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Abstract—Non-volatile memory (NVM) has the potential to
become a mainstream memory technology and challenge DRAM.
Researchers evaluating the speed, endurance, and abstractions of
hybrid memories with DRAM and NVM typically use simulation,
making it easy to evaluate the impact of different hardware
technologies and parameters. Simulation is, however, extremely
slow, limiting the applications and datasets in the evaluation.
Simulation also precludes critical workloads, especially those
written in managed languages such as Java and C#. Good
methodology embraces a variety of techniques for evaluating
new ideas, expanding the experimental scope, and uncovering
new insights.

This paper introduces a platform to emulate hybrid mem-
ory for managed languages using commodity NUMA servers.
Emulation complements simulation but offers richer software
experimentation. We use a thread-local socket to emulate DRAM
and a remote socket to emulate NVM. We use standard C library
routines to allocate heap memory on the DRAM and NVM
sockets for use with explicit memory management or garbage
collection. We evaluate the emulator using various configurations
of write-rationing garbage collectors that improve NVM lifetimes
by limiting writes to NVM, using 15 applications and various
datasets and workload configurations. We show emulation and
simulation confirm each other’s trends in terms of writes to NVM
for different software configurations, increasing our confidence in
predicting future system effects. Emulation brings novel insights,
such as the non-linear effects of multi-programmed workloads on
NVM writes, and that Java applications write significantly more
than their C++ equivalents. We make our software infrastructure
publicly available to advance the evaluation of novel memory
management schemes on hybrid memories.

I. INTRODUCTION

Recent advances in memory technologies have the potential
to disrupt the boundary between memory and storage. Emerging
non-volatile memory (NVM) technologies have access speeds
closer to DRAM and persistence similar to disk. On the main
memory side, NVM promises abundant memory to address
the scaling problems of DRAM [29], [33]. One of the most
promising NVM technologies is phase-change memory (PCM).
The disadvantages of PCM are that: (1) write endurance is
limited, and (2) latency is high. Recent work combines DRAM
and PCM to form hybrid main memories seeking benefits
from both technologies [26], [40]. DRAM is fast and has
high endurance whereas PCM is dense and has low energy
consumption. Hardware mitigates PCM wear-out using wear-
leveling and other approaches [26], [38], [39], [40], [45], while
the OS keeps frequently accessed data in DRAM [28], [30],
[36], [41], [53], [57]. Recent work also explores using managed

runtimes to mitigate wear-out [2], [3], tolerate faults [20],
and keep frequently read objects in DRAM [52]. Collectively,
prior research illustrates opportunities to exploit PCM as main
memory, tolerating its deficiencies at many levels of the system
stack.

According to analysts and scientists, technology improve-
ments may eventually bridge the DRAM versus NVM gap in
access latency. More specifically, the ITRS 2.0 road map reports
that the latency of performance-focused variants of emerging
NVM is much closer to DRAM than earlier cost-focused NVM
products [24]. Furthermore, scientists recently demonstrated
PCM prototypes with a thousandfold lower latency than
DRAM [56]. This big (theoretical) gap is unrealistic to attain
because faster PCM accesses require higher temperatures.
Nevertheless, latencies similar to DRAM seem realistic in
the future. Endurance, on the other hand, is a much harder
problem because writes change the material form of PCM cells
causing them to wear out [13].

Most prior work evaluating PCM as main memory uses
simulation [26], [28], [38], [39], [40], [41], [45], [53], [57].
The advantages of simulation are: (1) it eases modeling of new
hardware features, and (2) it reveals sensitivity to architectural
parameters. Its limitations include: (1) it is many orders
of magnitude slower than real hardware, (2) it narrows the
scope of application domains, datasets, and implementation
languages, owing to limited time frames, and (3) frequent hard-
ware changes, microarchitecture complexity, and hardware’s
proprietary nature make it difficult to faithfully model real
hardware. Because of these limitations, researchers recently
have complemented simulation with architecture-independent
measurements [2], [3], [50]. Unfortunately, these measurements
have limited value because they miss the important effect of
CPU caching when evaluating hybrid memory.

To overcome the above challenges, prior work proposes
emulation platforms for hybrid memories [31], [51]. Their
limitations are: (1) they focus only on native applications
written in C and C++, and (2) they focus only on emulating
the latency of PCM in hybrid DRAM-PCM systems, neglecting
write analysis and thus PCM wear-out issues. This paper
proposes a new emulation platform for hybrid memories,
significantly expanding the scope of applications that we
can evaluate. More specifically, we target managed languages
because they are popular among programmers today [47]. We
focus on accurately measuring PCM writes in hybrid memories,



because PCM writes dictate its lifetime (in years). Assuming
perfect wear-leveling, PCM lifetime is inversely proportional
to the number of writes per second. Reliable measurements of
PCM writes evaluate its practicality as main memory.

We present the design, implementation, and evaluation of
an emulation platform that uses widely available commodity
NUMA server hardware to model hybrid DRAM-PCM systems.
We use the local socket to emulate DRAM and the remote
socket to emulate PCM. The applications and the runtime
environment execute on the DRAM socket. Our new layout
for managed heaps splits virtual memory into separate DRAM
and PCM regions, which are exposed to the garbage collector
that manages them using two free lists. The garbage collector
tells the OS where in memory (on which NUMA node) to map
heap regions.

Contrary to most prior work, our newly proposed emu-
lation platform supports both applications written in native
programming languages such as C and C++, which use manual
memory management, and managed programming languages
such as Java, C#, Python, and JavaScript, which use automatic
memory management. Although we focus on the Java runtime
environment in this paper, our work generalizes to other
managed languages.

We use the emulation platform to evaluate a rich set of
managed workloads written in Java running on top of hybrid
memory. We form workloads from three diverse benchmark
suites: (1) 11 DaCapo applications, (2) Pjbb, and (3) three
graph processing applications from the GraphChi framework.
Furthermore, we use two input datasets, seven garbage collector
configurations; and multiprogrammed workloads consisting
of one, two and four application instances executing simul-
taneously. We use our new emulation platform to evaluate
recently proposed write-rationing garbage collectors for hybrid
memories [2]. Write-rationing collectors keep highly mutated
objects in DRAM to improve PCM lifetime, while putting
read-mostly objects in PCM to exploit its capacity.

We focus primarily on observing PCM writes in hybrid
DRAM-PCM systems because they determine PCM lifetime
and thus its practicality as a viable DRAM replacement. We
compare prior results on PCM writes from simulation to our
emulation results, showing that they agree. Emulation enables
us to generate a lot more results, faster, and to explore much
richer software configurations and workloads. For example,
we compare the PCM writes of equivalent C++ and Java
applications, showing that Java applications allocate a lot more,
leading to more writes to memory, which would quickly wear
out a PCM-Only main memory system.

Our software infrastructure is publicly available to help
researchers evaluate hybrid memory for managed language
workloads. We summarize our key findings below:
• Simulation and emulation reveal similar trends in the reduc-

tion of PCM writes with write-rationing garbage collectors
for hybrid memories. This finding increases our confidence in
both simulation and emulation to evaluate hybrid memories.

• Java graph processing applications allocate far more than
their equivalent C++ applications and write to memory up

to 3× more.
• Executing multiple instances of an application often super-

linearly increases the number of writes to PCM due to LLC
interference. Previously proposed write-rationing garbage
collectors are shown to be especially effective at taming
PCM writes in multiprogrammed environments.

• Emerging graph processing applications in Java use larger
heaps, allocate more large objects, and thus write more to
PCM, wearing it out faster, than traditional Java benchmarks.
Future work should therefore include a diverse mix of
workloads and production datasets when evaluating hybrid
memories.

II. BACKGROUND

We first briefly describe the characteristics of PCM hardware
and the role of DRAM in hybrid DRAM-PCM systems. We
then discuss write-rationing garbage collection [2] that protects
PCM from writes and prolongs PCM lifetime.

A. PCM and Hybrid Memory

A promising non-volatile memory technology that is cur-
rently in production is phase change memory (PCM) [32].
PCM cells store information as the change in resistance of a
chalcogenide material [13]. During a write operation, electric
current heats PCM cells to high temperatures and the cells cool
down into amorphous or crystalline states that have different
resistances. The read operation detects the resistance of the
cell. PCM cells wear out after 1 to 100 million writes because
each write changes their physical structure [13], [26], [40].
Writes are also an order of magnitude slower and consume
more energy than in DRAM. Reading the PCM array is up to
4× slower than DRAM [26].

Hybrid memories combine DRAM and PCM to mitigate
PCM wear-out and tolerate its higher latency. Frequently
accessed data is kept in DRAM which results in better
performance and longer lifetimes compared to a PCM-Only
main memory system. The large PCM capacity reduces disk
accesses which compensates for its slow speed.

B. Garbage Collection

Managed languages such as Java, C#, Python, and JavaScript
use garbage collection to accelerate development and reduce
memory errors. High-performance garbage collectors today
exploit the generational hypothesis that most objects die
young [48]. With generational collectors, applications (mu-
tators) allocate new objects contiguously into a nursery. When
allocation exhausts the nursery, a minor collection first identifies
live roots that point into the nursery, e.g., from global variables,
the stack, registers, and the mature space. It then identifies
reachable objects by tracing references from these roots. It
copies reachable objects to a mature space and reclaims all
nursery memory for subsequent fresh allocation. When the
mature space is full, a full-heap (mature) collection collects
the entire heap.

Recent work introduces write-rationing garbage collectors to
manage hybrid memories [2]. Write-rationing collectors keep



frequently written objects in DRAM in hybrid memories and
read-mostly objects in PCM to improve PCM lifetime [2]. They
come in two main variants. (1) The Kingsguard-nursery (KG-N)
collector allocates nursery objects in DRAM and promotes all
nursery survivors to PCM. Applications mutate (write) nursery
objects at a high rate. KG-N places the nursery in DRAM which
reduces PCM write rates significantly compared to putting all
data in PCM (PCM-Only). The reduced write rates lead to a
longer PCM lifetime. (2) Kingsguard-writers (KG-W) monitors
nursery survivors in a DRAM observer space. Observer space
collections copy objects with zero writes to a PCM mature
space, and copy written objects to a DRAM mature space. KG-
W incurs a moderate performance overhead over KG-N due to
monitoring and extra copying of nursery survivors. However
because past writes are a good predictor of future writes, KG-W
improves lifetimes significantly over KG-N. The Kingsguard
collectors build on the best-performing collector in Jikes RVM,
namely generational Immix (GenImmix) [11], which uses a
copying nursery and a mark-region mature space.

KG-W includes two additional optimizations to protect PCM
from writes. Traditional garbage collectors allocate large objects
directly in a non-moving mature space to avoid copying them
from the nursery to the mature space. KG-W’s Large Object
Optimization (LOO) allocates some large objects, chosen using
a heuristic, in the nursery to give them time to die. The mutator
allocates the remaining large objects directly in a PCM mature
space. The collector copies highly written large objects from
PCM to DRAM during a mature collection. Garbage collectors
also write to object metadata to mark them live. Marking live
objects generates writes to PCM during a mature collection. The
MetaData Optimization (MDO) places PCM object metadata in
DRAM to eliminate garbage collector writes to object metadata.

III. EMULATION PLATFORM FOR MANAGED LANGUAGES

We now describe the design and implementation of our
hybrid memory emulator for managed languages. We first
discuss our heap layout in hybrid memory, and how we allocate
the heap regions in DRAM and PCM. We then provide details
for the hardware configuration: platform requirements, mapping
virtual to physical DRAM and PCM memory, and thread
scheduling.

A. Heap Layout and Management

The widely used Java runtime environments today manage
heap memory using a multi-level hierarchy of blocks and spaces.
A space is a coarse-grained partition of the heap. Typically,
objects that reside in the same space share a common property.
For instance, in generational heaps, the nursery space is used
to allocate all the newly created objects. During a (minor)
garbage collection, all objects that survive a nursery collection
are copied to the mature space. A space is further logically
divided into blocks or chunks. The size of the block is a
multiple of the page size and it is the minimum unit of virtual
memory handed out to a space. A free-list records the location
and size of free blocks, and the space to which each block is

FreeList-Lo	

PCM-START	 PCM-END	 DRAM-END	

FreeList-Hi	

size					=	4	MB	
free					=	true/false	
owner	=	space	id	

DRAM	Spaces		PCM Spaces  
PCM	 DRAM	

Fig. 1: The organization of our heap in hybrid memory.
Memory composition is exposed to the language runtime. Two
free lists keep track of available virtual pages in DRAM and
PCM.

mapped. The heap manager is responsible for requesting that
the operating system maps blocks to physical memory (pages).

Figure 1 provides a high-level view of our heap layout
in a hybrid DRAM-PCM system. We use the 32-bit Jikes
RVM, but our approach generalizes to other JVMs. In a 32-bit
environment, the Linux OS owns the upper 1 GB of the 4 GB
virtual memory available to a process. In addition, system
libraries use some amount of virtual memory for the malloc
heap. We use the middle 2 GB for the managed heap. We divide
virtual heap memory into two portions: (1) a DRAM-backed
portion, and (2) a PCM-backed portion. We use a free-list to
manage the blocks that belong to each portion: FreeList-Hi
and FreeList-Lo. In our heap layout, PCM_START marks
the beginning of the user heap, and PCM_END is the end of
the PCM-backed portion of the heap, and the beginning of the
DRAM-backed portion.

Each space requests that the allocator associated with
FreeList-Lo or FreeList-Hi reserve virtual memory. Jikes RVM
uses mmap() for reserving virtual memory if none is available
as indicated by the free lists. The allocator finds a free chunk
and returns the address to the requesting space. The space then
makes sure the chunk is mapped in physical memory. In our
approach, once a chunk is mapped in physical memory, we
do not remove its mapping in the OS page tables even if the
chunk is no longer in use by the requesting space. The chunk
is recycled by the allocator when another space requests a
free chunk. We modify the chunk allocator to map memory in
DRAM or PCM.

We use the default size for each chunk in Jikes RVM, i.e.,
4 MB. Each entry in the free-list contains meta-information
about the chunk: (1) the size, (2) the status (free or in use),
and (3) the current owner.

The runtime reserves the address range of the nursery space
at boot-time. Similar to the baseline design, we place the
nursery at one end of virtual memory. This configuration
enables the standard fast boundary write-barrier for generational
collection. Other contiguous spaces (such as the observer space
in KG-W) are placed next to the nursery. Mature spaces use a
request mechanism to acquire chunks at runtime. These spaces
share the pool of available chunks with other spaces. A space



is specified as DRAM or PCM using a flag in the constructor
of each space.

We allocate memory using the Linux OS calls for specifying
a memory allocation on the local or remote memory socket
on a NUMA machine. We use the local socket as the DRAM
socket and the remote socket as the PCM socket. To bind a
virtual memory range to a particular socket, we call mbind()
with the socket number after each call to mmap(). We use
a NUMA-specific version of the C memory allocator to call
these routines. We modify the Java Virtual Machine to call the
C routines for DRAM and PCM allocation.

The alternative approach to manage DRAM and PCM spaces
is to use a monolithic heap with a single free-list. The efficiency
of such an approach is low because it requires unmapping freed
chunks from physical memory. If not, a DRAM space could
end up using a logical chunk that is physically mapped in
PCM. The flexibility of leaving the free chunks mapped in
physical memory is a result of our design with two free lists.

B. Emulation on NUMA Hardware

Hardware requirements: Our hardware requirement to
emulate hybrid memory is a commodity NUMA platform with
two sockets. We require both sockets to be populated with
DRAM chips. Threads run on one socket, referred to as the
local DRAM socket. No threads execute on the other remote
PCM socket. Figure 2 shows an example NUMA hardware
platform. Allocation on Socket #0 (S0) is local to the threads
and we use it to allocate DRAM memory. Memory accesses
on Socket #1 (S1) are remote and emulate PCM.

Space to Socket Mapping: Table I shows the space to
socket mapping for three of the seven collectors we evaluate
in this work on our emulation platform. KG-W and its variants
use extra spaces in DRAM that are mapped to Socket #0
(S0). The observer space in KG-W is placed in DRAM and
is used to monitor object writes. KG-W has a mature, large,
and metadata space in both DRAM (S0) and PCM (S1). KG-
W-MDO does not include the metadata optimization (see
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mbind(DRAM)
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A	
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Socket	1	
PCM	

CPU	✕	

mbind(PCM)

remotelocal

QPI	

Fig. 2: Our platform for hybrid memory emulation. The
application and write rate monitor (WM) run on Socket #0.
The memory on Socket #0 is DRAM and Socket #1 is PCM.

KG-N	 KG-W	 KG-W	-	MDO	
S0	 S1	 S0	 S1	 S0	 S1	

Nursery	 ✔	 ✗	 ✔	 ✗	 ✔	 ✗	
Observer	 ✗	 ✗	 ✔	 ✗	 ✔	 ✗	
Mature	 ✗	 ✔	 ✔	 ✔	 ✔	 ✔	
Large	 ✗	 ✔	 ✔	 ✔	 ✔	 ✔	
Metadata	 ✗	 ✔	 ✔	 ✔	 ✗	 ✔	

TABLE I: Spaces in Kingsguard collectors and their mapping
to Socket S0 (DRAM) or Socket S1 (PCM). KG-N does not use
an observer space. KG-W uses a mature, large, and metadata
space in both DRAM and PCM.

Section II). Therefore, it does not use an extra metadata space
in DRAM.

The boot space contains the boot image runner that boots
Jikes RVM and loads its image files. Except for a system with
only PCM, we always place the boot image in DRAM because
we observe a large number of writes to it.

Thread to Socket mapping: For the Kingsguard configu-
rations, we always bind threads, including application and JVM
service threads, to Socket #0 (see Figure 2). When emulating
a system with only PCM, we bind threads to Socket #1 for
accurately reporting write rates. We do not pin threads to
specific cores and use the default OS scheduler.

We measure write rates on our emulation platform using a
write rate monitor (WM in Figure 2) that also runs on Socket #0.
We experimentally find out that scheduling WM on Socket #0
leads to more deterministic write measurements.

IV. EXPERIMENTAL METHODOLOGY

Java Virtual Machine: We use Jikes RVM 3.1.2 because
it uses software practices that favor ease of modification, while
still delivering good performance [4], [5], [8], [19]. Jikes RVM
is a Java-in-Java VM with both a baseline and a just-in-time
optimizing compiler, but lacks an interpreter. Jikes RVM has a
wide variety of garbage collectors [7], [11], [46]. Its memory
management tool kit (MMTk) [7] makes it easy to compose
new collectors by combining existing modules and changing
the calls to the C and OS allocators. Jikes RVM also offers
easy-to-modify write barriers [54] which makes it easy to
implement a range of heap organizations.

Evaluation Metrics: We are mainly interested in accu-
rately measuring PCM writes. Write rates sometimes reveal
more insight than raw writes, for example, when comparing the
impact of changing the input dataset or understanding lifetime
implications. PCM lifetime in years is inversely proportional
to its write rate [40]. Therefore, whenever appropriate, we also
show PCM write rates. In this work, the observed write rates
on the remote socket equal the PCM write rates.

Workload Formation: Multiprogrammed workloads re-
flect real-world server workloads because (1) a single ap-
plication does not always scale with more cores, and (2)
multiprogramming helps amortize server real-estate and cost.



Our multiprogrammed workloads consist of two and four
instances of the same application. We do not restart applications
after they finish execution. To avoid non-determinism due to
sharing in the OS caches in multiprogrammed workloads, we
use independent copies of the same dataset for the different
instances.

Measurement Methodology: We use best practices from
prior work to evaluate Java applications on our emulation
platform [21], [23]. To eliminate non-determinism due to the
optimizing compiler, we use replay compilation as used in prior
work [12]. Replay compilation requires two iterations of a Java
application in a single experiment. During the first iteration, the
VM compiles each method to a pre-determined optimization
level recorded in a prior profiling run. The second measured
iteration does not recompile methods leading to steady-state
behavior. We perform each experiment four times and report
the arithmetic mean.

We use the pcm-memory utility in the Intel’s Performance
Counter Monitor framework to measure PCM writes. We make
modest modifications to support multiprogrammed workloads
and to make it compatible for use with replay compilation. In
a multiprogrammed workload, all applications synchronize at
a barrier and start the second iteration at the same time.

Applications: We use 15 Java applications from three
diverse sources: 11 DaCapo [9], pseudojbb2005 (Pjbb) [10],
and 3 applications from the GraphChi framework for processing
graphs [25]. The GraphChi applications we use are: (1) page
rank (PR), (2) connected components (CC), and (3) ALS
matrix factorization (ALS). Compared to recent work [2], we
drop jython as it does not execute stably with our Jikes RVM
configuration. To improve benchmark diversity, we use updated
versions of lusearch and pmd in addition to their original
versions. lu.Fix eliminates useless allocation [55], and pmd.S
eliminates a scalability bottleneck in the original version due
to a large input file [16]. Similar to recent prior work, we run
the multithreaded DaCapo applications, Pjbb, and GraphChi
applications with four application threads.

Unless otherwise stated, we use the default datasets for
DaCapo and Pjbb. Our default dataset for GraphChi is as
follows: for PR and CC, we process 1 M edges using the
LiveJournal online social network [27], and for ALS, we
process 1 M ratings from the training set of the Netflix
Challenge. The DaCapo suite comes packaged with large
datasets for a subset of the benchmarks. Our large dataset
for GraphChi consists of 10 M edges and 10 M ratings.

We use the C++ implementations of the GraphChi appli-
cations to characterize and compare C++ and Java memory
management and their implications for hybrid memory man-
agement.

Nursery and Heap Sizes: Nursery size affects perfor-
mance, response time, and memory space efficiency [6], [7],
[49], [58]. Similar to prior work [2], we use a 4 MB nursery
for DaCapo and Pjbb. Although recent prior work uses a 4 MB
nursery for GraphChi applications, we find a 32 MB nursery
improves performance, and we use this size for our experiments
with the GraphChi applications. We use a modest heap size

that is twice the minimum heap size. Our heap sizes reflect
those used in recent work [1], [11], [35], [44], [58].

Garbage Collectors and Configurations: We explore
seven write-rationing garbage collectors. Our collector con-
figurations include KG-N, and a variant called KG-B, that uses
a bigger nursery than KG-N. We use KG-B to understand if
simply using a large nursery, equal to the sum of nursery and
observer space in KG-W, could reduce PCM writes similar to
KG-W. KG-B and its variants use a 12 MB nursery for DaCapo
and Pjbb, and a 96 MB nursery for the GraphChi applications.

For the GraphChi applications, we evaluate KG-N and KG-B
with the Large Object Optimization (LOO) to form KG-N+LOO
and KG-B+LOO. We include the original KG-W along with
two variants: one that removes LOO to form KG-W-LOO
and one that removes the MetaData Optimization (MDO) to
form KG-W-MDO. We configure the Kingsguard collectors
with an observer space that is twice as large as the nursery.
Prior work reports this to be a good compromise between
tenured garbage and pause time [2]. We compare to PCM-Only
with the baseline generational Immix collector [11]. All of our
experiments use two garbage collector threads.

Hardware Platform: Figure 2 shows the NUMA platform
we use to emulate hybrid memory. Each socket contains one
Intel E5-2650L processor with 8 physical cores each with two
hyperthreads, for 16 logical cores. The platform has 132 GB of
main memory. Physical memory is evenly distributed between
the two sockets. We use all the DRAM channels on both
sockets. The 20 MB LLC on each processor is shared by all
cores. The maximum bandwidth to memory is 51.2 GB/s, which
is more than the maximum bandwidth consumed by any of our
workloads. The two sockets are connected via QPI links that
support up to 8 GB/s. We use Ubuntu 12.04.2 with a 3.16.0
kernel.

Simulated Hardware: We compare the results of emu-
lation and simulation to establish confidence in our newly
proposed methodology, and to confirm the findings in prior
work [2]. We compare emulation against simulated hardware
using the Sniper multicore simulator [15]. We make a best effort
to choose hardware parameters of the simulated system to be the
same as our emulation platform. More specifically, we consider
8 out-of-order cores with 256 KB private L2 caches, and a
shared 20 MB L3 cache. Unfortunately, the simulated hardware
does not model hyper-threading. To account for this difference,
we disable hyper-threading on our emulation platform when
comparing emulation versus simulation.

V. EMULATION VERSUS SIMULATION

This section validates emulation against simulation for the
Kingsguard collectors in terms of the reported reduction in
PCM writes. Lack of full-system support and long simulation
times limit evaluation using the simulator to 7 DaCapo
benchmarks: lusearch, lu.Fix, avrora, xalan, pmd, pmd.S
and bloat. We compare emulation versus simulation for three
Kingsguard collectors: KG-N, KG-B, and KG-W, see Table II.
We consider the following reference setup to emulate a PCM-
Only system and to isolate system-level effects. We consider the



Simulator	 Emulator	

KG-N	 4%	 8%	

KG-B	 11%	 13%	

KG-W	 64%	 62%	
TABLE II: Percentage reduction in PCM writes for three
Kingsguard collectors compared to a PCM-Only system using
simulation versus emulation. Emulation and simulation report
similar reductions in PCM writes.

baseline GenImmix as the collector, bind all the heap spaces to
the remote socket S1 (PCM), and measure the number of writes
to the local socket S0 (DRAM). The writes to S0 are due to
system-level activities (e.g., kernel and write rate monitor) since
all the program memory is on the remote socket S1 (PCM).
We now consider the three Kingsguard collectors relative to
this PCM-Only reference setup.

KG-N: Recently published work reports an 81% reduction
in PCM writes using KG-N [2]. This result was obtained
through simulation of a system with a 4 MB L3 cache. The
processors in our emulation platform on the other hand feature
a 20 MB L3 cache. We perform new experiments using the
simulator by matching the L3 cache size in simulation and
emulation. Compared to a PCM-Only system, the newly
simulated system reports a 4% reduction of PCM writes with
KG-N. The large 20 MB L3 cache absorbs most of the nursery
writes which limits the benefit of KG-N in reducing the number
of writes to PCM.

We now evaluate whether emulation yields a similar reduc-
tion in PCM writes. To emulate KG-N, we bind the nursery to
the local socket S0 (DRAM) and leave all other heap spaces
on the remote socket S1 (PCM). This results in an increase in
DRAM writes and a corresponding reduction in PCM writes
compared to the reference PCM-Only setup which puts all
heap spaces on S1. The difference in PCM writes between the
two setups is the reduction in PCM writes because of KG-N.
Emulation reports an average reduction in PCM writes of 8%.
In other words, we note a discrepancy of 4 percentage points
between emulation and simulation.

KG-B: The second Kingsguard collector we consider is
the KG-B collector which effectively is the KG-N collector
with a bigger nursery space (12 MB versus 4 MB). Simulation
reports an average 11% reduction in PCM writes versus 13%
through emulation — a discrepancy of 2 percentage points on
average. We note that only two benchmarks, namely lusearch
and xalan, experience a reduction in PCM writes with a bigger
12 MB nursery, further validating emulation versus simulation.

Intuition suggests that a large nursery could potentially
increase the total number of writes to memory, because a
small nursery has better L3 cache locality. L3 cache lines
containing mature and large objects are more likely to face
evictions when sharing the limited cache space with a larger
nursery. Nevertheless, we were surprised that on average for 7
DaCapo benchmarks and using the simulator, the total number
of writes to memory increases by 1.98× for KG-B compared to
KG-N. Through emulation we find an increase in total memory

writes with KG-B to be 2.2×. This further validates emulation
trends against simulation.

KG-W: The third Kingsguard collector we consider is
KG-W. We emulate KG-W by following the heap organization
as shown in Table I: we bind the nursery and observer spaces
to the local socket S0, and compute the reduction in PCM
writes compared to the reference PCM-Only system. The
average reduction in PCM writes reported by simulation and
emulation is close: simulation reports an average 64% reduction
in PCM writes whereas emulation reports a 62% reduction —
a discrepancy of 2 percentage points.
Finding 1. Emulation matches simulation when measuring the
reduction of PCM writes on hybrid memories due to write-
rationing garbage collection. Emulation must isolate system-
level effects when assessing the benefits of managed language
approaches to manage hybrid memories. A large L3 cache
absorbs most of the nursery writes.

Performance: So far, we validated emulation against sim-
ulation in terms of PCM writes. We now consider performance
when validating emulation versus simulation. We do not (and
cannot) accurately model PCM access latency on our emulation
platform. However, we can accurately measure the performance
overhead of KG-W versus KG-N because of the observer space
and various other optimizations to improve PCM lifetime.
While simulation reports an average performance overhead
of 7%, emulation measures an average 10% overhead. This
further confirms our conclusion that emulation is a viable and
accurate evaluation complement to simulation.

VI. HYBRID MEMORY FOR MANAGED WORKLOADS

We now evaluate hybrid memory with managed language
workloads using our newly proposed emulation framework.
Specifically, we focus on understanding the number of writes
to PCM for a rich workload and software configuration space.
We focus on writes because they determine PCM lifetime, and
whether PCM is a practical DRAM replacement. We discuss
the implications of programming language, multiprogrammed
workloads, benchmark suite, and input dataset size for PCM
writes. We further report write rates to PCM to analyze
PCM’s practicality in terms of its lifetime. Finally, the native
speed of emulation allows us to report on the effectiveness of
recently proposed Kingsguard collectors for graph processing
workloads.

A. Programming Language Implications for PCM Writes

The two memory management techniques in wide use today
are manual and automatic memory management. C++ offers
manual memory management whereas Java offers automatic
memory management through garbage collection. We quantify
the impact of the programming language and the choice of
memory management technique on PCM writes. The GraphChi
developers provide C++ and Java versions for PR, CC and
ALS. Emulation makes it easy to compare both versions in
terms of PCM writes.

Figure 3 compares the number of PCM writes that we
observe with the C++ and Java implementations of the



0	

1	

2	

3	

4	

PR	 CC	 ALS	

PC
M
	w
rit
es
	

no
rm

al
ize

d	
to
	C
++
	 C++	 Java	 KG-N	 KG-W	

Fig. 3: Comparison of PCM writes in C++ and Java imple-
mentations of the GraphChi applications. Java applications
write more to PCM than C++ applications in a PCM-Only
system. KG-N and KG-W result in fewer PCM writes than the
C++ implementations in a hybrid memory system.

GraphChi applications on a PCM-Only system. In a PCM-
Only system (left two bars), the Java versions of GraphChi
applications write up to 3.2× more to PCM than their C++
counterparts. There are three reasons for the additional writes of
the Java applications: (1) high allocation rates [58], (2) object
copying during garbage collection, and (3) zero-initialization
to guarantee memory safety.

This finding is further supported by measuring the total
amount of allocation in GB for both the C++ and Java
versions of GraphChi. We instrument the allocation sequence
in Jikes RVM to measure the amount of allocation for the
Java applications. For measuring the allocation in the C++
applications, we used the memcheck tool in the Valgrind
distribution [34]. Java applications allocate more than their
C++ counterparts: 1.34× for PR, 1.6× for CC, and 2× for
ALS. The larger volume of allocation in Java applications
contributes to more writes to PCM.

The C++ applications also consume less maximum heap
memory. We use the massif tool in Valgrind to measure the
peak heap memory during execution. Although we configure
the C++ heap equal to the size of the Java heap, i.e., 512 MB,
the maximum heap used by the three graph applications is
approximately 400 MB. The Java versions, on the other hand,
trigger full-heap collections that implies a peak heap usage of
512 MB.

Next, we discuss PCM writes for a hybrid memory system.
The Java runtime has two advantages that help limit writes to
PCM: (1) newly allocated and old objects are segregated in
coarse-grained spaces in the heap, and (2) the garbage collector
can move highly written objects from PCM to DRAM. The
malloc-based allocations in C++ on the other hand rely on a
free-list allocator to manage heap memory. Fresh allocation
is thus scattered throughout the heap. Furthermore, there is
no possibility to move fine-grained objects between PCM and
DRAM.

Figure 3 shows PCM writes of Java applications in a hybrid
memory system with the KG-N and KG-W collectors. For the
Java applications with KG-N, the number of PCM writes is
less than half the number of writes for the C++ applications on
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Fig. 4: Average PCM writes with PCM-Only and KG-W
normalized to PCM writes with a single instance. The growth
in PCM writes is super-linear for many multiprogrammed
workloads.

average. The nursery captures a large fraction of the writes due
to fresh allocation, and KG-N places this in DRAM. KG-N
piggybacks on generational garbage collection to eliminate a
large number of PCM writes for Java applications. In contrast,
fresh allocations in C++ are not localized to a specific region
of the heap. In addition to keeping the nursery in DRAM,
KG-W keeps highly written objects in DRAM. We observe
that KG-W even further reduces the number of writes to PCM
compared to C++.
Finding 2. Java applications allocate more memory and
write more than C++ applications in a PCM-Only system.
With hybrid memory, the generational heap organization of
Java’s garbage collectors enables capturing writes due to fresh
allocation in DRAM. This brings the number of writes to PCM
for Java workloads below C++.

B. PCM Writes for Multiprogrammed Workloads

Prior work on Java workload evaluation on PCM memory is
limited to single-program workloads [2], [20]. This limitation
is because long simulation times impede the evaluation of PCM
and hybrid memories for multiprogrammed Java workloads. Our
emulation platform allows us to run four instances of a program
at the same time, at native execution speed. Multiprogrammed
workloads incur interference patterns in the last-level cache that
results in writes to PCM memory. Figure 4(a) and Figure 4(b)
show the growth in the average number of PCM writes on
a PCM-Only system, as well as on a hybrid memory system
with KG-W, respectively.



We observe a variety of trends in PCM writes. On average for
PCM-Only, the increase in PCM writes from 1 to 2 program
instances equals 2.3×, as expected. However, from 1 to 4
instances, we observe a super-linear increase of 6.4×. DaCapo
applications encounter high interference in the LLC. The
average increase in PCM writes from 1 to 4 instances for
DaCapo is 9× (2.4× from 1 to 2 instances). The increase for
Pjbb is even higher. From 1 to 2 instances, the number of
writes to PCM increases by 5×, and from 1 to 4 instances, the
number of writes increases by 12×. The GraphChi applications
exhibit a linear trend. The increase in PCM writes equals 1.9×
and 3.5× for 2 and 4 instances, respectively.

We analyze PCM writes further in a PCM-Only system
to understand the super-linear trend. In particular, we isolate
nursery writes to one socket and the mature writes to another
socket. Our analysis shows that writes to the nursery are
responsible for the super-linear increase in PCM writes for
all DaCapo benchmarks and Pjbb. For example, from 1 to
4 instances, nursery writes in DaCapo increase by 30×.
The mature writes on the other hand increase only by 3×.
Figure 4(b) highlights this further by showing the increase in
PCM writes with KG-W. Contrary to PCM-Only, KG-W (and
KG-N, not shown) exhibit a linear increase in PCM writes
from 1 to 2 and 4 program instances across the three suites.
Finding 3. PCM writes grow super-linearly with the number of
concurrently running program instances in a PCM-Only system.
Write-rationing garbage collection significantly dampens the
increase in the number of writes to PCM.

C. DaCapo versus Emerging Java Benchmark Suites

The DaCapo benchmark suite is the dominant choice for
prior research on garbage collection; some studies use Pjbb.
Emerging application domains such as graph processing use
managed languages due to ease of implementation. They differ
from traditional Java benchmark suites in a number of ways:
(1) they use larger heaps, (2) they allocate larger and more
objects in the mature heap, and (3) they perform full-heap
garbage collections more often. This section analyzes PCM
writes for the GraphChi applications and compares the results
to DaCapo and Pjbb. The average heap size equals 100 MB
for DaCapo, 400 MB for Pjbb, and 512 MB for GraphChi.

We show the average number of PCM writes with a PCM-
Only system in Figure 5(a) for multiprogrammed Pjbb and
GraphChi applications. We normalize to writes obtained with
DaCapo. Pjbb writes on average 2× more relative to DaCapo
when running a single program instance. GraphChi applications
on average write to PCM 46× more often than DaCapo.
This relative gap in writes between DaCapo and GraphChi
narrows for multiprogrammed workloads. This is because
DaCapo applications incur greater LLC interference in a
multiprogrammed setting.

The execution times of different benchmarks vary, and
GraphChi applications run longer than both DaCapo and Pjbb.
Thus, comparing PCM writes alone could be misleading. The
compute-to-write ratio determines how quickly PCM wears out
as a DRAM replacement. Figure 5(b) shows the average PCM
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Fig. 5: Average raw PCM writes and write rates (MB/s) for
Pjbb and GraphChi relative to DaCapo for a PCM-Only system.
Pjbb and GraphChi have more writes and higher write rates
compared to DaCapo.

write rates with Pjbb and GraphChi relative to DaCapo. The
average write rates of Pjbb and GraphChi are 1.7× and 4.7×
higher than DaCapo. This shows that although the volume of
writes to PCM by graph applications is an order of magnitude
larger, the increase in write rate is less dramatic.

The difference in write rates between DaCapo and GraphChi
is less pronounced with KG-N and KG-W (not plotted).
GraphChi has the same average write rate as DaCapo with
KG-N and single-program workloads. The write rate with two
and four instances is 1.5× and 1.6× higher than DaCapo. This
shows that the higher write rate for GraphChi is due to nursery
writes.
Finding 4. Future studies on hybrid memories should use a
diversity of applications. Pjbb and GraphChi incur a larger
number of PCM writes and higher write rates than DaCapo.

D. PCM Write Rates and Practicality as Main Memory

We now discuss the PCM write rates that we observe for
our applications. We show write rates for PCM-Only and three
Kingsguard collectors. Write rates are important to observe
because hardware vendors recommend a maximum write rate
for PCM to work reliably during its warranty period. We
derive the maximum PCM write rate from recent work [18].
Specifically, they use a real NVM prototype of 375 GB with a
limit of 30 drive writes per day (DWPD). DWPD limits the
number of times the entire PCM memory (or drive) can be
written per day. A DWPD of 30 translates to a recommended
write rate of 140 MB/s. Figure 6 shows the write rates for our
applications in MB/s. Focusing first on PCM-Only, we observe
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Fig. 6: PCM write rates in MB/s for all of our benchmarks. PCM alone is impractical for many Java applications.

two distinct behaviors. One set of applications writes to PCM
at a rate below the recommended write rate, including almost
all of the DaCapo benchmarks and Pjbb. On the other hand,
two DaCapo and all of the graph processing applications have
very high PCM write rates. When these applications execute
on a PCM-Only system, they will wear-out PCM quickly,
making it impractical as main memory. For many applications,
Kingsguard collectors and especially KG-W reduces the PCM
write rate significantly. However, even with KG-W, PCM write
rate for one application is above the recommended write rate.
Future work should continue to investigate novel ways to reduce
PCM write rates for Java applications.
Finding 5. PCM in itself cannot replace DRAM. Applications
from different domains, and especially the ones that process
huge graphs, will wear out PCM very quickly. More work is
needed to limit PCM write rates and make it a practical DRAM
replacement.

E. Write-Rationing Garbage Collection for GraphChi

Recent work has explored write-rationing garbage collectors
(Kingsguard) for Java applications with moderate heaps [2].
Here, we evaluate the Kingsguard collectors for applications
from the GraphChi framework. The goals of this evaluation are
to understand the impact on PCM writes of (1) larger nurseries,
(2) allocating large objects first in the nursery (LOO), (3) write
monitoring in KG-W using an extra observer space, and (4)
placing meta-data in DRAM (MDO).

Figure 7 shows the results of our evaluation. Specifically, the
figure shows the reduction in PCM writes for single instances
of GraphChi applications. We observe that using KG-N to
place the nursery in DRAM substantially reduces writes to
PCM. Simply increasing the nursery size with KG-B has a
negligible impact on PCM writes. We investigated the reason
for this further. Large objects in KG-B are allocated directly
in the large object space in PCM. Increasing the nursery size
takes virtual memory away from the large object space leading
to more full-heap collections. This is because the large object
allocation more quickly fills up the heap in PCM. Based on this
analysis, we explore two new Kingsguard configurations in this
work. We combine KG-N and KG-B with LOO. Combining
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Fig. 7: PCM writes with various Kingsguard collectors
normalized to PCM-Only for the GraphChi applications. Graph
applications write less to PCM when the nursery is placed in
DRAM, and the large objects are first allocated in the nursery.

LOO with both KG-N and KG-B is effective in further reducing
the writes to PCM. KG-N+LOO and KG-B+LOO both reduce
PCM writes by up to 11% and 13% on top of KG-N and
KG-B, respectively.

We also observe in Figure 7 that KG-W reduces PCM writes
similar to KG-N+LOO. To find the feature of KG-W that has
the largest impact on reducing PCM writes, we explore two
additional Kingsguard configurations. First, we evaluate KG-W-
LOO to tease apart the impact of the large object optimization
from KG-W. Excluding LOO from KG-W (i.e., KG-W-LOO)
increases PCM writes because of allocation of short-lived large
objects in PCM. Large object allocation in PCM fills up the
heap quickly, leading to more frequent mature collections.
Mature collections are a source of PCM writes because of the
collector updating the objects’ metadata to mark them live. As
a result, the number of writes to PCM increases by 1.6× for
PR, 2.3× for CC, and 1.5× for ALS.

Next, we tease apart the impact of the metadata optimization
by evaluating KG-W-MDO. The GraphChi applications have
more mature space collections than DaCapo and Pjbb. Without
the metadata optimization (MDO), PCM writes increase for
KG-W, but only marginally. Specifically, the writes to PCM
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Fig. 8: PCM write rates with large datasets normalized to write rates with the default datasets. The input dataset size could
increase/decrease the PCM write rates.

increase by 1.14× for both PR and CC. Without MDO, the
writes to PCM of multiprogrammed workloads increase more
than the increase with single-program workloads (not shown).

We did a similar analysis for the DaCapo applications and
Pjbb. We do not show all the results due to space constraints.
Based on the analysis, we conclude that compared to DaCapo
and Pjbb, dynamic monitoring of objects in KG-W has limited
benefits for GraphChi applications. These applications benefit
the most from optimizations that target fresh allocation, nursery
writes, and large objects.
Finding 6. Allocating the nursery in DRAM and using the large
object optimization are effective ways to reduce the number of
writes to PCM for modern graph applications.

F. The Impact of Larger Input Dataset Sizes

Simulation of managed workloads precludes large datasets
because they make simulation times too long. The native speed
of emulation enables evaluation with large datasets. Here, we
evaluate the impact of large datasets on PCM writes and write
rates. We observe that, not surprisingly, large datasets increase
PCM writes by 3.4× on average and up to 10× because the
execution times are longer. Our analysis shows that the number
of writes to both the nursery and the mature spaces increases
with a larger dataset.

Write rates reveal more insight about the impact of large
datasets. Figure 8 shows PCM write rates for PCM-Only, KG-
N, and KG-W normalized to the default datasets. We observe
three trends for PCM write rates: (1) they stay unchanged, (2)
they increase by up to 1.5×, and (3) they decrease by up to 80%.
When PCM write rates stay unchanged, the compute-to-write
ratio does not depend on the size of the datasets. If write rates
increase/decrease, there is a disproportional decrease/increase
in compute relative to the size of the dataset. Interestingly, the
PCM write rates of graph applications reduce by 60% when
the size of the graph increases by 10×. We also observe that
large inputs lead to high PCM write rates for some DaCapo

applications with KG-W. This opens up opportunities for future
work and optimizations.
Finding 7. Large datasets sometimes shift the balance between
compute and memory-writes, changing PCM write rates.

G. Study of PCM Lifetimes

We now discuss PCM’s lifetime in years based on our earlier
findings regarding write rates. PCM’s lifetime in years depends
on a number of factors, primarily the rate of writes to PCM,
which varies with the processor frequency, cache setup, number
of co-running applications, etc. We use the analytical model
from prior work to report lifetimes for our set of applications
running on our emulation platform [13], [40]. More specifically,
PCM lifetime in years before failing is estimated as follows:

Y =
S×E

B×225 . (1)

We assume the size (S) of PCM main memory to be 32 GB.
We consider three PCM endurance (E) levels used in prior
work [37], [38]: 10 M, 30 M, and 50 M writes per PCM cell.
Finally, B is the write rate of an application during execution.
Equation 1 assumes perfect wear-leveling which is unrealistic.
We assume a PCM system with hardware wear-leveling that
delivers endurance within 50% of the theoretical maximum [38].
Table III shows worst-case (shortest) PCM lifetimes in years
across 15 applications.

We observe that running single-program workloads leads
to practical PCM lifetimes without the need for Kingsguard
collectors. This is true across the three PCM prototypes. On
the other hand, running multiprogrammed workloads consisting
of four instances would wear PCM out in two years given the
widely assumed PCM endurance level of 10 M writes per cell.
Write-rationing garbage collection is effective in improving
PCM’s lifetime by more than 3×. The higher the PCM cell
endurance, the longer its lifetime. With an endurance of 50 M
writes per cell, the worst-case PCM lifetime is 9 years, making
a PCM-Only system useful as main memory. Using KG-W
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N	=	1	 10	 18	 31	 54	 52	 90	

N	=	4	 2	 7	 5	 20	 9	 34	

TABLE III: PCM lifetime in years (worst-case across our benchmarks) for single-program (N=1) and 4-program (N=4)
workloads. Multiprogrammed workloads quickly wear out PCM. Kingsguard collectors make PCM useful across a broad set of
applications.

prolongs PCM’s lifetime to more than 30 years. However,
if more than four applications are running simultaneously, a
PCM-Only main memory would become non-viable again. This
analysis shows that software techniques such as write-rationing
garbage collection promise to make persistent main memories
last longer, potentially the same number of years as secondary
storage devices such as disks.

VII. RELATED WORK

We now discuss related work on evaluation methodologies
for emerging hardware and hybrid memories.

A. Evaluation Methodologies

Prior work uses emulation to evaluate emerging hardware.
Prior work uses commodity machines to emulate asymmetric
multicores using frequency scaling [14], [22]. Other works
focus more on cutting-edge memory technologies. Oskin et
al. [36] use a NUMA platform for emulating die-stacked
DRAM. Their evaluation only considers applications written in
C. Dulloor et al. [17] emulate hybrid DRAM-NVM memory
on a NUMA platform but use it to evaluate file systems for
persistent object storage.

More closely related work emulates hybrid DRAM-PCM
main memories [31], [51], [52]. The work closest to ours in
terms of hardware setup is Quartz [51], which is a performance
emulator and does not report writes nor write rates. On the
software side, Quartz leaves it to programmers and application
writers to spread program memory across DRAM and NVM
in hybrid DRAM-NVM memories. Our proposed platform
precisely reports writes which enables studies of PCM’s
practicality as main memory and provides a modified managed
runtime for hybrid memories, thus easing future studies. Other
related works target native applications written in C and C++,
and focus only on emulating the latency of PCM on real
hardware [31], [52].

Two platforms today enable executing Java applications on
top of simulated hardware in a reasonable amount of time: (1)
Jikes RVM on top of Sniper [44], and (2) Maxine VM on top
of ZSim [42]. Both Sniper and ZSim are cycle-level multicore
simulators that trade off accuracy for speed [15], [43]. In their
publicly available versions, both platforms lack support for
full-system simulation, favoring speed over detail.

B. Managed Languages with Hybrid Memory

Prior work has looked into tailoring the managed runtime
to more efficiently take advantage of hybrid memories. Wang
et al. [52] use DRAM in hybrid DRAM-NVM systems for
allocating frequently read objects. They use an offline profiling
phase to identify hot methods in the program. During runtime,
all object allocation that happens from hot methods goes
into DRAM. Unlike write-rationing collectors that target
lifetime, their goal is performance. This work uses emulation
for evaluation, but their infrastructure only supports simple
heap organizations. Our platform is flexible and enables the
evaluation of a range of collector configurations. We also
provide a methodology for measuring the write rates of Java
workloads under replay compilation [21], [23].

Gao et al. [20] use the managed runtime to tolerate PCM
failures. The hardware informs the OS of defective lines
which communicates faulty lines to the garbage collector. The
garbage collector masks these lines and moves data away from
them. This work uses a limited form of emulation on existing
hardware with fault injection software to model failures.

We discussed write-rationing garbage collection for hybrid
memories [2] in detail in Section II. More recent work intro-
duces a write-rationing garbage collector that uses prediction
of write-intensive objects from offline ahead-of-time profiling
to reduce the overheads of online monitoring [3].

VIII. CONCLUSIONS

Advances in non-volatile memory (NVM) technologies have
implications for the whole computing stack. Researchers need
fast and accurate methodologies for evaluating future NVM and
hybrid memory systems. This work introduces an emulation
platform built using widely available NUMA servers to evaluate
managed applications running on top of hybrid memories that
combine DRAM and NVM. This platform measures writes to
NVM and can be used to evaluate applications that use manual
or automatic memory management. We evaluate our emulator
with write-rationing garbage collectors that keep frequently
written objects in DRAM to guard NVM against writes and
improve its lifetime. We compare emulation to simulation,
showing that they have similar trends. Our emulation platform
reveals that Java applications allocate and write much more
to NVM than their C++ equivalents. With emulation, we can
and do explore large graph applications and multi-programmed
workloads with large datasets. Emulation reveals new insights,



such as that modern graph applications have much larger write
rates than DaCapo benchmarks and benefit significantly from
write-rationing collectors. Multiprogrammed environments see
a super-linear growth in write rates to NVM compared to
running single programs. Although simulation and emulation
both have their place, emulation adds the ability to explore a
richer software design and workload space.
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