/xu

[56] Jian Xu, Lu Zhang, AmirsamanMemaripour, Akshatha Gangadharaiah,
Amit Borase, Tamires Brito Da Silva, Steven Swanson, andAndy Rudoff.
2017. NOVA-Fortis: A Fault-Tolerant Non-Volatile Main Memory File
System. In Proceedings of the 26th Symposium on Operating Systems
Principles (SOSP). https://doi.org/10.1145/3132747.3132761

[57] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and
Steven Swanson. 2020. An Empirical Guide to the Behavior and Use
of Scalable Persistent Memory. In Proceedings of the 14th Usenix Con-
ference on File and Storage Technologies (FAST). https://www.usenix.
org/conference/fast20/presentation/yang

[58] Jinfeng Yang, Bingzhe Li, and David J. Lilja. 2020. Exploring Perfor-
mance Characteristics of the Optane 3D Xpoint Storage Technology.
ACM Trans. Model. Perform. Eval. Comput. Syst. 5, 1, Article 4 (Feb.
2020). https://doi.org/10.1145/3372783

[59] Xi Yang. 2021. Private communication.
[60] Lunkai Zhang, Brian Neely, Diana Franklin, Dmitri Strukov, Yuan Xie,

and Frederic T. Chong. 2016. Mellow Writes: Extending Lifetime in
Resistive Memories Through Selective Slow Write Backs. In Proceed-
ings of the International Symposium on Computer Architecture (ISCA).
https://doi.org/10.1145/3007787.3001192

[61] Yiying Zhang, Jian Yang, Amirsaman Memaripour, and Steven Swan-
son. 2015. Mojim: A Reliable and Highly-Available Non-Volatile Mem-
ory System. In Proceedings of the Twentieth International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). https://doi.org/10.1145/2694344.2694370

[62] Justin Zobel and Alistair Moffat. 2006. Inverted Files for Text Search
Engines. 38, 2 (2006). https://doi.org/10.1145/1132956.1132959

https://doi.org/10.1145/2452376.2452416
https://doi.org/10.1109/ICDE.2014.6816649
https://doi.org/10.1145/2560800
https://www.ef-australia.com.au/english-resources/english-vocabulary/top-3000-words/
https://www.ef-australia.com.au/english-resources/english-vocabulary/top-3000-words/
http://blog.mikemccandless.com
https://doi.org/10.1145/502115.502116
https://doi.org/10.1145/502115.502116
https://doi.org/10.1145/3373376.3378456
https://doi.org/10.1145/3037697.3037730
https://doi.org/10.1145/3314221.3314608
https://doi.org/10.1145/3314221.3314608
https://blog.twitter.com/engineering/en_us/topics/infrastructure/2020/reducing-search-indexing-latency-to-one-second.html
https://blog.twitter.com/engineering/en_us/topics/infrastructure/2020/reducing-search-indexing-latency-to-one-second.html
https://blog.twitter.com/engineering/en_us/topics/infrastructure/2020/reducing-search-indexing-latency-to-one-second.html
https://doi.org/10.1145/1961296.1950379
https://doi.org/10.1145/1961296.1950379
https://doi.org/10.1145/2808194.2809489
https://doi.org/10.1145/2808194.2809489
https://lwn.net/Articles/613384/
https://lwn.net/Articles/613384/
https://www.elastic.co/blog/whats-new-in-lucene-8
https://www.elastic.co/blog/whats-new-in-lucene-8
https://www.usenix.org/conference/hotstorage19/presentation/wu-kan
https://www.usenix.org/conference/hotstorage19/presentation/wu-kan
https://doi.org/10.1145/3329785.3329916
https://doi.org/10.1145/3329785.3329916
https://doi.org/10.1145/3381052.3381318
https://doi.org/10.1145/3173162.3173201
https://doi.org/10.1145/3297858.3304077
https://www.usenix.org/conference/fast16/technical-sessions/presentation/xu
https://www.usenix.org/conference/fast16/technical-sessions/presentation/xu
https://doi.org/10.1145/3132747.3132761
https://www.usenix.org/conference/fast20/presentation/yang
https://www.usenix.org/conference/fast20/presentation/yang
https://doi.org/10.1145/3372783
https://doi.org/10.1145/3007787.3001192
https://doi.org/10.1145/2694344.2694370
https://doi.org/10.1145/1132956.1132959

	Abstract
	1 Introduction
	2 Background
	2.1 Baseline Search Engine
	2.2 Inverted Index Tutorial
	2.3 Simplifying Assumptions
	2.4 Intel Optane DC Persistent Memory

	3 Baseline Characterization
	4 Exploiting Persistent Memory
	4.1 Indexing with Optane PM
	4.2 Query Evaluation with Optane PM

	5 Experimental Methodology
	5.1 Platform
	5.2 Datasets and Ingestion
	5.3 Configurations
	5.4 Measurement Methodology
	5.5 Query Formation

	6 Evaluation Results
	6.1 Full Corpus Indexing
	6.2 Index Updating
	6.3 Query Evaluation

	7 Related Work
	8 Conclusion
	References

