
SmartSweep: Efficient Space Reclamation in Tiered
Managed Heaps

Iacovos G. Kolokasis∗†‡
FORTH-ICS, Greece
kolokasis@ics.forth.gr

Konstantinos Delis∗†‡
FORTH-ICS, Greece

konstadelis@ics.forth.gr

Shoaib Akram§
ANU, Australia

shoaib.akram@anu.edu.au

Foivos S. Zakkak
Red Hat, Ireland

fzakkak@redhat.com

Polyvios Pratikakis†‡
FORTH-ICS, Greece
polyvios@ics.forth.gr

Angelos Bilas†‡
FORTH-ICS, Greece
bilas@ics.forth.gr

Abstract
Using remote memory for the Java heap enables big data
analytics frameworks to process large datasets. However, the
Java Virtual Machine (JVM) runtime struggles to maintain
low network traffic during garbage collection (GC) and to
reclaim space efficiently. To reduce GC cost in big data an-
alytics, systems group long-lived objects into regions and
excludes them from frequent GC scans, regardless of whether
the heap resides in local or remote memory. Recent work
uses a dual-heap design, placing short-lived objects in a local
heap and long-lived objects in a remote region-based heap,
limiting GC activity to the local heap. However, these sys-
tems avoid scanning by reclaiming remote heap space only
when regions are fully garbage, an inefficient strategy that
delays reclamation and risks out-of-memory (OOM) errors.

In this paper, we propose SmartSweep, a system that uses
approximate liveness information to balance network traffic
and space reclamation in remote heaps. SmartSweep adopts
a dual-heap design and avoids scanning or compacting ob-
jects in the remote heap. Instead, it estimates the amount of
garbage in each region without accessing the remote heap
and selectively transfers regions with many garbage objects
back to the local heap for reclamation. Preliminary results
with Spark and Neo4j show that SmartSweep achieves per-
formance comparable to TeraHeap, which reclaims remote
objects lazily, while reducing peak remote memory usage by
up to 49% and avoiding OOM errors.

∗Both authors contributed equally to this work.
†Foundation for Research and Technology - Hellas (FORTH), Institute of
Computer Science (ICS), Greece
‡Department of Computer Science, University of Crete, Greece
§Australian National University, Australia

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
MPLR ’25, Singapore, Singapore
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2149-6/25/10
https://doi.org/10.1145/3759426.3760981

CCS Concepts: • Software and its engineering → Mem-
ory management; Garbage collection; Runtime envi-
ronments; • Information systems → Data analytics; •
Computer systems organization → Cloud computing.

Keywords: Disaggregated Memory, Remote Memory, Mem-
ory Management, Garbage Collection, Big Data Systems
ACM Reference Format:
Iacovos G. Kolokasis, Konstantinos Delis, Shoaib Akram, Foivos S.
Zakkak, Polyvios Pratikakis, and Angelos Bilas. 2025. SmartSweep:
Efficient Space Reclamation in Tiered Managed Heaps. In Proceed-
ings of the 22nd ACM SIGPLAN International Conference on Managed
Programming Languages and Runtimes (MPLR ’25), October 12–18,
2025, Singapore, Singapore. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3759426.3760981

1 Introduction
Big data analytics frameworks running on Java Virtual Ma-
chine (JVM) runtimes, such as Spark [48] and Neo4j Graph
Data Science [18], are widely used for large-scale data pro-
cessing. These frameworks demand significant memory re-
sources, as their computations produce large volumes of
long-lived objects (e.g., cached intermediate results). On the
other hand, scaling DRAM within a single server is increas-
ingly impractical, with DRAM representing up to 37% of
total server ownership cost (TCO) in hyperscale data cen-
ters [12, 27, 31, 38, 43]. Far-memory techniques offer a scal-
able manner to use remote, idle memory [13].
In JVM runtimes, garbage collection (GC) over remote

memory incurs high network traffic due to the cost of remote
heap access. Prior work has tackled GC cost for big data ana-
lytics frameworks in local DRAM environments by isolating
long-lived objects into regions excluded from frequent scans,
often guided by application-level hints [8, 15, 42]. These tech-
niques assume a single managed heap allocated entirely in
local memory. In far-memory systems, the heap typically
resides in remote memory, with local DRAM acting only as
a page cache. As a result, while excluded regions limit GC
operations, the garbage collector must still scan and compact
the full remote heap, when it needs to reclaim memory.
To address the limitations of single-heap designs, prior

work has introduced a dual-heap design [19, 21, 25, 26, 45, 47].

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3759426.3760981
https://doi.org/10.1145/3759426.3760981


MPLR ’25, October 12–18, 2025, Singapore, Singapore I. G. Kolokasis, K. Delis, S. Akram, F. Zakkak, P. Pratikakis, and A. Bilas

LR LgR

Reads

SVD TC LR LgR

Writes

SVD TC
0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
li
z
e
d
 I
/O

 T
ra

ff
ic

BridgeGC TeraHeap

Figure 1. Remote I/O traffic for single-heap (BridgeGC) and
dual-heap designs (TeraHeap) in Spark.

In the context of remote memory, the primary heap (H1)
resides in local DRAM and the secondary heap (H2) for long-
lived objects in remote memory. This design restricts GC
activity to H1, avoiding expensive GC scans and compactions
in remote memory. As shown in Figure 1, TeraHeap [19]
using a dual-heap design reduces network I/O traffic by up
to 177× compared to BridgeGC [42], which uses a single
heap over remote memory for Spark workloads described
in Section § 4. TeraHeap places Spark’s cached intermediate
results in H2, while BridgeGC avoids scanning these objects
during GC.
However, dual-heap designs face the challenge of how

to reclaim memory efficiently in H2. Some systems [25, 26,
45, 47] periodically scan H2 to reclaim unreachable objects,
but this approach incurs high network traffic in the case of
remote memory. Others, such as TeraHeap [19, 20], reclaim
memory only when all objects in a region in H2 are unreach-
able. This design is suitable for storage devices that provide
high, low-cost capacity, where delayed reclamation is tol-
erable. In contrast, remote memory is limited and requires
timely reclamation, making such a lazy approach impractical,
resulting in out-of-memory (OOM) errors.
In this work, we propose SmartSweep, a system that effi-

ciently reclaims space in remote memory within dual-heap
design without incurring full GC scans in remote managed
heap (H2). SmartSweep partitions H2 into regions and uses
approximate region-level information to quickly identify
those containing a high proportion of garbage. This approach
enables timely reclamation with low overhead. Our design
addresses the following three challenges:

Finding dead objects without scanning H2. Traversing
the object graph to identify live objects in H2 requires ran-
dom remote memory access, which significantly increases
network traffic. To avoid this overhead, SmartSweep esti-
mates region liveness without accessing H2 objects. It col-
lects statistics during H1’s liveness analysis and leverages
forward references from H1 to H2, along with updates to H2
objects by application (mutator) threads. SmartSweep then
ranks regions for reclamation using a policy that correlates

forward references and mutator updates with the number of
objects in each H2 region, prioritizing those likely to contain
mostly garbage.

Reclaiming space in H2. Compacting objects in remote
memory is costly, as it triggers frequent page swaps. Prior
work [24] offloads this task to remote servers, but it depends
on spare CPU resources, which are often oversubscribed in
datacenters [13] and incurs additional overhead from main-
taining load barriers to update object references during muta-
tor access [49]. SmartSweep avoids these costs by identifying
regions with high garbage content and moving their objects
from H2 to H1. Since GC overhead is dominated by live ob-
ject processing, moving mostly dead objects to H1 adds little
to no cost in subsequent GC cycles.

Maintaining cross-region references. While SmartSweep
avoids scanning H2 to identify live objects, reclaiming space
in H2 by moving a region back to H1 introduces a new chal-
lenge: we must update any references to objects in the re-
claimed region without scanning the entire H2. One option
is to relocate the entire transitive closure of the region to
avoid dangling references. However, this can be costly if
dependencies are widespread. We find that up to 70% of H2
regions are referenced by only two other regions due to
our placement strategy that groups the transitive closure
of long-lived objects into the same region during migration.
This limited connectivity makes it more efficient to update
references in place. Thus, we track cross-region references
with a card table, updated during GC and by just-in-time
(JIT) compiler post-write barriers on new references.

We implement an early prototype of SmartSweep by ex-
tending TeraHeap, the state-of-the-art dual-heap system,
which is implemented in OpenJDK 17, a long-term support
release widely adopted by legacy applications. To evaluate
our system, we use Spark and Neo4j Graph Data Science
(GDS), two popular big data analytics frameworks. Our pro-
totype currently moves only primitive types, arrays, and
leaf objects to remote memory. Although this design is sim-
plified, these object categories account for more than 60%
of heap usage in our benchmarks, showing that the proto-
type captures the dominant memory behavior. As a result,
SmartSweep lowers peak remote memory usage by 49% com-
pared to TeraHeap, achieves similar performance, and avoids
OOM errors.

2 SmartSweep Design
The main goal of SmartSweep, is to reclaim dead objects
in remote managed heaps without performing GC scans.
As shown in Figure 2, SmartSweep uses a two-heap design
architecture with a primary heap (H1) in local DRAM and
a second region-based managed heap (H2) for long-lived
objects in remote memory. Typically, H2 is mapped over
DRAM using memory-mapped I/O (mmio), such as Linux



SmartSweep: Efficient Space Reclamation in Tiered Managed Heaps MPLR ’25, October 12–18, 2025, Singapore, Singapore

Second Heap (H2)Primary Heap (H1)
JVM

Remote memory

Region 0 Region N

H2 card table

H2 regions metadata
JVM metadata

H2 liveness map

. . .

Local memory
Page cache

Young gen. Old gen.

Figure 2. Overview of SmartSweep

mmap(). Thus, H2 accesses are served through the page cache,
ensuring DRAM-level latency in case of page cache hits
without requiring object reference updates. Only transfers
between H1 and H2 necessitate updating object references.

2.1 Finding Dead Objects in Remote Heap
Scanning H2 to find live objects is slow. For this reason, we
organize objects in H2 into regions, treating all objects within
a region as a single unit. SmartSweep stores the metadata for
each region into a region array in local memory (see Figure 3).
These metadata contain metrics that enable SmartSweep to
estimate the amount of garbage in each region without scan-
ning individual H2 objects. For the estimation, SmartSweep
identifies regions that contain objects directly referenced by
H1 objects and monitors changes in the object references
within each region. Tracking forward references from H1
to H2 pinpoints regions with live objects, while observing
reference updates detects modifications in the object graph
that may convert previously live objects into garbage.

Forward references (H1 to H2). To estimate live objects
in each region, SmartSweep tracks where forward references
from H1 land in H2. This spatial information is crucial be-
cause simple reference counting can be misleading as a re-
gion may contain one highly referenced object while most
objects are garbage. To capture this detail, SmartSweep em-
ploys a liveness map, a byte array allocated in local DRAM
where each byte corresponds to a fixed-size segment of H2.
At the start of each marking phase, the used bits in each
region’s metadata are reset. When a forward reference to
an H2 object is encountered, SmartSweep checks whether
the corresponding byte is marked; if not, it increments the
liveness counter in the region’s metadata (Figure 3) and
marks corresponding byte in the liveness map. Additionally,
the region is flagged as used, and if it contains references to
objects in other regions, SmartSweep traverses the depen-
dency list to mark those regions as used as well. At the end of
the marking phase, any region whose used bit remains unset
is reclaimed. To estimate garbage density, we rank regions

Dependency list

Region array

. . .dep.
list

start
addr

top
addr

used

Metadata (Local memory)

region
ptr

region
ptr

next

H1 dest.
address

liveness
counter

under
transfer

object
counter

ref.
list

Referent list

region
ptr

region
ptr

next

Region 0

Figure 3. Metadata for each region in local memory.

by the ratio of the liveness counter to the total number of
objects. In our experiments, each card maps an 4 KB segment
of H2 to align with page size accesses.

Monitoring changes in inter-region references. Wemain-
tain a card table for H2 to track updates to object references.
The card table is implemented as a byte array in local DRAM,
with each byte corresponding to a fixed-size segment of H2,
similar to the vanilla JVM. A clean card indicates that no
changes have been made in that segment, whereas a dirty
card signals that mutator threads have updated an object’s
reference through post-write barriers in both the interpreter
and the JIT compilers. These updates reflect modifications
in the object graph within that region, either by creating
a new reference from H2 to H1 or by altering references
among H2 objects. During each GC cycle, we scan the card
table to count the number of dirty cards in each region and
record this value in the region’s metadata. In addition, we
update the backward references from H2 to H1 to reflect
object movements in H1.

2.2 Selecting Regions for Reclamation
At the end of the marking phase, SmartSweep marks for
transfer all regions with a heuristic value 𝑈 below a des-
ignated threshold and saves references to these regions in
a data structure in the JVM. To guide region selection for
movement from H2 to H1, SmartSweep employs a policy
that combines two key metrics: the liveness ratio, derived
from forwarding references, and the dirty-card ratio, which
reflects objects mutability. Each region is assigned a uni-
fied score 𝑈 by normalizing both metrics and applying a
weighted formula:

𝑈 = 𝛼 ∗ 𝑙𝑖𝑣𝑒𝑛𝑒𝑠𝑠_𝑟𝑎𝑡𝑖𝑜 + (1 − 𝛼) ∗ (1 − 𝑑𝑖𝑟𝑡𝑦_𝑟𝑎𝑡𝑖𝑜) (1)

These regions are then sorted based on their heuristic val-
ues. A lower threshold ensures that we primarily select re-
gions with a high concentration of garbage objects, whereas
a higher threshold also includes regions with a lower propor-
tion of garbage. In general, increasing the threshold reclaims
more memory from H2, as it leads to transferring more ob-
jects back to H1. However, this also introduces higher per-
formance overhead, since live objects may be unnecessarily
moved, increasing memory pressure in H1 and leading to



MPLR ’25, October 12–18, 2025, Singapore, Singapore I. G. Kolokasis, K. Delis, S. Akram, F. Zakkak, P. Pratikakis, and A. Bilas

H1 (Old gen.) H2

Offset for pointer
adjustment

Difference
New top
pointer

Top
pointer

(a)

H2

Difference

New top
pointer

Top
pointer

H1 (Old gen.)

(b)

Figure 4. (a) After marking, white (live) and solid (dead)
objects are identified and destination offsets are computed.
(b) H1 is compacted, the chosen H2 region is moved, and
references are updated.

longer GC pauses and more frequent collections. Notably,
these objects can later be transferred back to H2.

Transferring regions from H2 to H1. As soon as the
precompaction phase of the garbage collector concludes,
destination addresses in H1 are assigned to each H2 region
scheduled for transfer. This process begins by assigning the
address at the end of the old generation, as indicated by
the new top pointer shown in Figure 4(a). Each subsequent
region that is to be transferred is assigned a destination
address calculated as the new top pointer plus the cumulative
difference of all so far transferred regions.
During the compaction phase, while updating pointers

to the new object locations, SmartSweep checks whether
an object resides in H2 and belongs to a region scheduled
for transfer to H1. For each such object, SmartSweep cal-
culates its offset from the start of its H2 region and adds
it to the assigned destination address to determine its new
location in H1. Once compaction is complete, the H2 regions
are copied to their designated H1 destinations, as shown in
Figure 4(b). SmartSweep then iterates over all transferred ob-
jects to fix their references and mark them for return to H2 in
the next GC, after dead objects have been reclaimed. Finally,
SmartSweep updates the top pointer of the old generation
to reflect the end of the last transferred region.

Maintaining cross-region references. To maintain cor-
rectness when moving a region from H2 to H1, SmartSweep
must update references from other regions that point into it.
SmartSweep extends the H2 card table to track cross-region
references and marks relevant cards whenever objects are
moved from H1 to H2 or when mutator threads create new

Table 1. Configurations of the workloads.

DRAM Data-
set

Tera
Heap

Smart
Sweep

GB Size Size H1 H1
SVDPlusPlus (SVD) 28 2 12 12
TriangleCounts (TR) 59 2 43 43

Spark Linear Regression (LR) 43 256 27 27
Logistic Regression (LgR) 43 256 27 27

Neo4j CDLP 16 70 14 14

references. Each region maintains a dependency list (regions
that reference it) and a referent list (regions it references).
During region transfer, SmartSweep uses the dependency list
to identify which regions may contain stale references, scan-
ning only their marked cards to locate and update pointers.
After updates, the region is removed from the dependency
lists of all referencing regions, ensuring consistency while
avoiding full-region scans or transitive closure transfers.

3 Preliminary Implementation
We implement an early prototype of SmartSweep by extend-
ing TeraHeap, which is built on OpenJDK 17, to evaluate
the core ideas and validate its effectiveness. TeraHeap ex-
tends the Parallel Scavenge garbage collector (ParallelGC)
to support a two-heap architecture. Our prototype leverages
the hint-based interface of TeraHeap to migrate long-lived
objects to remote memory. At this stage, we focus on trans-
ferring only primitive types, arrays, and leaf objects—those
whose fields are exclusively primitive. This ensures only
forward references from H1 to H2, simplifying our imple-
mentation and avoiding cross-region references in H2. De-
spite these simplifications, our evaluation across a range of
real-world big data analytics benchmarks shows that prim-
itive and leaf objects account for over 60% of heap usage,
demonstrating that our prototype captures the dominant
memory behavior. SmartSweep accesses remote memory via
NVMe-over-fabric (NVMe-oF) [28], using OS support for
memory-mapped I/O.

4 Preliminary Evaluation
Using the SmartSweep prototype implementation, we per-
form a set of experiments to estimate: (1) performance of
SmartSweep compared to TeraHeap (baseline), and (2) the
improvement in space utilization compared to TeraHeap.

Experimental setup. We ran all experiments in 4 dual
socket servers with two Intel(R) Xeon(R) E5-2630 v3 CPUs at
2.4GHz, with 8 physical cores and 16 hyper-threads each (32
total hyper-threads), 256 GB of DDR4 DRAM and Ubuntu
v24.02, with Linux kernel 5.14. We use the one server to run
the application while the rest we use them as remote memory
via NVMe-of. In our experiments we use OpenJDK-17, Spark
v3.3.0, and Neo4j-GDS using Neo4j v.5.13. For Spark we use
one executor with eight threads. For GDS-Neo4j, we use four



SmartSweep: Efficient Space Reclamation in Tiered Managed Heaps MPLR ’25, October 12–18, 2025, Singapore, Singapore

T S

LR

T S

LgR

T S

SVD

T S

TC

TS

CDLP

0

500

1000

1500

2000

2500

3000

3500

E
x
e
c
u
ti

o
n
 T

im
e
 (

s
)

Other

Minor GC

Major GC

(a) Overall performance

0 1000 2000 3000
Time (seconds)

0

10000

20000

30000

40000

50000

H2
 G

ar
ba

ge
 O

bj
ec

ts
 (M

B) TeraHeap
SmartSweep

(b) Space waste

Figure 5. (a) Overall performance of TeraHeap and
SmartSweep. (b) Space wasted in H2 due to dead objects:
“x” and “o” mark the start and end of each full GC cycle, re-
spectively.

Table 2. Runs with limited H2 size

Execution Time
(s)

H1 to H2
(GB)

H2 to H1
(GB)

TeraHeap OOM 89.5 0
SmartSweep 2034 131 31.7

threads, as this is the maximum number of threads supported
by the GDS community edition [18]. In all setups, we use
eight GC threads. To reduce variability, we disable swap and
set the CPU scaling governor to performance. When nec-
essary for each experiment, we limit the available DRAM
capacity using cgroups. Table 1 shows the configuration for
each workload. For all experiments, we determine the mini-
mum H2 size required for TeraHeap to run successfully.

Overall performance: Figure 5 (a) shows the execution
time breakdown of the applications, divided into MinorGC,
MajorGC, and application processing time. SmartSweep de-
livers performance comparable to TeraHeap across all con-
figurations, while reducing wasted space in H2 by 50%. This
is because MajorGC time depends on the size of live objects,
not the volume of garbage, resulting in minimal overhead.

Space utilization improvement. Figure 5 (b) shows the
execution of SVD and the accumulation of garbage objects in
H2. For this analysis, we allow the garbage collector to scan
H2 to determine the exact number of live and dead objects.
Since live objects are actively used by the application, only
garbage contributes to wasted space if not reclaimed. In Ter-
aHeap, wasted space peaks at the end of execution, reaching
48GB. In contrast, SmartSweep reduces peak wasted space
to 24.5GB, a 49% reduction. Due to space constraints, we
show results for SVD only, but other workloads, suchs as
CDLP exhibit similar trends.
We aim to simulate the behavior of a long-running ap-

plication that spans several hours, which would eventually

exhaust remote memory capacity if dead objects are not re-
claimed in H2. For this purpose, instead of increasing the
dataset size and running SVD for several hours, we simu-
lated this scenario by constraining the available H2 size. We
set H1 and H2 to be 64GB and 97GB, respectively. Table 2
summarizes our derived results. TeraHeap was unable to
complete the execution due to an OOM error, indicating that
H2 regions contain a portion of live objects, and the garbage
collector cannot reclaim sufficient space to allow continued
execution. In contrast, SmartSweep successfully completed
its execution.

5 Discussion
Identifying objects to move to remote memory. Beyond

the hint-based approach we use to identify long-lived objects
for transfer to H2, a more transparent solution, as proposed
in previous work [3, 4, 22, 45], would involve instrument-
ing load and store instructions to collect per-object access
statistics. This could enable automatic identification of hot
and cold objects without requiring developer intervention.
However, such instrumentation introduces non-negligible
runtime overhead and remains a direction for future explo-
ration. Regardless of how objects are selected for placement
in remote memory, efficient space reclamation remains a
fundamental challenge. Even with accurate object classifica-
tion, an inefficient GC can lead to wasted memory in remote
tiers. Object selection and space reclamation are orthogonal
concerns—one optimizes placement, while the other ensures
remote memory remains effectively usable over time.

Page-level vs. object-level accesses. Our system relies on
page-level accesses over remote memory, leveraging the op-
erating system’s virtual memory mechanisms. While object-
level accesses are possible within the JVM, they require modi-
fying the interpreter and JIT compilers to insert load barriers
on every object access, introducing significant overhead [49].
Concurrent garbage collectors, such as ZGC [46] execute
load barriers only at safepoints to reduce the overhead, as
inserting load barriers on every load instruction would be
prohibitively expensive [44]. In contrast, page-level accesses
take advantage of hardware-managed virtual-to-physical
translation, avoiding software overhead. If a valid page table
entry exists, memory access is handled entirely in hardware,
ensuring low latency [29]. This approach eliminates costly
per-object lookups [30] and enables efficient remote mem-
ory integration without requiring modifications to the JVM
interpreter or JIT compilers.

Remotememory access paths and applicability to CXL.
Remote memory can be exposed to applications in different
ways, each with trade-offs. One approach is using NVMe-
oF RAMDisk, which maps remote memory as block stor-
age. This simplifies deployment but incurs unnecessary I/O
overhead, as each memory access goes through the storage



MPLR ’25, October 12–18, 2025, Singapore, Singapore I. G. Kolokasis, K. Delis, S. Akram, F. Zakkak, P. Pratikakis, and A. Bilas

stack. A more efficient alternative is a custom page fault
handling path integrated with the memory manager [1].
This approach bypasses the storage stack and directly lever-
ages RDMA or memory-mapped I/O to reduce access la-
tency and preserve the abstraction of a single address space.
Our work—SmartSweep—uses such a design, making it di-
rectly applicable not only to RDMA-backed setups but also
to CXL-based systems. In CXL environments, where remote
memory appears as byte-addressable and cache-coherent,
SmartSweep’s region-level space reclamation remains ef-
fective. CXL reduces the latency gap between local and
remote memory, but it doesn’t eliminate the need for ef-
ficient garbage collection in disaggregated memory tiers.
SmartSweep complements CXL by minimizing GC overhead
in large, memory-intensive workloads, ensuring scalable and
efficient memory use regardless of the underlying fabric.

6 Related Work
Managedheaps over remotememory. Semeru [39],Mem-

Liner [40], and Mako [24] allocate the managed heap entirely
over remote memory and use local DRAM as a cache, modi-
fying the Linux kernel swapping mechanism to evict pages
remotely. To reduce page swappings due to GC operations,
Semeru offloads object scanning to light JVMs running on
remote servers. Memliner reorganizes the access order of
the GC threads to follow a similar memory-access path with
mutator threads. However, Semeru and Memliner’s evacua-
tion process involves retrieving objects from remote servers,
transferring them to local servers, and rewriting them back
to remote servers, causing high I/O network and GC pauses.
Mako offloads concurrent object scanning and evacuation to
memory servers. It uses a distributed data structure named
Heap Indirection Table (HIT) to track the new object location
in remote servers, introducing functional, yet expensive load
reference barriers on every load operation. While these tech-
niques may reduce traffic, they incur extra CPU overhead
on the remote servers. In contrast, SmartSweep reduces net-
work overhead without consuming additional remote CPU
resources. Polar [25] uses a two-heap design to prevent the
garbage collector from scanning remote memory. However,
it employs an agent that periodically scans and compacts
objects in remote memory, introducing long GC pauses, as
the remote heap is significantly larger.

Resource disaggregation. Remote memory illustrates a
broader trend of resource disaggregation within datacen-
ters [2, 6, 7, 14, 23]. Numerous optimizations and systems,
such FaRM [11], and others [2, 5, 9, 10, 16, 17, 32–37, 41],
have been created to mitigate remote latency. Nevertheless,
they all concentrate on low-level system stacks and neglect
the run-time properties of programs. These works focus on
remote latency but are orthogonal to SmartSweep’s emphasis
on space reclamation in remote memory. They are ineffec-
tive for applications running on top of managed runtimes.

SmartSweep enhances runtime efficiency by concentrating
on distant memory and does not necessitate co-redesign
assistance from the operating system.

7 Conclusions
This paper addresses the problem of reclaiming dead objects
in remote memory without GC scans in two-tiered heap
architectures. SmartSweep uses a primary heap (H1) in lo-
cal DRAM and a second region-based heap (H2) in remote
memory. To efficiently reclaim space in H2, SmartSweep
transfers regions with a high proportion of dead objects back
to H1, where the garbage collector reclaims memory with
low overhead. Our evaluation shows that SmartSweep re-
duces waste space in remote memory by 49% compared to
TeraHeap, achieving similar performance and effectively pre-
venting OOM errors. SmartSweep also has the potential to
generalize to other managed runtimes (e.g., Python and Go)
that rely on GC, enabling efficient memory reclamation in
remote memory for big data analytics.

Acknowledgments
We thank the anonymous reviewers for their valuable feed-
back, which helped improve the final version of this paper.
This work was partially supported by the European Union
project AERO (grant agreement No. 101092850), the EUPEX
project (grant agreement No. 101033975) through the Euro-
pean High-Performance Computing Joint Undertaking (JU),
and VMware’s University Research Fund. The JU receives
support from the European Union’s Horizon 2020 research
and innovation programme, as well as from France, Ger-
many, Italy, Greece, the United Kingdom, Czech Republic,
and Croatia.

References
[1] Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard,

Jayneel Gandhi, Stanko Novaković, Arun Ramanathan, Pratap Subrah-
manyam, Lalith Suresh, Kiran Tati, Rajesh Venkatasubramanian, and
Michael Wei. 2018. Remote regions: a simple abstraction for remote
memory. In 2018 USENIX Annual Technical Conference (USENIX ATC
18). USENIX Association, Boston, MA, 775–787. https://www.usenix.
org/conference/atc18/presentation/aguilera

[2] Marcos K. Aguilera, Kimberly Keeton, Stanko Novakovic, and Sharad
Singhal. 2019. Designing Far Memory Data Structures: Think Outside
the Box. In Proceedings of the Workshop on Hot Topics in Operating
Systems (Bertinoro, Italy) (HotOS ’19). Association for Computing Ma-
chinery, New York, NY, USA, 120–126. doi:10.1145/3317550.3321433

[3] Shoaib Akram, Jennifer Sartor, Kathryn McKinley, and Lieven Eeck-
hout. 2019. Crystal Gazer: Profile-Driven Write-Rationing Garbage
Collection for Hybrid Memories. Proc. ACM Meas. Anal. Comput. Syst.
3, 1, Article 9 (March 2019), 27 pages. doi:10.1145/3322205.3311080

[4] Shoaib Akram, Jennifer B. Sartor, Kathryn S. McKinley, and Lieven
Eeckhout. 2018. Write-Rationing Garbage Collection for Hybrid
Memories. In Proceedings of the 39th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’18). As-
sociation for Computing Machinery, New York, NY, USA, 62–77.
doi:10.1145/3192366.3192392

https://www.usenix.org/conference/atc18/presentation/aguilera
https://www.usenix.org/conference/atc18/presentation/aguilera
https://doi.org/10.1145/3317550.3321433
https://doi.org/10.1145/3322205.3311080
https://doi.org/10.1145/3192366.3192392


SmartSweep: Efficient Space Reclamation in Tiered Managed Heaps MPLR ’25, October 12–18, 2025, Singapore, Singapore

[5] Emmanuel Amaro, Christopher Branner-Augmon, Zhihong Luo, Amy
Ousterhout, Marcos K. Aguilera, Aurojit Panda, Sylvia Ratnasamy, and
Scott Shenker. 2020. Can far memory improve job throughput?. In Pro-
ceedings of the Fifteenth European Conference on Computer Systems (Her-
aklion, Greece) (EuroSys ’20). Association for Computing Machinery,
New York, NY, USA, Article 14, 16 pages. doi:10.1145/3342195.3387522

[6] Sebastian Angel, Mihir Nanavati, and Siddhartha Sen. 2020. Disag-
gregation and the Application. In 12th USENIX Workshop on Hot Top-
ics in Cloud Computing (HotCloud 20). USENIX Association. https:
//www.usenix.org/conference/hotcloud20/presentation/angel

[7] Luiz Andre Barroso. 2011. Warehouse-Scale Computing: Entering
the Teenage Decade. In Proceedings of the 38th Annual International
Symposium on Computer Architecture (San Jose, California, USA) (ISCA
’11). Association for ComputingMachinery, NewYork, NY, USA. doi:10.
1145/2000064.2019527

[8] Rodrigo Bruno, Luís Picciochi Oliveira, and Paulo Ferreira. 2017.
NG2C: Pretenuring Garbage Collection with Dynamic Generations
for HotSpot Big Data Applications. In Proceedings of the 2017 ACM
SIGPLAN International Symposium on Memory Management (ISMM
’17). Association for Computing Machinery, New York, NY, USA, 2–13.
doi:10.1145/3092255.3092272

[9] Irina Calciu, M. Talha Imran, Ivan Puddu, Sanidhya Kashyap, Hasan Al
Maruf, Onur Mutlu, and Aasheesh Kolli. 2021. Rethinking software
runtimes for disaggregated memory. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (Virtual, USA) (ASPLOS ’21). As-
sociation for Computing Machinery, New York, NY, USA, 79–92.
doi:10.1145/3445814.3446713

[10] Lei Chen, Shi Liu, Chenxi Wang, Haoran Ma, Yifan Qiao, Zhe Wang,
Chenggang Wu, Youyou Lu, Xiaobing Feng, Huimin Cui, Shan Lu, and
Harry Xu. 2024. A Tale of Two Paths: Toward a Hybrid Data Plane for
Efficient Far-Memory Applications. In 18th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 24). USENIX Asso-
ciation, Santa Clara, CA, 77–95. https://www.usenix.org/conference/
osdi24/presentation/chen-lei

[11] Aleksandar Dragojević, Dushyanth Narayanan, Miguel Castro, and
Orion Hodson. 2014. FaRM: Fast Remote Memory. In 11th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
14). USENIX Association, Seattle, WA, 401–414. https://www.usenix.
org/conference/nsdi14/technical-sessions/dragojevi{ć}

[12] Alexander Fuerst, Stanko Novaković, Íñigo Goiri, Gohar Irfan
Chaudhry, Prateek Sharma, Kapil Arya, Kevin Broas, Eugene Bak,
Mehmet Iyigun, and Ricardo Bianchini. 2022. Memory-harvesting
VMs in cloud platforms. In Proceedings of the 27th ACM Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (Lausanne, Switzerland) (ASPLOS ’22). As-
sociation for Computing Machinery, New York, NY, USA, 583–594.
doi:10.1145/3503222.3507725

[13] Alexander Fuerst, Stanko Novaković, Íñigo Goiri, Gohar Irfan
Chaudhry, Prateek Sharma, Kapil Arya, Kevin Broas, Eugene Bak,
Mehmet Iyigun, and Ricardo Bianchini. 2022. Memory-harvesting
VMs in cloud platforms. In Proceedings of the 27th ACM Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (Lausanne, Switzerland) (ASPLOS ’22). As-
sociation for Computing Machinery, New York, NY, USA, 583–594.
doi:10.1145/3503222.3507725

[14] Peter X. Gao, Akshay Narayan, Sagar Karandikar, Joao Carreira,
Sangjin Han, Rachit Agarwal, Sylvia Ratnasamy, and Scott Shenker.
2016. Network Requirements for Resource Disaggregation. In 12th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16). USENIX Association, Savannah, GA, 249–264. https://www.
usenix.org/conference/osdi16/technical-sessions/presentation/gao

[15] Ionel Gog, Jana Giceva, Malte Schwarzkopf, Kapil Vaswani, Dimitrios
Vytiniotis, Ganesan Ramalingan, Derek Murray, Steven Hand, and
Michael Isard. 2015. Broom: Sweeping out Garbage Collection from

Big Data Systems. In Proceedings of the 15th USENIX Conference on Hot
Topics in Operating Systems (HOTOS ’15). USENIX Association, USA,
Article 2, 2 pages.

[16] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury,
and Kang G. Shin. 2017. Efficient Memory Disaggregation with
Infiniswap. In 14th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 17). USENIX Association, Boston,
MA, 649–667. https://www.usenix.org/conference/nsdi17/technical-
sessions/presentation/gu

[17] Zhiyuan Guo, Yizhou Shan, Xuhao Luo, Yutong Huang, and Yiy-
ing Zhang. 2022. Clio: a hardware-software co-designed disag-
gregated memory system. In Proceedings of the 27th ACM Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (Lausanne, Switzerland) (ASPLOS ’22). As-
sociation for Computing Machinery, New York, NY, USA, 417–433.
doi:10.1145/3503222.3507762

[18] Amy E Hodler and Mark Needham. 2022. Graph Data Science Using
Neo4j. In Massive Graph Analytics. Chapman and Hall/CRC, 433–457.

[19] Iacovos G. Kolokasis, Giannos Evdorou, Shoaib Akram, Chris-
tos Kozanitis, Anastasios Papagiannis, Foivos S. Zakkak, Polyvios
Pratikakis, and Angelos Bilas. 2023. TeraHeap: Reducing Memory
Pressure in Managed Big Data Frameworks. In Proceedings of the 28th
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, Volume 3 (Vancouver, BC,
Canada) (ASPLOS ’23). Association for Computing Machinery, New
York, NY, USA, 694–709. doi:10.1145/3582016.3582045

[20] Iacovos G. Kolokasis, Giannos Evdorou, Shoaib Akram, Chris-
tos Kozanitis, Anastasios Papagiannis, Foivos S. Zakkak, Polyvios
Pratikakis, and Angelos Bilas. 2024. TeraHeap: Exploiting Flash Stor-
age for Mitigating DRAM Pressure in Managed Big Data Frameworks.
ACM Trans. Program. Lang. Syst. 46, 4, Article 12 (Dec. 2024), 37 pages.
doi:10.1145/3700593

[21] Iacovos G. Kolokasis, Anastasios Papagiannis, Polyvios Pratikakis,
Angelos Bilas, and Foivos Zakkak. 2020. Say Goodbye to Off-Heap
Caches! On-Heap Caches Using Memory-Mapped I/O. In Proceedings
of the 12th USENIX Conference on Hot Topics in Storage and File Systems
(HotStorage ’20). USENIX Association, USA, Article 4, 1 pages.

[22] Zhe Li and Mingyu Wu. 2022. Transparent and Lightweight Object
Placement for Managed Workloads atop Hybrid Memories. In Pro-
ceedings of the 18th ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments (Virtual, Switzerland) (VEE ’22).
Association for Computing Machinery, New York, NY, USA, 72–80.
doi:10.1145/3516807.3516822

[23] Kevin Lim, Yoshio Turner, Jose Renato Santos, Alvin AuYoung, Jichuan
Chang, Parthasarathy Ranganathan, and Thomas F. Wenisch. 2012.
System-level implications of disaggregated memory. In IEEE Inter-
national Symposium on High-Performance Comp Architecture. 1–12.
doi:10.1109/HPCA.2012.6168955

[24] Haoran Ma, Shi Liu, Chenxi Wang, Yifan Qiao, Michael D. Bond,
Stephen M. Blackburn, Miryung Kim, and Guoqing Harry Xu. 2022.
Mako: A Low-Pause, High-Throughput Evacuating Collector for
Memory-Disaggregated Datacenters. In Proceedings of the 43rd ACM
SIGPLAN International Conference on Programming Language Design
and Implementation (San Diego, CA, USA) (PLDI ’22). Association for
Computing Machinery, New York, NY, USA, 92–107. doi:10.1145/
3519939.3523441

[25] Dat Nguyen and Khanh Nguyen. 2024. Polar: A Managed Runtime
with Hotness-Segregated Heap for Far Memory. In Proceedings of the
15th ACM SIGOPS Asia-Pacific Workshop on Systems (Kyoto, Japan)
(APSys ’24). Association for Computing Machinery, New York, NY,
USA, 15–22. doi:10.1145/3678015.3680490

[26] KhanhNguyen, Lu Fang, Guoqing Xu, BrianDemsky, Shan Lu, Sanazsa-
dat Alamian, and Onur Mutlu. 2016. Yak: A High-Performance Big-
Data-Friendly Garbage Collector. In Proceedings of the 12th USENIX

https://doi.org/10.1145/3342195.3387522
https://www.usenix.org/conference/hotcloud20/presentation/angel
https://www.usenix.org/conference/hotcloud20/presentation/angel
https://doi.org/10.1145/2000064.2019527
https://doi.org/10.1145/2000064.2019527
https://doi.org/10.1145/3092255.3092272
https://doi.org/10.1145/3445814.3446713
https://www.usenix.org/conference/osdi24/presentation/chen-lei
https://www.usenix.org/conference/osdi24/presentation/chen-lei
https://www.usenix.org/conference/nsdi14/technical-sessions/dragojevi{ �}
https://www.usenix.org/conference/nsdi14/technical-sessions/dragojevi{ �}
https://doi.org/10.1145/3503222.3507725
https://doi.org/10.1145/3503222.3507725
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gao
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gao
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/gu
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/gu
https://doi.org/10.1145/3503222.3507762
https://doi.org/10.1145/3582016.3582045
https://doi.org/10.1145/3700593
https://doi.org/10.1145/3516807.3516822
https://doi.org/10.1109/HPCA.2012.6168955
https://doi.org/10.1145/3519939.3523441
https://doi.org/10.1145/3519939.3523441
https://doi.org/10.1145/3678015.3680490


MPLR ’25, October 12–18, 2025, Singapore, Singapore I. G. Kolokasis, K. Delis, S. Akram, F. Zakkak, P. Pratikakis, and A. Bilas

Conference on Operating Systems Design and Implementation (OSDI ’16).
USENIX Association, USA, 349–365.

[27] Vlad Nitu, Boris Teabe, Alain Tchana, Canturk Isci, and Daniel Hagi-
mont. 2018. Welcome to Zombieland: Practical and Energy-Efficient
Memory Disaggregation in a Datacenter. In Proceedings of the Thir-
teenth European Conference on Computer Systems (Porto, Portugal)
(EuroSys ’18). Association for Computing Machinery, New York, NY,
USA, Article 16, 12 pages. doi:10.1145/3190508.3190537

[28] NVIDIA. [n. d.]. NVIDIA Enterprise Support Portal | What is NVMe
over Fabrics? https://enterprise-support.nvidia.com/s/article/what-
is-nvme-over-fabrics-x [Online; accessed 2025-04-05].

[29] Anastasios Papagiannis, Manolis Marazakis, and Angelos Bilas. 2021.
Memory-mapped I/O on steroids. In Proceedings of the Sixteenth Euro-
pean Conference on Computer Systems (Online Event, United Kingdom)
(EuroSys ’21). Association for Computing Machinery, New York, NY,
USA, 277–293. doi:10.1145/3447786.3456242

[30] Anastasios Papagiannis, Giorgos Xanthakis, Giorgos Saloustros, Mano-
lis Marazakis, and Angelos Bilas. 2020. Optimizing Memory-Mapped
I/O for Fast Storage Devices. In Proceedings of the 2020 USENIX Confer-
ence on Usenix Annual Technical Conference (USENIX ATC ’20). USENIX
Association, USA, Article 56, 15 pages.

[31] SeongJae Park, Madhuparna Bhowmik, and Alexandru Uta. 2022.
DAOS: Data Access-Aware Operating System. In Proceedings of the
31st International Symposium on High-Performance Parallel and Dis-
tributed Computing (Minneapolis, MN, USA) (HPDC ’22). Association
for Computing Machinery, New York, NY, USA, 4–15. doi:10.1145/
3502181.3531466

[32] Yifan Qiao, Chenxi Wang, Zhenyuan Ruan, Adam Belay, Qingda Lu,
Yiying Zhang, Miryung Kim, and Guoqing Harry Xu. 2023. Hermit:
Low-Latency, High-Throughput, and Transparent Remote Memory
via Feedback-Directed Asynchrony. In 20th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 23). USENIX As-
sociation, Boston, MA, 181–198. https://www.usenix.org/conference/
nsdi23/presentation/qiao

[33] Zhenyuan Ruan, Malte Schwarzkopf, Marcos K. Aguilera, and Adam
Belay. 2020. AIFM: High-Performance, Application-Integrated Far
Memory. In 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20). USENIX Association, 315–332. https:
//www.usenix.org/conference/osdi20/presentation/ruan

[34] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. 2018.
LegoOS: A Disseminated, Distributed OS for Hardware Resource Dis-
aggregation. In 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18). USENIX Association, Carlsbad, CA,
69–87. https://www.usenix.org/conference/osdi18/presentation/shan

[35] Vishal Shrivastav, Asaf Valadarsky, Hitesh Ballani, Paolo Costa, Ki Suh
Lee, Han Wang, Rachit Agarwal, and Hakim Weatherspoon. 2019.
Shoal: A Network Architecture for Disaggregated Racks. In 16th
USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 19). USENIX Association, Boston, MA, 255–270. https:
//www.usenix.org/conference/nsdi19/presentation/shrivastav

[36] David Sidler, Zeke Wang, Monica Chiosa, Amit Kulkarni, and Gustavo
Alonso. 2020. StRoM: smart remote memory. In Proceedings of the
Fifteenth European Conference on Computer Systems (Heraklion, Greece)
(EuroSys ’20). Association for Computing Machinery, New York, NY,
USA, Article 29, 16 pages. doi:10.1145/3342195.3387519

[37] Brian R. Tauro, Brian Suchy, Simone Campanoni, Peter Dinda, and
Kyle C. Hale. 2024. TrackFM: Far-out Compiler Support for a Far
MemoryWorld. In Proceedings of the 29th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 1 (La Jolla, CA, USA) (ASPLOS ’24). Association for
Computing Machinery, New York, NY, USA, 401–419. doi:10.1145/
3617232.3624856

[38] Muhammad Tirmazi, Adam Barker, Nan Deng, Md E. Haque, Zhi-
jing Gene Qin, Steven Hand, Mor Harchol-Balter, and John Wilkes.

2020. Borg: The next Generation. In Proceedings of the Fifteenth Euro-
pean Conference on Computer Systems (Heraklion, Greece) (EuroSys ’20).
Association for Computing Machinery, New York, NY, USA, Article
30, 14 pages. doi:10.1145/3342195.3387517

[39] Chenxi Wang, Haoran Ma, Shi Liu, Yuanqi Li, Zhenyuan Ruan, Khanh
Nguyen, Michael D. Bond, Ravi Netravali, Miryung Kim, and Guo-
qing Harry Xu. 2020. Semeru: A Memory-Disaggregated Managed
Runtime. In 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI ’20). USENIX Association, USA, 261–280.
https://www.usenix.org/conference/osdi20/presentation/wang

[40] Chenxi Wang, Haoran Ma, Shi Liu, Yifan Qiao, Jonathan Eyolfson,
Christian Navasca, Shan Lu, and Guoqing Harry Xu. 2022. MemLiner:
Lining up Tracing and Application for a Far-Memory-Friendly Run-
time. In 16th USENIX Symposium on Operating Systems Design and
Implementation (Carlsbad, CA) (OSDI ’22). USENIX Association, USA,
35–53. https://www.usenix.org/conference/osdi22/presentation/wang

[41] Chenxi Wang, Yifan Qiao, Haoran Ma, Shi Liu, Wenguang Chen, Ravi
Netravali, Miryung Kim, andGuoqingHarry Xu. 2023. Canvas: Isolated
and Adaptive Swapping for Multi-Applications on Remote Memory. In
20th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 23). USENIX Association, Boston, MA, 161–179. https:
//www.usenix.org/conference/nsdi23/presentation/wang-chenxi

[42] Yicheng Wang, Lijie Xu, Tian Guo, Wensheng Dou, Hongbin Zeng,
Wei Wang, Jun Wei, and Tao Huang. 2025. BridgeGC: An Efficient
Cross-Level Garbage Collector for Big Data Frameworks. ACM Trans.
Archit. Code Optim. (March 2025). doi:10.1145/3722110 Just Accepted.

[43] Johannes Weiner, Niket Agarwal, Dan Schatzberg, Leon Yang, Hao
Wang, Blaise Sanouillet, Bikash Sharma, Tejun Heo, Mayank Jain,
Chunqiang Tang, and Dimitrios Skarlatos. 2022. TMO: Transparent
Memory Offloading in Datacenters. In Proceedings of the 27th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (Lausanee, Switzerland) (ASPLOS
’22). Association for Computing Machinery, New York, NY, USA, 609–
621. doi:10.1145/3503222.3507731

[44] Filip Wilén. 2023. Throughput Analysis of Safepoint-attached Barriers
in a Low-latency Garbage Collector: Analysis of a Compiler Optimiza-
tion in the HotSpot JVM.

[45] Albert Mingkun Yang, Erik Österlund, Jesper Wilhelmsson, Hanna
Nyblom, and Tobias Wrigstad. 2020. ThinGC: Complete Isolation
with Marginal Overhead. In Proceedings of the 2020 ACM SIGPLAN
International Symposium onMemory Management (London, UK) (ISMM
’20). Association for Computing Machinery, New York, NY, USA, 74–86.
doi:10.1145/3381898.3397213

[46] Albert Mingkun Yang and Tobias Wrigstad. 2022. Deep Dive into ZGC:
A Modern Garbage Collector in OpenJDK. ACM Trans. Program. Lang.
Syst. 44, 4, Article 22 (Sept. 2022), 34 pages. doi:10.1145/3538532

[47] Litong You, Tianxiao Gu, Shengan Zheng, Jianmei Guo, Sanhong Li,
Yuting Chen, and Linpeng Huang. 2021. JPDHeap: A JVMHeap Design
for PM-DRAM Memories. In 2021 58th ACM/IEEE Design Automation
Conference (San Francisco, CA, USA) (DAC ’21). IEEE, 31–36. doi:10.
1109/DAC18074.2021.9586279

[48] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott
Shenker, and Ion Stoica. 2010. Spark: Cluster Computing with Work-
ing Sets. In Proceedings of the 2nd USENIX Conference on Hot Topics in
Cloud Computing (HotCloud ’10). USENIX Association, USA, Article
10, 10 pages.

[49] Wenyu Zhao, Stephen M. Blackburn, and Kathryn S. McKinley. 2022.
Low-latency, high-throughput garbage collection. In Proceedings of
the 43rd ACM SIGPLAN International Conference on Programming Lan-
guage Design and Implementation (San Diego, CA, USA) (PLDI 2022).
Association for Computing Machinery, New York, NY, USA, 76–91.
doi:10.1145/3519939.3523440

Received 2025-06-21; accepted 2025-07-28

https://doi.org/10.1145/3190508.3190537
https://enterprise-support.nvidia.com/s/article/what-is-nvme-over-fabrics-x
https://enterprise-support.nvidia.com/s/article/what-is-nvme-over-fabrics-x
https://doi.org/10.1145/3447786.3456242
https://doi.org/10.1145/3502181.3531466
https://doi.org/10.1145/3502181.3531466
https://www.usenix.org/conference/nsdi23/presentation/qiao
https://www.usenix.org/conference/nsdi23/presentation/qiao
https://www.usenix.org/conference/osdi20/presentation/ruan
https://www.usenix.org/conference/osdi20/presentation/ruan
https://www.usenix.org/conference/osdi18/presentation/shan
https://www.usenix.org/conference/nsdi19/presentation/shrivastav
https://www.usenix.org/conference/nsdi19/presentation/shrivastav
https://doi.org/10.1145/3342195.3387519
https://doi.org/10.1145/3617232.3624856
https://doi.org/10.1145/3617232.3624856
https://doi.org/10.1145/3342195.3387517
https://www.usenix.org/conference/osdi20/presentation/wang
https://www.usenix.org/conference/osdi22/presentation/wang
https://www.usenix.org/conference/nsdi23/presentation/wang-chenxi
https://www.usenix.org/conference/nsdi23/presentation/wang-chenxi
https://doi.org/10.1145/3722110
https://doi.org/10.1145/3503222.3507731
https://doi.org/10.1145/3381898.3397213
https://doi.org/10.1145/3538532
https://doi.org/10.1109/DAC18074.2021.9586279
https://doi.org/10.1109/DAC18074.2021.9586279
https://doi.org/10.1145/3519939.3523440

	Abstract
	1 Introduction
	2 SmartSweep Design
	2.1 Finding Dead Objects in Remote Heap
	2.2 Selecting Regions for Reclamation

	3 Preliminary Implementation
	4 Preliminary Evaluation
	5 Discussion
	6 Related Work
	7 Conclusions
	Acknowledgments
	References

