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ABSTRACT
Emerging Non-Volatile Memory (NVM) technologies offer more ca-
pacity and energy efficiency than DRAM, but their write endurance
is lower and latency is higher.Hybrid memories seek the best of both
worlds — scalability, efficiency, and performance — by combining
DRAM and NVM. Our work proposes modifying a standard man-
aged language runtime to allocate objects either in DRAM or NVM
to maximize the use of NVM capacity without wearing it out. The
key to our approach is correctly predicting highly mutated objects
and allocating them in DRAM and allocating rarely mutated objects
in NVM. We explore write-intensity prediction based on object (1)
size, (2) class type, and (3) allocation site. We find predictions using
allocation site are the most accurate.

Our memory manager for hybrid memories consists of (1) an
offline profiling phase that produces placement advice on a per
allocation-site basis, and (2) a garbage collector that allocates ma-
ture objects in DRAM or NVM based on this advice and that allo-
cates highly mutated nursery objects in DRAM. We explore two
heuristics for classifying sites as write-intensive (DRAM) or rarely
written (NVM). Write-Frequency (FREQ) uses the number of writes
to objects allocated by each site. Although it can limit writes to
NVM up to 1% and 3%, it allocates just 50% to 20% of mature objects
in DRAM. Write-Density (DENS) computes number of writes to
objects relative to object size. Write-Density is a better predictor.
When it limits NVM writes to 2%, it can allocate 88% of mature ob-
jects to NVM. Pareto optimal configurations may increase writes to
10% and store 99% of mature objects in NVM. Using write-intensity
predictors to proactively place objects in hybrid DRAM and NVM
memory systems prolongs NVM’s lifetime while exploiting its ca-
pacity.
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1 INTRODUCTION
Modern applications demand greater main memory capacity for
fulfilling user needs. Unfortunately, DRAM scaling has slowed [17,
18], leading researchers to explore alternative technologies. Non-
Volatile Memory (NVM) exhibits promising features: byte address-
ability, high density, scalability (capacity), negligible idle power,
and non-volatility [15]. A promising technology is Phase Change
Memory (PCM), but it has shortcomings: high access latency, write
latency exceeds read latency, high write energy, and low write
endurance [16, 19].

Improvements in manufacturing technology are bridging the
latency gap [14]. Finite write endurance is however more challeng-
ing because each write changes the material form [9]. To make
NVM practical, systems need to exploit NVM’s capacity without
compromising its lifetime. Prior work proposes hybrid memory
that combines DRAM and PCM [16, 19] to achieve the best of both
approaches: low latency, high capacity, energy efficiency and dura-
bility. Prior hardware and OS solutions mitigate writes to NVM by
reactively placing highly mutated pages in DRAM [16, 19, 20, 25].
These solutions assume existing programming models, although hy-
brid memories can support a mix of existing and new programming
models, including using PCM as a disk replacement and persistent
heap data structures [11, 22]. This paper also focuses on exploit-
ing hybrid memories with existing programming models and thus
requires no additional programming effort.

We propose a runtime that automatically manages allocation
of objects in DRAM and NVM. We exploit the memory manager
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Figure 1: Heap organization for hybrid memories. Highly
mutated nursery survivors are promoted to DRAM during
a garbage collection. The mutator allocates highly mutated
large objects in DRAM.

(garbage collector) in managed runtimes for languages such as
Java, C#, JavaScript, and Python. Our goal is to place as much of
the program’s dynamic heap in NVM as possible to exploit NVM
capacity, while minimizing writes to NVM to prevent wear out. Our
hypothesis is that most objects are not highly written and thus the
goal of this proposed division is possible. An empirical analysis of
write behaviors in Java applications motivates our approach. We
find that, on average, 70% of the writes in Java applications occur to
nursery objects, motivating a design that allocates them to DRAM.
Of the writes to mature objects, 2% of mature objects sustain 80%
of these writes. In this paper, we propose a profiling mechanism
to predict mature object behaviors and a garbage collector that
promotes mature objects to DRAM or NVM based on its predictions.

Our approach exposes the physical memory organization to
the runtime. Figure 1 shows how our proposed heap organization
maps on to hybrid DRAM and PCM memories. We modify the JVM
to explicitly request DRAM and NVM from the OS. The mutator
allocates new objects in a DRAM nursery, because the nursery is
highlymutated. During a garbage collection (GC), nursery survivors
are promoted to either DRAM or NVM. Large objects that do not
fit in the nursery are allocated directly in the mature space. We use
write-intensity prediction to promote mature objects and allocate
large objects into DRAM or NVM. The predictor identifies write-
intensive objects, which on average for our applications, constitute
less than 10% of all mature objects.

We measure writes to objects in 12 Java applications, and find
that objects originating from the same allocation site in a program
show uniform write behavior. Most allocation sites are dominated
by either write-intensive objects or rarely written objects. We clas-
sify sites as write-intensive (DRAM) or not (NVM). During produc-
tion execution, the garbage collector exploits this classification for
allocating large objects, and promoting nursery survivors to either
DRAM or NVM. We also try other prediction mechanisms, such as
object size and class-type, but they are less accurate.

We evaluate two heuristics. Both require allocation-site homo-
geneity. A site is classified as DRAM if a fraction of objects allo-
cated from it are write intensive. To identify write-intensive objects,
Write-Frequency (FREQ) counts the number of writes to individual
objects. Objects that get more than a threshold of writes are write
intensive. FREQ eliminates 90% of the writes to the NVM mature

space by placing 6% of the mature heap in DRAM. Write-Density
(DENS) computes write-intensity by dividing writes to an object
by object size in bytes. Objects with density more than a cutoff
density are write intensive. DENS eliminates 90% of the writes to
NVM mature space and places 1% of the mature heap in DRAM. By
taking into account both object size and writes, DENS thus results
in a higher NVM utilization.

In summary, the contributions of this paper are:
• demonstrating that writes to mature objects in Java are pre-
dictable on a per allocation-site basis;

• using profiling information to predict sites as write-intensive
(DRAM) or not (NVM);

• a garbage collector that uses write-intensity prediction to allocate
objects in DRAM and NVM; and

• results that show this approach can limit writes to NVM while
still exploiting the capacity advantage of NVM.
This paper leaves as an open question performance of hybrid

memories, and questions such as if highly read objects will also
need to reside in DRAM to meet application latency requirements.
As memory systems evolve to meet application needs, we believe
the hardware, operating system, and language runtime implemen-
tations will all have a role to play.

2 RELATEDWORK
This section discusses prior architecture and OS work on managing
hybrid memories and on object prediction.
Hardware and OS techniques for hybrid memories. The vast
majority of prior work to eliminate NVM writes divides into two
categories: (1) hardware that uses DRAM as a cache for frequently
accessed pages in NVM [16, 19], and (2) OS placement of highly-
mutated pages in DRAM using page migrations [20, 26]. The OS
techniques rank pages according to their write frequency. The
OS migrates the top highly written pages to DRAM based on
write thresholds. In existing approaches, the write threshold is
pre-determined. If a DRAM resident page does not incur writes,
the OS moves it back to NVM. Prior hardware and OS techniques
are reactive, and work at the page granularity. A significant dis-
advantage of these prior approaches is page migrations result in
additional writes to NVM.
Optimizing performance of hybrid memories. Recent work
uses offline profiling of C programs to find allocation sites that pro-
duce memory with high access frequency [25]. Initial placement of
heap data is guided by allocation-site information gathered offline.
During runtime, the OS monitors and moves pages between DRAM
and NVM. This approach is limited by C semantics because objects
can not move. Furthermore, our approach is more fine-grain — it
places individual objects instead of pages.

Recent work uses the managed runtime to optimize for perfor-
mance in hybrid memories, as opposed to lifetime [24]. It performs
an offline profiling phase to identify object allocation sites for cold
(rarely read or written) and hot old objects. It places all nursery
objects in DRAM. It promotes nursery survivors according to their
tag, moving hot objects to DRAM and cold ones to PCM. In contrast,
our work optimizes PCM lifetime.
Object behavior prediction. Prior work predicts object behaviors
to: (1) colocate objects with similar lifetimes for fast allocation
and deallocation, and (2) colocate frequently referenced objects to
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improve memory locality [2, 6, 8, 10, 21]. Prior work on programs
written in C predict object lifetimes and reference behaviors using
a combination of calling context and size [2, 21].

For managed languages, generational collectors perform age-
based segregation for fast memory allocation and reclamation. Pre-
tenuring allocates long-lived objects directly in the mature space,
which improves performance by eliminating copying. Prior work
uses allocation site to accurately predict object lifetimes for pre-
tenuring Java objects [6, 8]. Similarly, both this prior work and
our approach gather a profile, build a predictor, and use prediction
in a separate execution. In contrast, instead of predicting object
lifetimes, we show allocation site is a good predictor of the write
intensity of Java objects.

3 BACKGROUND
This section presents background on generational garbage collec-
tion and object prediction at call sites.
Generational Garbage Collection. Empirical studies show that
most objects die young [23]. High-performance collectors today
segregate objects based on their age. The mutator allocates new
objects in a contiguous nursery. When the nursery is full, a minor
collection identifies live nursery objects by tracing the roots. Any
nursery objects reachable from the roots is live and is copied to
a mature space. All nursery memory is reclaimed en masse for
fresh allocation. When the mature space is full, a full-heap (mature)
collection collects the entire heap.

Nursery size affects overall performance, pause time, and mem-
ory footprint. Large nurseries give objects more time to die and
sometimes improve performance at the expense of increased pause
time and memory footprint. We use a 4 MB nursery which delivers
good performance for our applications and collector. The nursery
is highly-mutated because freshly allocated objects are zeroed and
then initialized.
Write barriers. We use write barriers to understand and measure
writes to mature objects. The compiler adds instrumentation code
on every write for gathering write statistics. We piggyback on the
write barrier in generational collectors that records pointer refer-
ences from mature objects to nursery objects in order to indepen-
dently collect the nursery. For gathering write statistics however,
we instrument writes to both pointers and primitives.
Large objects. Copying nursery survivors to the mature space is
a major performance overhead in generational collectors. Large
objects can rapidly exhaust the nursery space leading to frequent
minor collections. Most JVMs therefore allocate large objects in a
separate non-copying space in the heap. Jikes RVM uses a heuristic
to determine the large object threshold. Because large objects are
not allocated in the nursery, we consider them in our analysis of
writes to objects.
Object behavior prediction.We use profile based object behav-
ior prediction, which measures characteristics such as type, class,
lifetime, and in our case writes, with respect to allocation sites and
then applies some action in a later execution.
Allocation-time information. Allocation-time information in-
cludes the object’s size, class (type), allocation site, and calling
context. Context is the dynamic sequence of methods leading to a
site. Because we find calling-context only slightly improves write-
intensity prediction accuracy over allocation site, we do not discuss
it further.

4 METHODOLOGY
This section describes our methodology for profiling and predicting
write intensity, including the JVM, applications, write barriers, and
collector configuration.
Java Virtual Machine. We use Jikes RVM 3.1.2, a Java-in-Java re-
search VM that includes a modular memory management toolkit [1,
3]. The easy-to-modify garbage collectors and write barriers make
Jikes RVM an ideal experimentation platform [1, 4, 12]. We config-
ure Jikes RVMwith replay compilation to eliminate non-determinism
introduced by just-in-time compilation. During the first unmea-
sured iteration, the JIT compiler applies a pre-recorded optimiza-
tion plan to each method. We gather write-intensity traces and take
measurements during the second stable iteration.
Computing site identifiers. The size and type of an object are
available at allocation time. We add an extra word to the object
header for storing the allocation site during the profiling run. We
use the calling context profiling patch from Huang et al. [13] to
compute site identifiers. The compiler computes a unique identifier
for each allocation-site, and generates instrumentation to store the
identifier in the object header during execution.
Gathering write-intensity traces. To correlate allocation-time
information to the write behavior of mature objects, we first pro-
duce a write-intensity trace of an application. For ease of imple-
mentation and analysis, we use a non-moving mark-sweep mature
space and a copying nursery. Each mature object thus has a unique
address in the heap.

The JVM uses a counter to record mature-object writes, except
for the initializing writes, along with the object size, type, and allo-
cation site. We obtain traces using a 4 MB nursery and an unlimited
mature space. During the profiling run, a write barrier first inserts
any previously unwritten object, its size, type and allocation site
in a hash table. It then increments the object write counter. When
the profiling run finishes, the contents of the hash table forms the
write-intensity trace. The table is indexed using object addresses.
Java applications.Weuse 12 Java applications: 11 fromDaCapo [5],
plus pseudojbb2005 (pjbb) [7]. We use their default datasets. Ta-
ble 1 lists the Java applications and heap sizes we use. In addition
to the original versions of lusearch and pmd in DaCapo, we use
an updated version of lusearch, called lu.Fix, that eliminates use-
less allocation, and an updated version of pmd, called pmd.S that
eliminates a scaling bottleneck due to a large input file.

5 WRITE-INTENSITY PREDICTION
This section presents our write homogeneity metric and predic-
tion mechanisms. We then describe how the collector exploits this
information to allocate objects in hybrid memories.

5.1 Write Homogeneity
Computing write homogeneity. To discover if allocation-time
information will accurately predict the write-intensive objects, we
first measure write homogeneity in our applications.We analyze the
write-intensity traces (see Section 4) by grouping together objects
based on type, size, and site at allocation time. When analyzing
object type, size and site, we first identify all the unique types,
sizes, and allocations (metrics). We then measure the distribution
of write-intensive versus other objects for each metric. Using these
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Table 1: The heap sizes we use, and the number of unique sizes, types and sites in our benchmarks.
Fop	 Luindex	 Antlr	 Bloat	 Jython	 Xalan	 Pmd	 Pmd.S	 Lusearch	 Lu.Fix	 Sunflow	 Pjbb	 Average	

Heap	(MB)	 80	 44	 48	 66	 80	 108	 98	 98	 68	 68	 108	 400	 106	
#	Sizes	 110	 74	 245	 190	 181	 75	 242	 231	 67	 66	 55	 157	 109	
#	Types	 246	 207	 147	 253	 298	 220	 436	 423	 166	 170	 144	 135	 240	
#	Sites	 427	 341	 374	 714	 741	 391	 670	 640	 247	 250	 240	 286	 444	
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Figure 2: Homogeneity of object writes on a per size,
class-type, and allocation-site basis. The homogeneity of
allocation-site is high: 90% of the heap volume originates
from sites that have 90% of the same object kind.

distributions, we compute the entropy of each metric. The entropy
of a type is defined as as follows:

E = −
(
Ow × log2Ow

)
−
(
Onw × log2Onw

)
(1)

Ow is the fraction of write-intensive objects and Onw is the
fraction of other objects. Similar to types, we compute the entropy
of all sizes and allocation sites. We use two criteria to identify write-
intensive objects: (1) write-frequency: the object gets more than a
threshold of number of writes, and (2) write-density: the object has
more than a threshold writes per byte.
Results. Figure 2 shows homogeneity curves averaged over all
benchmarks. We use a write-intensity threshold (wt ) of 1K in Fig-
ure 2 (a). Figure 2 (b) uses a density threshold (dcut ) of one. For
each entropy value, we calculate the total volume of mature object-
sizes, types, and sites whose entropy is less than or equal to that
value. An entropy of zero means uniformity, i.e., all mature objects
allocated by the site exhibit the same write behavior. An entropy

of one means the site is difficult to predict because objects have a
range of write characteristics.

Consider Figure 2 (a) with the results for awt of 1K. 100% homo-
geneity would mean that for that metric, all mature object volume
allocated by that site are either write-intensive or not. We observe
that 30% of the heap volume are objects with sizes that exhibit
uniform write behavior. Using types, 50% of the heap volume has
uniform write behavior. Site is a better predictor compared to both
size and type — 85% of the mature heap volume originates from
sites that are 100% uniform. Surprisingly, size exhibits better write
homogeneity than type. For 98.7% homogeneity, both size and type
are good predictors. However, site is preferable to size for predict-
ing write intensity because site divides heap memory into more
finer-granularity groups. Table 1 shows the number of unique sizes,
types and sites for the mature objects in our benchmarks. Note that
the number of bytes per site is lower compared to bytes per size.

From Figure 2 (a), we conclude that allocation site is a better
predictor of which mature objects get at least 1K writes. We try
different write-intensity thresholds and observe similar behavior.
As the entropy increases (and homogeneity decreases), the heap
volume increases sharply until a point, after which it starts to flatten
out in all three curves. More than 90% of the mature heap volume
originates from allocation-sites that have 90% of the objects of one
kind, write-intensive or non-write-intensive.

Figure 2 (b) shows write density is a better predictor than write
frequency. The site homogeneity with a dcut of one is high. Close
to 90% of the mature heap volume has 100% of objects either write
intensive or not. Size and type are not as predictive. The percentage
of homogeneous objects is 40% when considering size, and 50%
when considering types.

5.2 Allocation-Site Classification
Although our system promotes mature objects fromDRAM to either
DRAM or NVM during nursery collections, the system identifies, at
allocation time, objects as destined for DRAM or NVM promotions.

We propose two heuristics to classify allocation sites as DRAM
or NVM. Both use the homogeneity threshold (ht ) for classifying
sites. If the fraction of write-intensive objects allocated from a site
is above the homogeneity threshold, then the site is classified as
DRAM, otherwise the site is classified as NVM. The heuristics differ
in their criteria to identify write-intensive objects.
Write-Frequency (FREQ) FREQ uses the frequency of writes to
objects to identify write-intensive objects. If an object gets more
than a threshold of writes (write-frequency threshold orwf ), FREQ
considers the object as write intensive.
Write-Density (DENS) A drawback of FREQ is that it does not
take the size of an object into account. Our purpose is to exploit
NVM’s capacity and minimize writes to it. We also explore write-
density for classifying sites. Write-density of an object is the ratio
of writes to the size of an object in bytes. We classify objects with
density greater than a threshold (dcut ) as write-intensive.
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Figure 3: NVM writes and DRAM utilization with FREQ and
DENS. DENS maximizes NVM’s capacity usage while elimi-
nating writes to it.

6 PREDICTION-GUIDED GARBAGE
COLLECTION

Figure 1 shows the basic organization of our approach. Large objects
go directly to a non-moving space in DRAM or NVM based on a
prediction. The nursery for all other initial object allocations resides
in DRAM. Nursery collections promote objects into either DRAM
or NVM based on a prediction.

We store the identifiers of the sites classified as write-intensive
(DRAM) in an advice file. The advice file is materialized in the
runtime system as a hash table indexed by allocation site number.
The hash table only contains the write-intensive allocation sites
for DRAM. The allocator and collector use this advice for placing
objects in hybrid memory.
Allocation.When the mutator allocates objects in the DRAM nurs-
ery space, it uses the allocation site identifier to query the hash
table. If the allocation site is in the hash table, it marks a bit in the
object’s header, which indicates that should the collector promotes
this object in the future, it should copy it to DRAM.

For large object allocations, the mutator queries the hash table
and then directly allocates the large object in either DRAM or NVM,
as indicated.
Minor collections.During a nursery collection, as the garbage col-
lector traces the live objects, it checks their write-intensity header
bit. If the bit is set, the collector copies the object to the mature
DRAM space. Otherwise, it allocates the object in NVM.
Major collections. During a major collection, the garbage collec-
tor reclaims dead memory in the DRAM and NVM portions of the
mature space. Our system does not relocate mature objects during
a major collection because relocation incurs writes. The generous
capacity of NVM makes fragmentation less of a concern, but bal-
ancing fragmentation and writes could be an area for future work.

7 PLACEMENT RESULTS
This section examines the fraction of writes and utilization of
DRAM and NVM using per allocation-site placement advice. We
compare the two classification heuristics and show sensitivity to
various thresholds. Future systems will likely have orders of magni-
tude more NVM than DRAM. We therefore explore how writes to
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Figure 4: Sensitivity of FREQ and DENS to the homogene-
ity threshold. Low homogeneity thresholds results in fewer
writes. High thresholds minimize the DRAM utilization.

NVM will increase as we minimize the use of DRAM. We measure
writes using write barriers for our architecture-independent study.

Figure 3 compares FREQ and DENS in terms of writes to NVM
and DRAM utilization averaged across all benchmarks. We set
the homogeneity threshold to 1%. We vary the write-frequency
threshold in case of FREQ and cutoff density in case of DENS to
plot the different points in the figure. We show Pareto optimal
tradeoffs in the figure. We observe that FREQ eliminates 99% of the
writes to NVM, but places 40% of the heap in DRAM. Both FREQ and
DENS result in a lower DRAM utilization if more writes to NVM can
be tolerated. With 5% of the writes happening to the NVM mature
space, both FREQ and DENS consume the same amount of DRAM.
However, DENS results in a higher reduction in DRAM utilization
for the same number of NVM writes in most cases. DENS takes into
account the writes per byte to objects allocated from a site. With
10% of the writes to NVM, FREQ places 6.3% of the mature heap in
DRAM, whereas DENS places only 0.5% of the heap in DRAM, a
factor of 13X reduction in DRAM consumption.

Next, we show the sensitivity of FREQ and DENS to the homo-
geneity threshold. Figure 4 shows the writes to NVM (a) and the
DRAM utilization (b) as the homogeneity threshold increases from
1% to 50%. We configure FREQ and DENS with anwf of 30 K and
dcut of 50 respectively.

Lower homogeneity thresholds minimize writes to NVM, and
the least number of writes is obtained using an ht of 1%. But this
results in a high DRAM utilization. Writes to NVM increase with
increasing ht until they plateau out around the 20% threshold. The
change in the DRAM utilization shows a different trend. For FREQ,
from an ht of 1% to 5%, there is a sharp drop from 7% to 5%, but
after that, the DRAM utilization flattens out. We suspect this is
because the sites classified as NVM instead of DRAM with higher
homogeneity thresholds occupy a small fraction of the mature heap.

Finally, we compare the site-based predictor to a size-based and
a type-based predictor. Similar to site classification, we use FREQ
and DENS to classify sizes and types. Figure 5 shows the results.
We configurewf and dcut similar to Figure 4. Using the size-based
predictor always results in the largest number of NVMwrites. With
both FREQ and DENS, using size to predict write-intensive objects
leads to more than 50% of the writes to the NVMmature heap. High
numbers of writes adversely affect NVM lifetime. Using type is
better than size, but site results in the least number of writes to NVM.
DRAM utilization with a size-based predictor is less compared to
a type-based predictor, but the site-based predictor results in the
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Figure 5: Comparison of size, type, and allocation-site pre-
dictors. Using an allocation-site predictor eliminates more
writes to NVM and exploits the NVM capacity better.

least amount of DRAM utilization. Future work could consider
combining them. Overall, using a site predictor together with DENS
eliminates 90% of the writes to NVM, while placing only 0.56% of
the heap in DRAM.
8 CONCLUSIONS
This paper contributes a write-intensity predictor for Java appli-
cations. The predictor exploits profiles of object writes on a per
allocation-site basis. The garbage collector uses the predictor to
place objects in DRAM and NVM in a hybrid memory system. We
propose two heuristics for site classification. Both require allocation-
site homogeneity. FREQ identifies write-intensive objects based on
the frequency of writes to objects. DENS uses write-density to
identify write-intensive objects and results in a better utilization
of DRAM. In particular, DENS eliminates 90% of writes to NVM
by placing less than 1% of the mature heap in DRAM. This work
requires no modifications to the programming model and is compat-
ible with hardware approaches such as wear leveling, thus having
the potential to ease the transition to hybrid memory systems.
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