To expose, or not to expose, hardware heterogeneity to runtimes

Shoaib Akram
Ghent University, Belgium

ABSTRACT

Recent semiconductor scaling trends are steering hardware to-
wards greater heterogeneity. Heterogeneous processors and mem-
ories have emerged to promise efficiency and scalability. Software
must take advantage of emerging hardware heterogeneity. We ask the
question, "what is the right software layer to abstract the complexity
of heterogeneous hardware?"

Historically, the OS is the first choice to abstract new hardware
features. Programmers, virtual machine developers, and language im-
plementers benefit because they do not need to worry about hardware
details. On the other hand, the upper layers of the software stack,
especially the language runtimes, contain rich semantic information
about user applications, unavailable to the OS. This information
can be useful in managing hardware resources better. The drawback
is that it requires software changes, making hardware vendors de-
pend on runtime developers. This paper discusses two case studies
that show exposing hardware details to the Java language runtime
improves key evaluation metrics for popular Java applications. We
further discuss implications for implementation complexity, pro-
gramming model, and the necessary hardware and OS support.

ACM Reference Format:

Shoaib Akram. 2019. To expose, or not to expose, hardware heterogeneity
to runtimes. In Proceedings of Workshop on Modern Language Runtimes,
Ecosystems, and VMs (MoreVMs’19). ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Increasing hardware heterogeneity is inevitable. Modern hard-
ware is becoming heterogeneous due to two device scaling trends.
Transistor scaling under Dennard’s rule that promised increasing
transistor counts at a constant power density has stopped. The result
is a greater emphasis on energy efficiency across the computing spec-
trum. Furthermore, Moore’s law that enables shrinking transistor
sizes is slowing down leading scientists to look for more scalable
technologies. Heterogeneity in processors allows for a wide range
of power versus performance tradeoffs. Heterogeneity in memory
promises performance and scalability.

Heterogeneous multicores. Heterogeneous multicore (HM) pro-
cessors, e.g., ARM big.LITTLE, combine big (high performing) and
small (low energy) cores to enable energy efficiency. Big cores run
program instructions out of program order to exploit instruction-level
parallelism (ILP) and memory-level parallelism (MLP). In contrast,
small cores run instructions in the program order. Application phases
that do not expose ILP or MLP lose little performance by running
on small cores. Hardware vendors such as Qualcomm are pushing
heterogeneity beyond core types. The Qualcomm Snapdragon 805
processor consists of integrated CPU, GPU, DSP, and a range of spe-
cialized accelerators and co-processors. According to analysts, Intel
plans to unveil integrated FPGAs in Sklylake-based Xeon processors
soon.

Hybrid memories. Heterogeneity is not limited to processors
alone. Scaling DRAM cells to smaller sizes is becoming a chal-
lenge. Prominent memory vendors have responded by introducing
new memory technologies. Emerging memory technologies are non-
volatile, and production systems are variants of phase change mem-
ory (PCM). Intel’s Optane memory is byte-addressable, persistent,
and faster than solid state disks. Unlike DRAM, PCM consumes
no idle power. The main shortcomings of PCM are: (1) latencies
are higher than DRAM, and (2) write endurance is low. Heteroge-
neous (hybrid) memory combines DRAM and PCM to offer scalable
memory systems with good performance and low energy.

Exploiting hardware heterogeneity. How best we take advan-
tage of heterogeneous hardware is an important question. Here, we
focus on heterogeneous processors and memories. At one end of the
spectrum are approaches to utilize hardware heterogeneity that do
not involve software. In the software stack, OS is the first choice
to abstract new hardware features. Hardware and OS approaches
give hardware vendors independence from software companies like
Microsoft and Oracle. On the other hand, modern language runtimes
such as those for languages like C# and Java have rich semantic
information. These runtimes interact closely with the application
and know about application needs and behaviors.

Scheduling heterogeneous multicores. Let us consider thread
scheduling on HMs. A hardware-only solution can use hardware
performance counters to quantify the ILP and MLP in different
threads. A hardware scheduler can then decide which threads to run
on big versus small cores. A software-oblivious approach requires
hardware support for context switches. Alternatively, the OS can use
performance counter hardware to schedule threads on HMs. These
disregard semantic information available in the runtime.

To see when semantic information is useful, consider a multi-
threaded application written using a producer-consumer program-
ming pattern. One set of threads produce information, which is
processed (consumed) by another set of threads. Producers and
consumers communicate via shared queues. Scheduling of the pro-
ducer threads on big cores does not lead to the best performance if
consumers cannot keep up. Conversely, running consumers on the
big cores wastes energy if producers are not fast enough. Semantic
knowledge can guide scheduling by communicating the relative rate
of the progress of producers and consumer to the OS. The mutator
and concurrent garbage collection threads in a managed runtime
such as the Java Virtual Machine (JVM) manifest a similar pattern.
Other examples are software pipelining and Hadoop MapReduce.

Managing hybrid memories. How best to manage hybrid mem-
ories is another concern. Let us focus on mitigating the low write
endurance (wear-out) of PCM. Hardware-only solutions perform
wear-leveling, i.e., spread writes out across the PCM capacity, or
treat DRAM as a cache for PCM. However, these solutions can not
eliminate writes by placing frequently written pages in DRAM. The

https://doi.org/10.1145/nnnnnnn.nnnnnnn

MoreVMs’19, April 2019, Genova, Italy

m1B3S ©2B2S m3B1S
30
%25
o 20
£ 15 [|
c
2 10 B
s . I
E | 1] | | I
1] [o] — | S I 10 I .
= N I I
-5 -
-10
S *~ N ~
SEsIFIIFEE FEIFZSE 8
CEICSTLLFTE L5558 F5F §
S S0S§SVYS g O X go &
< ‘U(UQQ < 2 ¢ 2 S @
L 99 > S & S N ~
1 o S o So 9
< & 54 9

Figure 1: Percentage reduction in energy-delay product with
GC-criticality-aware scheduling. 1B3S has one big core and
three small cores. Multithreaded benchmarks have 2 and 4 ap-
pended to their names to show the number of mutator threads.
GC-criticality-aware scheduling improves energy efficiency over
always keeping GC threads on small cores.

PCM-Onl M Kingsguard
., 2000 Y E38
S~
o
2 1500
£
8
& 1000
g
ESOO
o b n il e LD AAL Lhi
X ® X 9 c 2 T Q Lt 0 ¥ Qo (SN, o = =
L5328 5 928882802 2672
25£3qRES <gam*> Qo ¥
<31 a w Q‘;ﬂ<
gﬂ<(
<

Figure 2: PCM write rates in MB/s. PCM alone is impractical.
Kingsguard collectors reduce PCM write rates significantly.

OS, on the other hand, can identify and migrate frequently writ-
ten pages in DRAM. Still, the OS approaches operate at a coarse-
grained granularity and are reactive in nature.

Modern language runtimes such as the virtual machine imple-
mentations of Java, C#, and Python use garbage collection (GC)
to manage virtual memory. GC has fine-grained knowledge about
memory reference patterns. GC can thus migrate frequently written
objects to DRAM to mitigate PCM wear-out.

The rest of the paper discusses two case studies that show ex-
posing hardware details to the managed runtime results in better
utilization of heterogeneous hardware.

2 RESULTS OF CASE STUDIES

We now present results from two case studies that support using
semantic information in the runtime. We first discuss GC-criticality-
aware scheduling on HMs [2]. The mutator and the concurrent GC
threads in the Java runtime compete for big cores. Prior work rec-
ommends scheduling GC threads on small cores to save energy. We
find that this approach makes GC critical for highly Java allocating
applications. When GC becomes critical, it pauses the application to
free unused heap memory. The result in overall performance degra-
dation. However, scheduling of GC threads on the big cores takes
big core cycles away from the application threads.

Shoaib Akram

In GC-criticality-aware scheduling, the JVM determines and com-
municates the criticality of concurrently running GC threads to the
OS. In turn, the OS boosts the priority of GC threads for the big
cores.

Figure 1 shows the reduction in energy-delay product (EDP) with
GC-criticality-aware scheduling over prior work. EDP is the product
of energy and delay (execution time) of an application and captures
the energy efficiency of a system. The benchmarks to the left are
not GC-critical, and their allocation rates are low. On the right are
GC critical applications. We observe that increasing the number of
application threads increases GC criticality. On average, for a 3B1S
system, using semantic information through GC-criticality-aware
scheduling improves EDP by 8%.

GC-criticality-aware scheduling requires no hardware support
or changes to the programming model. The OS needs to act upon
critically signals which require minimal OS and JVM changes.

We now discuss write-rationing garbage collection for hybrid
memories [1]. Write rationing garbage collection exploits object
demographics and write patterns in Java applications to place fre-
quently written objects in DRAM in a hybrid DRAM-PCM memory
system. We discuss a specific collector here, namely Kingsguard.
Kingsguard monitors writes on a per-object basis using barriers in
the JVM. During a garbage collection, highly written objects are
kept in DRAM and the rest in PCM.

Memory vendors place an upper limit on PCM write rate to guar-
antee a safe operation during the warranty period. We compute a
recommended write rate of 140 MB/s for the Intel’s Opteron mem-
ory from commercial data sheets. Figure 2 shows that a PCM-Only
system is impractical as most applications write more than the recom-
mended write rate. On the other hand, using Kingsguard collectors
result in practical PCM write rates.

We also compare to a previously proposed OS solution. The
results (not shown) show that the Kingsguard collector is more effec-
tive than the OS solution. More specifically, Kingsguard monitors
fine-grained objects instead of coarse-grained pages and uses DRAM
more efficiently.

Kingsguard requires no changes to the programming model. The
implementation complexity of Kingsguard collectors is non-negligible
but manageable. Kingsguard uses OS NUMA interfaces to interact
with hybrid DRAM and PCM memories.

3 CONCLUSIONS

Modern hardware is increasingly becoming heterogeneous. An open
question is what is the right software layer to abstract the complex-
ity of heterogeneous hardware. This paper discusses the pros and
cons of hardware, OS, and language runtime approaches to manag-
ing hardware heterogeneity. This paper demonstrates that semantic
information in language runtimes can be instrumental in better man-
agement of heterogeneous hardware. It makes hardware vendors
depend on language runtime developers, but requires only minimal
OS support, and no changes to the hardware or the programming
model.

REFERENCES

[1] Shoaib Akram, Jennifer B. Sartor, Kathryn S. McKinley, and Lieven Eeckhout.
2018. Write-Rationing Garbage Collection for Hybrid Memories. In PLDI.

[2] Shoaib Akram, Jennifer B. Sartor, Kenzo Van Craeynest, Wim Heirman, and Lieven
Eeckhout. 2016. Boosting the Priority of Garbage: Scheduling Collection on
Heterogeneous Multicore Processors. In TACO.

	Abstract
	1 Introduction
	2 Results of Case Studies
	3 Conclusions
	References

