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Abstract
Managed search engines, such as Apache Solr and Elastic-
search, host huge inverted indices in main memory to offer
fast response times. This practice faces two challenges. First,
limited DRAM capacity necessitates search engines aggres-
sively compress indices to reduce their storage footprint.
Unfortunately, our analysis with a popular search library
shows that compression slows down queries (on average) by
up to 1.7× due to high decompression latency. Despite their
performance advantage, uncompressed indices require 10×
more memory capacity, making them impractical. Second,
indices today reside off-heap, encouraging unsafe memory
accesses and risking eviction from the page cache.

Emerging byte-addressable and scalable non-volatile mem-
ory (NVM) offers a good fit for storing uncompressed indices.
Unfortunately, NVM exhibits high latency. We rigorously
evaluate the performance of DRAM and NVM-backed com-
pressed/uncompressed indices to find that an uncompressed
index in a high-capacity managed heap memory-mapped
over NVM provides a 36% reduction in query response times
compared to a DRAM-backed compressed index in off-heap
memory. Also, it is only 11% slower than the uncompressed
index in a DRAM heap (fastest approach). DRAM and NVM-
backed compressed (off-heap) indices behave similarly.

We analyze the narrow response time gap between DRAM
and NVM-backed indices. We conclude that inverted indices
demand massive memory capacity, but search algorithms
exhibit a high spatial locality that modern cache hierarchies
exploit to hide NVM latency. We show the scalability of
uncompressed indices on the NVM-backed heap with large
core counts and index sizes. This work uncovers new space-
time tradeoffs in storing in-memory inverted indices.
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1 Introduction
Search engines enable locating web pages on the internet
and are a critical component of social media, professional
networking, and e-commerce platforms. The key to retaining
satisfied users is to offer low query response times. Amazon
reports that even a 100 ms delay results in revenue drops [36].
Similar observations guide Google’s search infrastructure.

The critical data structure search engines use for locating
documents (web pages or social media posts) matching a
word (term) is an inverted index. An inverted index maps
unique terms to posting lists, where each posting stores
an integer document identifier (ID) and meta-data (term fre-
quency and position). Associating terms to posting lists using
an inverted index speeds up query evaluation dramatically.
Today’s standard practice is to host the inverted index

in off-heap main memory. Recent work shows that even
PCIe NVMe SSDs with byte-addressable 3D XPoint memory
cannot deliver real-time response times [2]. Therefore, ser-
vice providers keep indices in memory [60]. Unfortunately,
as datasets grow, the inverted index grows proportionally,
and large indices put increased pressure on DRAM. On the
other hand, DRAM scaling cannot cope with the growth in
datasets [20, 42]. Specifically, as data volume doubles yearly,
the DRAM capacity only scales by 10% [24, 28]. The result is
either the poor quality of service due to index lookups from
storage or exorbitant memory-related expenditures.

Problem # 1 (High Decompression Latency): Compres-
sion is a crucial technique search engines use to store large
indices in limited DRAM. For example, Apache Lucene uses
a compression scheme that reduces index size by 85–90%,
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allowing efficient storage in memory and reducing disk-to-
memory transfers in the warmup phase [69]. Although com-
pression reduces the memory footprint, its major downside
is the extra computation required for decompression. Large
indices require decompressing an increasingly large number
of postings, increasing the time to resolve search queries.

Problem # 2 (Off-Heap Index Placement): The second
problemwith current practice is placing the index in off-heap
memory. Popular search engines, such as Apache Solr [14],
and Elasticsearch [13], are written in Java, a managed lan-
guage, with support for automatic memory management or
garbage collection (GC). In a managed environment, such as
the Java Virtual Machine (JVM), accesses to the heap are di-
rect, fast, and safe. Off-heap accesses, although allowed, are
unsafe (so-called “backdoor") [37], impose restrictions on in-
dex formats, and make it challenging to use arbitrary objects,
the very reason programmers prefer managed languages.

Off-heap memory is motivated by three reasons. 1 It en-
ables transferring index segments from storage via demand
paging. When the index exhausts memory capacity, OS trans-
parently uses storage as a memory extension. For user-facing
workloads, operators typically distribute indices horizon-
tally in memory [60]. Long queries generating I/O violate
response time constraints and are killed or restarted [25, 41].
Storing index pages on anonymous heap memory is desir-
able, as it prevents their eviction due to conflicts and eviction
algorithms skewed heavily towards page cache [56]. 2 With
off-heap placement, updates transparently move to storage
for long-term preservation. However, inverted indices are
immutable. New insertions happen in a separate ingestion
pipeline [35, 52], and tombstones filter deletions [39]. 3
Finally, it is possible to store indices in large heaps memory-
mapped over storage [29, 31] but requires extra effort to pre-
vent device and GC-related performance anomalies [31, 64].
Prior art reports high GC overhead for large heaps [31, 44,
45], on top of typical tuning effort [10, 33, 50, 57]. Avoiding
off-heap indices requires effort but brings advantages for
managed search engines.
To cope with growing index sizes and provide fast, safe,

and direct access to inverted indices while allowing program-
mers to use rich object formats to compute efficiently over
the index, we need to find 1 scalable storage media for host-
ing uncompressed indices and 2 mechanisms for storing
the indices on the managed heap. This work aims to tackle
the two challenges without degrading search performance.
Non-volatile main memory (NVM) technologies, such as

3D XPoint (Intel) [3, 62], carbon nanotubes (Nantero) [16],
and Spin-transfer Torque MRAM (STT-MRAM) devices (Ev-
erspin) [1], offer byte-addressability and high capacity. They
offer up to 10× lower latency than NVMe SSDs, but their
read and write latency is higher than DRAM. Recent work
shows that Intel’s Optane NVDIMMs are 2–3× slower than

DRAM [62]. NVM’s high density can mitigate DRAM pres-
sure, enable large (uncompressed) in-memory indices, reduce
total memory expenditure, and improve service quality.
We open up and rigorously evaluate a novel space-time

tradeoff in this work. Specifically, on the one hand, capacity-
limited DRAM-backed compressed indices in off-heap mem-
ory suffer from high decompression latency. On the other
hand, scalable NVM-backed uncompressed indices suffer
from high memory access latency. We use Apache Lucene,
a widely used Java search library, including Twitter [53]
and Linkedin [49], to explore the query response times with
DRAM/NVM-backed compressed/uncompressed indices. Our
work involves extensive experimentation to set up Lucene’s
index on a datacentric server and ensure that our experi-
ments represent real-world behavior and not an odd config-
uration. We report statistically significant query execution
times and account for non-determinism, including hyper-
threading, NUMA, JIT compilation, OS, and managed heap
settings. We use Intel Optane Persistent Memory (PM) in
direct access mode without a DRAM (page) cache. We care-
fully tune and modify Lucene’s indexing formats for a fair
comparison of compressed and uncompressed indices. We
also fix a performance bug.
Key Finding: We discover that decompression latency

hurts query response times much more significantly than
high NVM latency. Across compressed and uncompressed
postings formats, different query types, and varying core
counts, changing the memory technology from NVM to
DRAM reduces query response times by up to 11%. On the
other hand, using uncompressed instead of compressed in-
dices results in (up to) a 40% reduction in query execution
times. Our key result is that, compared to the state-of-the-art
(compressed index in off-heap memory), a hybrid DRAM-
NVM system, where the DRAM-backed young generation
(two gigabytes) is 64× the LLC size, and a separate NVM
heap (few terabytes) backs the index, we can reduce query
response times by up to 36%. This proposed system delivers
safe access to large uncompressed indices in scalable main
memory. Our findings are somewhat surprising because Op-
tane PM is up to 3× slower than DRAM.
To explain the surprising result, we conduct a thorough

performance counter analysis using Intel’s recommended
and rigorous top-down methodology [66]. We bring the in-
sight that although search engines demand massive memory
capacity to store indices and are backend (memory) bound,
their query evaluation algorithms exhibit high spatial lo-
cality. Backend-related stalls represent more than 50% of
the total issue slots, and almost 50% of those are due to
hits/misses in the cache hierarchy. On the other hand, LLC
misses per kilo instructions are low. Our results confirm that
modern prefetchers aid search by learning access patterns
and bringing postings in on-chip caches ahead of time [19].
Our analysis and related findings have broader implications
for search infrastructure provisioning.
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Document 1: Never arrive late
Document 2: Never say never

Dictionary

Terms          Offsets
arrive        <docID = 1, frequency = 1, positions = [1]>
late              <1,1,[2]>
never      <1,1,[0]>        <2,2,[0,2]>
say      <2,1,[1]>

Postings

Figure 1. Structure of an Inverted Index.

Our other findings are: 1 with properly sized heaps, the
overhead of JVM’s production Garbage-First (G1) collec-
tor [12] for hybrid DRAM-NVM systems is up to 6%, 2
hardware prefetchers are more effective when the postings
volume per query is relatively large. Finally, our work fixes a
performance bug in Lucene’s uncompressed postings format.

This paper opens up new and appealing tradeoffs at the in-
tersection of established practices, i.e., compression and the
use of off-heap memory, and emerging trends, i.e., improved
software safety, huge managed heaps, and scalable mem-
ory technologies. Next, we provide background on Lucene’s
inverted index and other structures and algorithms it uses.

2 Background
Weprovide background onApache Lucene, a high-performance,
full-text search engine (Java) library. Lucene is industrial-
strength and the backbone of Apache Solr [14] and Elastic-
search [13]. We discuss Lucene’s inverted index, the com-
pression algorithms it uses, and its search algorithms.

2.1 Lucene Inverted Index
An inverted index maps words (terms) to their location in a
set of documents. (See Figure 1.) Its two main components
are posting lists and a dictionary. Typically, the posting lists
are stored in a postings file, and the dictionary is stored in a
separate term dictionary file. A posting list contains postings
that identify documents containing terms, and meta-data,
such as term frequency and position. The term dictionary
maps each term to an offset into the postings file where the
posting list for that specific term starts.

Lucene sorts posting lists by document ID. It is possible to
control the meta-data stored in each posting. We store term
frequency and position. Lucene stores postings in multiple
blocks, and each block contains postings for 128 documents.

2.2 Index Compression in Lucene
We now discuss techniques Lucene employs for compressing
the index. (See prior work for a full survey [47, 69].) Lucene
offers the PostingsFormat interface to implement custom
compression techniques. It also provides a default imple-
mentation called Lucene84PostingsFormat in our version.
Applications typically use the default implementation.

Figure 2. Compression efficiency versus AND query re-
sponse time for different compression schemes. Adapted
from [47].

Lucene uses three compression techniques, FOR-delta,
PFOR, and VLB. Document IDs are stored in sorted lists
using FOR-delta encoding. Term frequencies use PFOR en-
coding, and term positions use VLB encoding. Lucene stores
the terms in the term dictionary using a custom ASCII com-
pression scheme, and the posting list offsets as VLB integers.
Delta (Δ) encoding stores the difference between sequen-

tial values instead of the values themselves. The intuition
for delta encoding is that document IDs are sorted numeri-
cally and ascend uniformly. Computing their delta encodings
reduces the bit count to represent integers.

Frame of reference (FOR) encoding is a popular block-based
compression scheme [17]. It breaks the posting (integer)
list into blocks and calculates the minimum number of bits
needed to represent the largest integer. It then stores each
integer in the block with a minimum bit count. The bit count
is kept in a block header. Typically, Δ precedes FOR, and
the combo is called FOR-delta encoding. A huge integer in
a block reduces FOR’s compression efficiency. The patched
frame of reference (PFOR) encoding stores large values sep-
arately at the end of the list [70]. PFOR is more aggressive
than FOR, but the resulting decompression contains hard-to-
predict branches.
Variable length byte (VLB) encoding uses the minimum

number of bytes needed to store each integer. Each byte uses
seven bits to store the integer’s value, with the eighth bit
reserved as a continuation bit. The continuation bit marks
either the end of the integer or the start of a new integer.

There is a fundamental space-time trade-off in the design
of compressed index storage formats. Figure 2 uses com-
pression schemes from the prior art to compare the space
efficiency of a compression algorithm versus query times.
Algorithms that aggressively compress posting lists typically
require more computation for decompression, resulting in
worse query execution performance.
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2.3 Search Query Evaluation in Lucene
Evaluating a search query requires finding document IDs
matching query terms. The first step is to parse the query
to identify query terms, including any conditional opera-
tors. Single-term queries are straightforward, while boolean
queries use conjunctions (AND) and disjunctions (OR) oper-
ators. The next step is the dictionary lookup. The dictionary
provides offsets into the postings file. Lucene stores terms
and offsets together in the same file sorted alphabetically [15].
Since the sorting is alphabetical, terms are recursively split
into prefixes and suffixes, and common prefixes are only
stored once. Splitting terms in the dictionary generates a
sorted tree of terms. The term dictionary stores suffixes and
matching term offsets in 24–48 length blocks for each prefix.
Lucene’s default term dictionary is optimized to reduce

storage I/O. A DRAM-backed index maps terms to block
addresses containing offset data for the term. The block ad-
dress points to a block of the term dictionary containing the
term’s suffixes and corresponding posting list offsets. This
way, a dictionary search completes in one I/O access to the
suffix-offset table. Lucene uses a finite state transducer (FST),
a space-efficient but computationally intensive method to
map input strings to offsets in the dictionary [38].
Once the offsets into the postings file are available, the

next step is decompressing posting lists (single-term and
multi-term queries) and, in addition, performing set opera-
tions (multi-term queries) to find matching document IDs.
Lucene’s query evaluator lazily decompresses posting list
blocks and only decompresses selected blocks for multi-term
queries. Posting list traversal is a linear function of the post-
ing list size and, therefore, the index size.

Search engines use a scoring function to compute a numer-
ical score of each document’s relevance to the query. Lucene
uses the Okapi BM25 scoring function [48]. BM25 uses term
frequency normalized to document length [22]. Lucene uses
a heap to rank the top-scoring documents, scoring each doc-
ument in the posting list, adding it to the heap, and reporting
the top 𝑁 documents at the end of the traversal.

2.4 AND Query Evaluation
The naive approach for evaluating an AND (intersection)
query is to scan the posting lists from left to right and match
candidate IDs across the lists. On a mismatch, the naive
algorithm advances one of the lists past the maximum docu-
ment ID seen so far. Faster approaches use binary or finger
search [69]. However, using binary search over compressed
indices introduces a serious inefficiency. Specifically, it re-
quires decompressing all posting list blocks in the index
before the set intersection.

Lucene uses skip lists to avoid decompressing all blocks. A
single-level skip list (see Figure 3 (a)) is a second list contain-
ing the first document ID in each posting list block. The skip
list can be used to decide whether to decompress a posting

list block. Posting list blocks are fetched from off-heap mem-
ory into the managed heap and decompressed if they could
contain the document ID, significantly reducing posting list
traversal time.
Lucene uses a multi-level (recursive) skip list [40], form-

ing a tree-like structure. The query evaluator caches higher
levels of the multi-level skip list in the main memory. A
multi-level skip list (see Figure 3 (b)) has logarithmic time
complexity (same as binary search). Multi-level skip lists
massively improve performance of Lucene by preventing
unnecessary decompression.

3 Latency Impacts of Index Compression
We now discuss the baseline performance of Lucene with
compressed and uncompressed indices. We explain our in-
dexing and performance measurement methodology and
experimental setup. We then discuss evaluation results.

3.1 Methodology
3.1.1 Non Volatile Main Memory. We use Intel Optane
persistent memory (PM) as we do not have access to any
other NVM. Optane PM prefers sequential accesses [62]. The
smallest transfer unit is 256B (4× the cache line), and the
controller coalesces sequential writes into a larger 256 B
write. We set up PM in app direct mode. (The other mode is
memory mode, where DRAM acts as a cache for NVM.) We
use a PM-aware filesystem, ext4, with extended support for
direct access (DAX) using regular load/store instructions [58].
A DAX filesystem enables applications to use the OS page
fault mechanism to access PM.

3.1.2 Software Framework. We use luceneutil, the de-
facto benchmark suite for evaluating Lucene. Luceneutil
provides the framework to construct an index. We use the
full text of Wikipedia (as of 20 March 2021) to build a 5.3 GB
index on storage in the default (compressed) postings format.
Query sets provided in the luceneutil project perform single
term queries,AND andOR queries, and more complex phrase
and fuzzy match queries. We use the luceneutil version from
12 April 2021 and Lucene version 8.9.0.1 We use OpenJDK
Java 13 and the production G1 garbage collector. We use
modified Indexer.java and SearchPerfTest.java avail-
able online 2. We use two query sets for evaluating queries:
(1) a set of single-term queries of 45786 English words, and
(2) a set of 5921 two-term AND queries.

3.1.3 Hardware Platform. We conduct experiments on
a dual-socket Dell PowerEdge R740 server running Ubuntu
Linux 18.04 LTS. Each socket contains Intel Xeon Gold 6252N
running at 2.3 GHz, each with 24 physical cores (48 logical
cores) and 96 cores in the system. Each core has 35.75 MB

1https://archive.apache.org/dist/lucene/java/8.9.0/
2The source code for all experiments is found in
anonymous-link-for-peer-review
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(a) Skip List

(b)Multi level skip list

Figure 3. A single-level (a) and multi-level (b) skip list implemented for a block-structured posting list. In (a), if the intersection
algorithm is searching for document 259, it could safely skip decompressing Block 0 and Block 1. In (b), the second level of the
skip list enables skipping even more blocks than with a single-level skip list by performing only a single lookup.

of shared L3 cache and an integrated memory controller
supporting six memory channels. Each memory channel
connects to a 32 GB Micron DDR4 DIMM and a 128 GB Intel
Optane NVDIMM. With 12× 32 GB DIMMs and 12× 128 GB
Intel Optane DIMMs, the total memory capacity of the sys-
tem is 384 GB of DRAM and 1.5 TB of Optane PM. The sys-
tem has a 1.5 TB Intel Optane PCI Express NVMe SSD (DC
P4800X). We disable non-uniform memory access (NUMA)
accesses in all our experiments.

3.1.4 Indexing Formats. We use two PostingsFormat
implementations in Lucene, a widely used compressed for-
mat and an uncompressed (so-called Direct) postings format.
Table 1 presents the data structures each format uses to store
the index and traverse the posting lists.
Compressed Index (LPF): Our baseline compressed in-

dex uses the default index implementation of Lucene 8.9.0.
Uncompressed Index (DPF): The uncompressed post-

ings format is implemented by DirectPostingsFormat. The
index is stored on the filesystem in LPF format. In a warmup
phase, the engine decompresses postings and other data
structures into Java byte arrays and int arrays and stores
them on the heap. The query evaluator resolves queries by
directly accessing postings on the heap. All decompression
happens ahead of time. DPF uses binary search over an un-
compressed index on the managed heap to perform a set
intersection for evaluating AND queries.

3.1.5 Performance measurement methodology. We
use a thread pool for running query workloads. To mea-
sure the scalability of our experimental setups with increas-
ing thread (core) counts, we vary the thread count from 1
to 48. We pin query processing (worker) threads to logical
SMT cores using the Affinity library [63]. Pinning threads
to cores mitigates non-determinism due to scheduling and
eases sound analysis of measurements from performance
counter hardware.

We initially store the compressed index on an ext4 filesys-
tem over an Optane SSD. We warm up the index and bring it
into the OS cache. Specifically, we run each query workload
five times and measure the fifth run. All our indices fit in
memory. Unless otherwise stated, we use the average query
execution times as our evaluation metric.

We account for non-determinism due to just-in-time (JIT)
compilation. We invoke the JVM five times for each query
workload iteration. We time the last invocation. We present
the mean and the 95% confidence interval in all performance
data. To reduce JIT warmup time, we use the OpenJDK
compiler options -XX:-TieredCompilation and -server.
These flags remove tiered compilation and use the strongest
(server) compiler during JIT compilation.

We take a snapshot of counters at the start and end of
every evaluated query for measurements with performance
counter hardware. This methodology requires the libpfm
library [34], and prior work provides more details [63].
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Table 1. Key Features of Compressed and Uncompressed Inverted Index Formats

Compressed Index (LPF) Uncompressed Index (DPF)

Skip List Data Structure Multi Level Skip List (on filesystem, cached on heap) None
Posting List Compression The document IDs are FOR-delta encoded, the frequen-

cies are PFOR encoded, and the positions are stored in
VLB integers

None

Term Dictionary Terms are compressed using an ASCII compression
scheme. Offsets are VLB-delta encoded and stored in
variable length blocks

Stored as an uncompressed, sorted
array of strings

Term Index A finite state transducer (on heap) maps each query
term to an address pointing to a block of the term
dictionary

None; performs binary search di-
rectly on the term dictionary

Index Storage Location Filesystem Managed (JVM) Heap
Size of Wikipedia Index 5.38GB 52.78GB

We configure Lucene to report all results to fairly compare
LPF and DPF across all query workloads. Specifically, we turn
off themaximum impact indexing optimization in LPF, which
appears in Lucene in version 8.0 in 2019 [59]. With the opti-
mization, before decompressing and scoring documents in a
block, the impact score of the block is checked to determine
whether the block contains any documents that are competi-
tive with the current candidates of most relevant documents
to the query. The query evaluator only decompresses and
traverses a block if it contains documents more relevant to
the search query than the current candidate results. (Impacts
are an upper bound on maximum relevance scores possible
for a set of documents, and Lucene computes this score dur-
ing indexing by exploiting specific mathematical properties
of its scoring function [18].)

3.1.6 Heap Size. Controlling for heap Size is vital for man-
aged benchmarking [8]. We aim to compare compressed and
uncompressed posting formats without conflating GC costs.
The compressed index resides off-heap in the page cache.
Thus, for the LPF experiments, the heap contains only ob-
jects generated during query evaluation. These objects are
short-lived and are quickly collected upon query completion
(tens of milliseconds) during young generation collections.

On the other hand, the uncompressed index is stored as
integer and byte arrays on the managed Java heap. The space
for the index is allocated on the heap before the workload
starts executing queries. The uncompressed index objects
are immortal and read-only and remain that way through-
out execution. For this reason, the heap settings differ for
compressed and uncompressed index setups. We choose an
initial heap size of 2 GB for experiments with the compressed
index and a maximum heap size of 32 GB. For experiments
with the uncompressed index, we set both sizes to 128 GB.

3.2 Evaluation Results
We first establish a robust baseline for comparing Lucene’s
compressed and uncompressed index formats in DRAM and
NVM. Running experiments using the codebase from stock
Lucene leads to a surprising result. Specifically, our initial
measurements with DRAM-Only and single-term queries
show that DPF behaves worse than LPF for long posting lists.
This result is counter-intuitive as DPF does not incur the
decompression cost and must resolve queries faster than LPF.
We first investigate this result further.

The execution time of a single-term query is proportional
to the length of posting lists across index segments. We use
performance counter data and find that, counter-intuitively,
for posting lists containing more than 105 postings, DPF
executes more instructions than LPF. We investigate the
reason and discover a performance bug in the posting list
traversal of the DPF index.

Recall that the uncompressed index stores document IDs
as Java integer arrays. Iterating to the next element of the
posting list should increment an index variable. However,
Lucene’s default behavior (with DPF) is to perform a binary
search to access the next element in the array, leading to
unnecessary computation. Fixing this performance bug im-
proves DPF’s performance across all posting list sizes. This
performance bug fix applies to single-term queries only. For
multi-term queries, any search intersection algorithm uses
binary or finger search to find a specific posting in a posting
list and advance search across the list.

Figure 4 and Figure 5 compare final query execution times
with LPF and DPF indices for single-term and two-term
AND queries, respectively. DPF consistently outperforms
LPF across different core counts. With 48 cores, both query
workloads show a 37% performance improvement. We ob-
serve that single-term queries benefit more from DPF than
AND queries. Decompression latency dominates the exe-
cution times of single-term queries, whereas conjunctive
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queries incur additional overheads due to set intersection.
The bottom line is that queries resolve significantly
faster with DPF than LPF, but it demands 9.8× more
memory capacity.
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Figure 4. Showing the average query latency for single-
term queries with compressed (LPF) and uncompressed (DPF)
indexing formats.
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Figure 5. Showing the average query latency for two-Term
AND Queries with compressed (LPF) and uncompressed
(DPF) indexing formats.

4 Index Placement in Hybrid Memory
This section explores various DRAM-NVM systems with the
index placed in the OS cache or the managed heap. We dis-
cuss different options to isolate the inverted index on the
NVM-backed managed heap. We then present results evalu-
ating the entire design space for the first time in literature.

4.1 DRAM and NVM-Backed LPF Index
Figure 6 (a) and (b) shows how the index is stored in DRAM
and NVM-backed memories. To store the compressed LPF
index in DRAM and NVM, we use a warmup-based approach
(a common practice). The index initially resides on SSD. For
LPF-DRAM, we run several query workloads to bring the

index into the page cache, which is several times larger in ca-
pacity than our index. Similar demand paging-based warmup
of LPF-NVM is unavailable with the stock kernel and NVM
filesystem. Therefore, we copy the index in an NVM-backed
file as shown in Figure 6 (b), mimicking an NVM page cache.
We then directly perform search queries over the LPF in-
dex in NVM. The memory capacity consumed by LPF-based
systems is proportional to the index size.

When the search engine receives a query, it decompresses
the relevant postings from the page cache and copies them
into the managed heap. Doing so requires the search engine
to allocate temporary objects. The initial allocation of such
objects happens in the young generation of the managed
heap. Most objects die young [54] (e.g., after the query termi-
nates, a few milliseconds for most queries), and the collector
copies surviving long-lived objects into the old generation.
The index stays in the OS cache from where managed code
accesses it (unsafely) for query evaluation.

4.2 DRAM and NVM-backed DPF Index
The goal of DPF-based systems is to store the (immutable)
uncompressed index on the managed heap. Search queries
then compute over the on-heap index, possibly using rich
types for manipulating postings. We first discuss DPF-DRAM
(shown in Figure 6 (c)). The index initially resides on the SSD
in LPF format. We use an extended warmup phase to 1 read
the compressed index into the page cache, 2 decompress the
index, and store all terms and postings on the managed heap
as byte[] and int[] arrays. The arrays are first allocated to
the young generation. When the young space is exhausted,
a minor GC copies the live arrays into the old generation.
As a result, all accesses to the index in production are safe.

There are two approaches for storing the uncompressed
index on the managed heap. The first is to extend the JVM
with a second heap for immortal and immutable objects. Pro-
grammers can annotate objects, such as the inverted index,
for placement on the second high-capacity heap. This ap-
proach requires complex JVM and GC changes and leads to
custom JVMs, limiting applicability. It also requires extra
effort from the programmers who need to annotate candi-
date objects for placement on the second (specialized) heap.
In this work, we exploit the GC mechanism for moving the
immutable index to the old generation. We use the insight
that each minor GC automatically moves live index data to
the old generation.

One drawback of our approach is that index data is inter-
mixed with long-lived (mortal) objects, and thus collector
must scan the old generation to collect garbage. This scan-
ning over NVM is slow and does not scale to high-capacity
heaps [64]. However, for our heap settings, the GC overhead
is low. The reasons include: 1 the volume of live long-lived
objects is tiny relative to the index size, and 2 the collector
does not trace primitive arrays, avoiding scanning costs.
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Figure 6. Showing five different memory systems for index placement: (a) LPF-DRAM, (b) LPF-NVM, (c) DPF-DRAM, (d)
DPF-NVM, (e) DPF-HYB.

In Figure 6 (d), we show a DPF-based NVM system, namely
DPF-NVM. We use the JVM feature for placing the entire
managed heap on NVM. Next, in Figure 6 (e), we show a
system that uses hybrid DRAM-NVM memory and splits the
managed heap to place the young generation in DRAM and
the old generation in NVM. We call this hybrid system DPF-
HYB. The intuition for the hybrid heap is that, by allocating
per query objects in a fats DRAM nursery, we can reduce
the query response times compared to a slow NVM nursery.
The default G1 nursery is variable-sized. However, JVM

allows configuring the nursery to a fixed size and placing it
in DRAM, whereas the old generation resides in NVM. We
use a fixed nursery for evaluating DPF-HYB. We measure
the sensitivity of nursery size to performance and use prior
advice to size the nursery as a multiple of the LLC size [4–6].
Our LLC size is 35.75 MB, and we experiment with nurseries
between 8.94 MB (0.25× LLC) and 2.288 GB (64× LLC).

A final problem with our DPF-based systems is the possi-
bility that index data remain in the nursery beyond warmup.
Therefore, we trigger a full-heap GC after warmup. We mod-
ify Lucene to call System.gc() before starting our measure-
ments. Doing so also ensures that all garbage is collected
and the heap is compacted for the maximum locality.

DPF consumes memory capacity proportional to the heap
size, and the heap grows to 10× the LPF index size. After the
warmup is complete and the uncompressed index resides
on the managed heap, OS can drop the original index from
its cache. DPF’s capacity requirements and NVM’s density

advantage complement each other, a tradeoff we explore
next.

4.3 Evaluation Results
We now discuss the results of our evaluation with different
placement settings.We also showmicroarchitectural analysis
to explain our key observations better.

4.3.1 Overall Performance. We show the results of our
evaluation in Figure 7 (single-term) and Figure 8 (two-term
AND). We evaluate DRAM/NVM-backed LPF/DPF indices
(LPF-DRAM, DPF-DRAM, LPF-NVM, DPF-NVM) and hybrid
approaches that are similar to DPF-NVM, except the nursery
resides in DRAM (DPF-HYB:NurserySize). We normalize the
average query execution times to the state-of-the-art com-
pressed postings format. For single-term queries, we first
note that placing the compressed index in NVM increases
the average query execution time by 2% for 48 cores and up
to 10% (4 cores). NVM is thus suitable for hosting in-memory
compressed indices when a modest reduction in query re-
sponse times is tolerable. Next, we observe that DPF-DRAM
is the best-performing approach, which reduces query exe-
cution times by 37% (48 cores). Unfortunately, DPF-DRAM
demands massive (10×more than LPF-DRAM) DRAM capac-
ity, which makes it an expensive and impractical system.

Next, we observe that DPF-NVM delivers a 30% (48 cores)
boost in query performance compared to LPF-DRAM. Fortu-
nately, owing to NVM’s high density, DPF-NVM is a prac-
tical system and enables storing uncompressed postings in
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Figure 7. Showing average query latency normalized to the
LPF-DRAM baseline for different systems with single-term
queries. (T stands for thread count.)
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Figure 8. Showing average query latency normalized to the
LPF-DRAM baseline for different systems with 2-term AND
queries. (T stands for thread count.)

memory. On the other hand, DPF-NVM is slower (7%) than
DPF-DRAM, the fastest approach today, i.e., hosting uncom-
pressed indices in DRAM. We regain the lost performance
with the intuition that most queries last only a few tens of
milliseconds, but they allocate temporary, short-lived ob-
jects in the nursery. Queries incur a high latency if new
object allocation happens in a slow media (NVM). Figure 7
shows that a hybrid system with a well-tuned nursery size
(4× to 64×) is 6% faster than DPF-NVM (36% compared to
LPF-DRAM), which places the entire heap on slow NVM.
Our proposed hybrid system offers an attractive solution: 1
it consumes between 0.5 GB to 2 GB DRAM, 2 exploits the
NVM capacity for hosting the uncompressed index, 3 and
is only 1% (48 cores) slower than DPF-DRAM. We observe
that the best-performing nursery size varies across thread
counts, and a hybrid system’s performance benefits are more
significant at high concurrency levels. This observation is in
line with prior work that reports NVM bandwidth saturates
rapidly beyond eight threads [3, 62], and hence the benefits
of a hybrid approach that mitigates pressure on NVM by
isolating new allocations in DRAM are higher. On average,
small nurseries increase the GC overhead. Automatically
tuning the DRAM nursery size is future work.

We observe similar behaviors for two-term conjunctive
queries. One notable difference is that the gap between LPF-
DRAM and DPF-DRAM is generally less wide, especially at
low thread count. In general, conjunctive queries are more
compute-intensive than single-term queries because of the
large number of comparisons across multiple posting lists. At
48 threads, conjunctive queries with DPF-NVM, on average,
suffer a 4% slowdown compared to the fastest system (DPF-
DRAM). A hybrid system with a well-tuned nursery (15×
the LLC size) bridges the gap to only 2% of DPF-DRAM.
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Figure 9. Showing the breakdown of per-query execution
time into various components representing microarchitec-
tural bottlenecks.

4.3.2 Microarchitectural Analysis. We now report ob-
servations from our detailed microarchitectural analysis of
query workloads. We aim to understand how search queries
interact with a server’s cache and memory hierarchy. We use
the top-down methodology [66] that systematically identi-
fies true bottlenecks in an out-of-order processor. It identifies
bottlenecks by rigorous performance counter measurements.
Figure 9 shows the results of our analysis for two query work-
loads and different memory systems (48 threads). We break-
down query execution times (normalized to LPF-DRAM)
into five components: 1 backend memory-bound due to
long-latency memory operations (cache hits or misses), 2
backend core-bound due to lack of core resources, such as
functional unit or reservation station, 3 smoothly retiring
instructions, 4 frontend bound due to, e.g., lack of decoded
microps, and 5 recovering from misspeculation. Unfortu-
nately, we observe that queries spend a significant portion of
the execution time resolving memory loads (high memory-
bound component) due to the data-intensive nature of search
workloads. ILP is low due to the dependencies between in-
structions performing binary searches and skip-list traver-
sals. Mispredicted branches cost very few cycles.
We observe that the memory-bound portion of the exe-

cution time is the highest (up to 36%) for DPF-NVM, while
it is 30% for other systems. Reading uncompressed indices
stresses NVM’s bandwidth, especially at high thread count.
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Typically, uncompressed indices stress the memory system
more than compressed ones. The memory-bound compo-
nents in Figure 9 do not convey the complete picture.Memory-
bound nature is either due to cache or memory accesses.
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Figure 10. Showing the percentage of execution time spent
resolving main memory accesses for two query workloads
and different thread counts. (T stands for thread count.)

To further investigate which of the two (cache or mem-
ory) is responsible for memory-bound, we show the external
memory bound component of the execution time in Figure 10.
The time spent waiting for memory constitutes a small com-
ponent of execution time (and memory bound). With 48
threads, less than 5% of the time is spent waiting for memory.
We observe that in the worst-case (DPF-NVM), time spent
waiting for memory is up to 17% of the execution time. Our
index size is roughly 200× the LLC size, and the postings
working set cannot fit in the on-chip caches. Therefore, the
narrow gap in query response times between DRAM and
NVM-backed indices is explained by high cache locality. (We
elaborate on locality and prefetching impacts later.)

We measure LLC misses per kilo instructions (mpki) and
observe very low mpki for our query workloads. Specifically,
the LLC mpki is less than one for experiments with the com-
pressed postings format, and it is 1.7 with the uncompressed
postings format. Our overall conclusion from this analysis is
that although search demands a large memory capacity and
is backend memory bound, it exhibits high cache locality,
and caches hide the high NVM latency, making it a strong
candidate for hosting massive indices.

4.3.3 GC Overhead. We now discuss GC overhead for our
workloads. We aim to observe if GC overhead is a signifi-
cant fraction of total time and if GC over the NVM heap is
slower than the DRAM heap. We use the Java GarbageCol-
lectorMXBean interface, which monitors G1’s internal data
structures to monitor stop-the-world GC pauses. Figure 11
shows the time the application stops due to GC pauses in
the measured (fifth) run of query workloads. We see the GC
overhead is less than 6%. We only show the GC overheads for
the compressed index setups, as the young and old garbage
collections never occur for the uncompressed setups due to
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Figure 11. Showing the GC overhead as a percentage of the
total workload execution time for single-term query work-
load with varying thread counts. (T stands for thread count.)

their large heap sizes. The GC overhead increases with rising
thread count as allocation rates increase, stressing the col-
lector. This result further validates that the ≈ 30% difference
between the uncompressed and compressed postings format
and the little performance difference between DRAM and
NVM-backed indices despite NVM’s high latency is not due
to GC effects.

4.3.4 Sensitivity to Index Size. We validate that our find-
ings are robust to index size. We also observe caching effects
with increasing index size. We create indices of various sizes
using the January 2022 CommonCrawl data set [43], a large
repository of web crawl data. Index size in Lucene is difficult
to control precisely. We, therefore, index between 250 K and
33 M documents. The DPF to LPF index ratio is 8×. The heap
setting is unchanged for LPF-based systems, while DPF sys-
tems use the entire address space, 180 GB DRAM or 585 GB
NVM. Figure 12 (a) and (b) show average query execution
times (normalized to LPF-DRAM) for single-term and two-
term queries (48 cores), respectively. Missing bars indicate
an out-of-memory error because the index outgrows heap
capacity. DPF-HYB uses a 2 GB nursery.
For the largest index in Figure 12 (a), LPF-NVM is 13%

slower than LPF-DRAM. Thus for large indices, single-term
queries over anNVM-backed compressed index incur a higher
latency than indices of modest size. Next, DPF-HYB outper-
forms the state-of-the-art practice (LPF-DRAM) for modest
(51%) and large (29%) index sizes. We observe DPF-DRAM
consistently outperforms all other configurations.
We study the behavior of DPF-HYB with increasing in-

dex size at the microarchitectural level. Figure 13 (a) shows
the LLC mpki for single-term queries with increasing index
size. The LLC mpki of single-term queries decreases as the
index size increases. Single-term queries involve accessing
the posting list sequentially to score and rank document IDs.
Bigger indices contain longer posting lists, and when these
lists are sequentially accessed, the hardware prefetcher is
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Figure 12. Showing the average query execution times with
different index sizes for four memory systems.

more effective at predicting postings (cache lines) needed
for resolving the query.
Figure 13 (b) shows the external memory-bound compo-

nent of the execution time and represents the proportion of
execution time the core is stalled waiting for memory. Since
cache misses occur less frequently as the index size increases,
we observe a reduction in the external memory-bound com-
ponent. The prefetcher reduces the external memory-bound
execution time for LPF-NVM from 45% to 8% as we increase
the index size from 760 MB to 35 GB. Therefore, prefetching
helps text search scale performance-wise to large, NVM-
backed, uncompressed indices in memory.
In Figure 12 (b), we show the average normalized query

execution times for two-term AND queries. These queries
require more computation than single-term queries, and we
observe slightly different trends for AND queries. For all
the index sizes, the performance of LPF-NVM matches LPF-
DRAM. DPF-HYB is up to 39% better than LPF-DRAM and
consistently outperforms the state-of-the-art LPF-DRAM.

4.3.5 Tail Latency. Tail latency is a crucial metric for
search operators to target a broader customer base. Table 2
shows the 99𝑡ℎ percentile latency over three setups, LPF-
DRAM, LPF-NVM, and DPF-HYB with a 35 GB index. For
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Figure 13. Showing the LLC mpki and external memory-
bound component of the execution time for single-term
queries and increasing index sizes.

two-term AND queries, we see a 322 ms (36%) improvement
in 99𝑡ℎ percentile latency of the slowest queries with DPF-
HYB (relative to LPF-DRAM). LPF-NVM provides a 99𝑡ℎ
percentile tail latency comparable to state of art.

Table 2. 99𝑡ℎ percentile latency (+/- confidence interval) for
LPF-DRAM, LPF-NVM, and DPF-HYB.

LPF-DRAM LPF-NVM DPF-HYB
Single Term 65 (±8) 76 (±7) 61 (± 7)
2-Term AND 904 (±38) 873 (±53) 582 (± 51)

5 Related Work
Our work on scalable managed indices is related to large
managed heaps, NVM exploitation for big data frameworks,
and accelerating search with custom hardware. Recent work
exploits NVM and PCIe NVMe SSDs for key-value stores,
databases, and filesystems [7, 11, 26, 27, 32, 61, 62, 65, 67, 68].
However, despite its ubiquity, little prior works focus on
exploiting emerging fast storage for managed search engines.
Akram [2] uses the Psearchy search engine provided in

the MOSBENCH benchmark suite [9] to explore indexing
and query evaluation over Optane Persistent Memory. They
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explore search indexing performance, crash consistency, and
query evaluation on various hardware/software system de-
signs incorporating PM into the existing search application.
They find that single-term queries perform similarly on a
Wikipedia search index placed on Optane DIMMs compared
to DRAM. Also, they conclude that the 2-term AND queries
do not perform as well on NVM as on DRAM. The Psearchy
engine does not use index compression [9, 51]. The Psearchy
scoring function is simplistic, and to the best of our knowl-
edge, the scoring function is not referenced in prior literature.
Our work uses Lucene, a more realistic industry search en-
gine library. We use Lucene and compare search evaluation
on a state-of-the-art search engine using index compression
on DRAM and NVM.We also investigate how on-demand de-
compression affects a modern search engine’s performance.
To our knowledge, no prior work characterizes the perfor-
mance of an on-heap uncompressed search index in Lucene.
The basic idea of an inverted index is similar to a log-

structured merge (LSM) tree. Prior work extends LSM-tree-
based key-value stores [11, 26, 27, 65] to exploit heteroge-
neous storage. Existing efforts try to establish NVM as a new
tier in the storage hierarchy, which does not fully exploit
NVM’s potential as byte-addressable memory. NoveLSM [27]
uses an NVM-backed Memtable, while SLM-DB [26] places
a global index in NVM and maintains single-level SSTables,
unlike traditional LSM. MatrixKV [65] exploits NVM for fine-
grained column compaction. SpanDB [11] exploits different
types of SSDs to offer cost efficiency. Our work uses NVM
as a first-class citizen in the address space, placing the entire
inverted index directly in a managed NVM heap.
Prior work characterizes Intel Optane PM for native and

managed workloads [3, 62]. Both focus on uncovering Op-
tane’s behavior but for different workloads, and they re-
port Optane’s limited scaling with increasing thread count.
Specifically, Akram [3] finds that traversal algorithms (e.g.,
heap traversals in garbage collection) incur high latency in
Optane-backed data structures compared to DRAM-backed
structures. For example, they report that copying from nurs-
ery to mature space happens almost as fast with Optane as
with DRAM. On the other hand, scanning objects to perform
the transitive closure is slowed down significantly. In con-
trast, we focus on Optane as a high-capacity medium for
storing uncompressed indices. Other prior efforts propose
partitioning managed heaps into NVM and DRAM heaps and
placing special objects in the NVM heap to improve write
endurance, performance, and scalability [3, 46, 55].

Finally, recent work explores growing terabyte-scale man-
aged heaps in big data frameworks over NVM and NVMe
SSDs [30]. Their system, namely TeraHeap, eliminates the se-
rialization cost by memory-mapping a second high-capacity
heap over a storage device. They use a custom memory allo-
cator for the second high-capacity heap. Their work fences
the garbage collector from scanning the second heap. We
leave integrating Lucene with TeraHeap to future work.

Finally, efforts that accelerate text search, e.g., by reducing
decompression latency, using customized hardware [21, 23],
are complementary to enabling huge in-memory indices.

6 Outlook and Conclusion
We now reflect upon potential impacts and draw conclusions.

6.1 Outlook
In our view, this paper and rigorous analysis with Lucene
could have two broad impacts.
Potential Impact # 1: This paper asks if spending CPU

cycles in decompressing the compressed index is always
necessary. We instead show the feasibility of storing un-
compressed indices directly on fast storage. Both options
preserve DRAM capacity, and the former is predominant
today. However, with emerging fast storage, we can avoid
the decompression penalty. Our results can benefit K-V and
document stores, and analytic engines. Keeping the entire
index in the uncompressed form will not be feasible. How-
ever, frequently accessed index segments can be stored in
uncompressed form without wasting DRAM capacity. We
use NVM in this work as a fast storage device. Future work
will evaluate NVMe SSDs, and remote memory, for storing
the uncompressed index.

Potential Impact # 2:Our paper motivates growing man-
aged heaps over fast storage and bringing large structures,
such as inverted indices, compute caches, and graph par-
titions on the heap, to avoid unsafe accesses. The current
approach uses off-heap accesses as index sizes quickly out-
grow available DRAM capacity. We demonstrate our ideas
using an inverted index and believe others will use similar
techniques for more frameworks. Growing the heap over
storage mitigates DRAM pressure, and the required machin-
ery is non-obvious and should inspire future work.

6.2 Conclusion
To conclude, we have evaluated text search with compressed
and uncompressed indices over DRAM/NVM off-heap and
on-heap memory. We conclude that an NVM-backed uncom-
pressed index on the managed heap delivers lower query
latency than a DRAM-backed compressed index in off-heap
memory. NVM is competitive to DRAM for search queries
because they expose a high locality that modern cache hier-
archies exploit. Our proposed hybrid system with a DRAM
nursery and an uncompressed index in scalable NVM pro-
vides safe access to the index in production. It enables pro-
grammers to store index data in formats other than primitive
types. Rigorously tuning the nursery size, pinpointing its
placement in hybrid memory, and exploiting GC to move
the long-lived uncompressed index in an NVM-hosted old
generation delivers a 36% gain, and the machinery/result is
non-obvious. Future work will investigate specialized high-
capacity heaps for diverse managed frameworks.
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