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Samenvatting

Moderne hardware wordt in toenemende mate heterogeen als gevolg van recente
trends in chiptechnologie. Het traditionele Dennard-schalingsgedrag van transistors
is gestopt rond het jaar 2000. Zonder Dennard-schaling leidt een toenemend aantal
transistors op de chip tot een vermogenstoename van de volledige chip. Bijgevolg is
energie-efficiëntie één van de belangrijkste criteria tijdens het ontwerp en de operatie
van microprocessors.

Heterogenemeerkernige processors (HMPs) vertonen hoge energie-efficiëntie door
processorkernen (Eng. cores) met verschillende architecturale karakteristieken te in-
tegreren op eenzelfde chip. Typisch worden hoog-performante out-of-order proces-
sorkernen gecombineerd met energie-efficiënte in-order processorkernen. Daarnaast
is het mogelijk dynamisch de voedingsspanning en klokfrequentie per processorkern te
schalen (Eng. dynamic voltage and frequency scaling). Beide vormen van heterogen-
iteit laten de software toe een taak uit te voeren op de meest efficiënte processorkern.

Conventioneel geheugen (Eng. dynamic random access memory of DRAM) heeft
eveneens te kampen met schalingsbeperkingen. De complexiteit voor het fabriceren
van steeds kleinere DRAM-cellen neemt toe waardoor de kostprijs van geheugen sterk
is toegenomen. Tegelijkertijd zijn er vandaag heel wat computertoepassingen die
steeds grotere volumes aan geheugencapaciteit nodig hebben. Nieuwe niet-volatiele
geheugentechnologieën (Eng. non-volatile memory of NVM) zijn beter schaalbaar
dan DRAM en bieden een grotere densiteit en dus een hogere capaciteit, zijn byte-
addresseerbaar, vertonen kleine lekstromen en zijn persistent (niet-volatiel). Phase
Change Memory (PCM) is op dit moment de meest veelbelovende NVM-technologie.
De grootste beperkingen van PCM zijn echter de beperkte schrijfbaarheid en de hoge
toegangslatentie. Heterogene geheugensystemen combineren DRAM en PCM om
op die manier het beste van beide aan te bieden. Mits effectief beheer levert een
heterogeen geheugensysteem hoge prestatie, laag vermogenverbruik, hoge densiteit en
persistentie.

Met betrekking tot software maken programmeurs steeds vaker gebruik van be-
heerde programmeertalen zoals Java, C#, Python en Go. Software ontwikkeld in een
beheerde programmeertaal biedt overdraagbaarheid aan over platformen door gebruik
te maken van een virtuele machine. Dergelijke talen verhogen bovendien de produc-
tiviteit van de programmeur via automatisch geheugenbeheer en door de uitvoerbare
code dynamisch te genereren en te optimaliseren. Hierdoor beschikt de virtuele
machine over heel wat semantische informatie betreffende de computertoepassing.
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Deze doctoraatsthesis exploreert de rol die beheerde programmeertalen kunnen
spelen in het abstraheren en optimaliseren van heterogene processors en geheugensys-
temen. Meer specifiek maakt deze doctoraatsthesis vier bijdragen die elk aantonen
hoe semantische informatie in beheerde programmeertalen via de virtuele machine
geëxploiteerd kan worden in heterogene computersystemen. De thesis levert twee
bijdragen rond heterogene processors en twee bijdragen rond heterogene geheugen-
systemen. Zonder afbreuk te doen aan de algemene toepasbaarheid van de bijdragen,
spitst de thesis zich toe op de Java programmeertaal en de bijhorende Java virtuele
machine (JVM).

De eerste bijdrage van de thesis betreft het uitvoeren van automatisch geheugen-
beheer (Eng. garbage collection of GC) op heterogene multicore processors (HMPs).
GC bevrijdt de programmeur van het manueel beheren van het geheugengebruik en is
bijgevolg een kritische component van een beheerde programmeertaal. Stop-the-world
GC stopt de uitvoering van een computertoepassing om ongebruikt geheugen vrij te
geven. Concurrente GC leidt tot betere prestatie door parallel uit te voeren met de
toepassing. Echter, indien concurrente GC het geheugen niet snel genoeg vrijgeeft, kan
dit toch leiden tot het stopzetten van de toepassing teneinde het geheugen alsnog vrij
te geven zodat de toepassing nieuw geheugen kan alloceren. We noemen dit fenomeen
GC-kriticiteit.

Deze doctoraatsthesis toont aan dat verschillende Java-computertoepassingen GC-
kriticiteit vertonen wanneer concurrente GC uitvoert op een energie-efficiënte in-order
processorkern in een HMP. Concurrente GC vertoont echter voldoende parallellisme
op instructieniveau en kan dus bijgevolg sneller uitvoeren op een hoog-performante
out-of-order processorkern. Op basis van deze observaties stellen we voor concur-
rente GC dynamisch te beheren. Hierbij wordt concurrente GC uitgevoerd op een
energie-efficiënte rekenkern teneinde het energieverbruik te beperken tijdens normale
uitvoering. Echter, wanneer GC kritisch dreigt te worden, geeft de virtuele machine
een signaal aan het besturingssysteem om GC op een hoog-performante processorkern
uit te voeren. Het dynamisch beheren van concurrente GC levert betere prestatie op
en verhoogt de energie-efficiëntie.

De tweede bijdrage exploreert prestatieschatting van DVFS voor meerdradige
computertoepassingen in beheerde programmeertalen. Prestatieschatting van DVFS is
een techniek die toelaat demeest energie-efficiënte voedingsspanning en klokfrequentie
te bepalen voor een gegeven toepassing. Bestaande methodes zijn enkel nauwkeurig
voor sequentiële computertoepassingen geschreven in niet-beheerde programmeertalen
zoals C en C++. De reden voor de onnauwkeurigheid voor meerdradige toepassin-
gen in beheerde programmeertalen is tweeledig: (i) synchronisatie in meerdradige
toepassingen leidt tot afhankelijkheden tussen draden, en (ii) computertoepassingen in
beheerde programmeertalen voeren vaak een opeenvolging van schrijfoperaties uit als
gevolg van het automatisch geheugenbeheer.

In deze thesis stellen we DEP+BURST voor, een nieuwe DVFS-prestatieschatter
die de impact van afhankelijkheden tussen draden en de opeenvolging van schrijfop-
eraties nauwkeurig voorspelt onder DVFS. DEP+BURST onderschept synchronisatie
tussen draden in een meerdradige toepassing en gebruikt vervolgens een analytisch
model om de impact van DVFS op synchronisatie te schatten. Daarnaast modelleert
DEP+BURST de mogelijke invloed van een opeenvolging van schrijfoperaties op de
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uitvoeringstijd van het computerprogramma. We gebruiken DEP+BURST om het
energieverbruik dynamisch te beheren en te reduceren.

De derde bijdrage in de thesis toont aan hoe automatisch geheugenbeheer aangewend
kan worden om de levensduur van PCM-geheugen te verbeteren in een heterogeen
geheugensysteem. Bestaande technieken op het niveau van de hardware en het
besturingssysteem zijn inefficiënt omdat ze opereren op een grote granulariteit en/of
reactief zijn. Deze thesis stelt schrijfrantsoenerend geheugenbeheer (Eng. write-
rationing garbage collection) voor. Objecten worden gealloceerd in een heterogeen
geheugensysteem volgens hun schrijfintensiteit: objecten die vaak geschreven worden,
worden gealloceerd in DRAM teneinde de levensduur van PCM te verbeteren; objecten
die vaak gelezen (en weinig of niet geschreven) worden, worden gealloceerd in PCM
teneinde gebruik te maken van PCM’s hoge densiteit.

Empirisch onderzoek in deze thesis rond generationele GC toont aan dat objecten
die gealloceerd worden in de zogenaamde nursery geheugenruimte alsook een beperkt
aantal objecten in de mature geheugenruimte meest frequent geschreven worden. Op
basis van deze observaties stellen we twee implementaties van schrijfrantsoenerend
geheugenbeheer voor. Kingsguard-nursery (KG-N) plaatst de nursery in DRAM en de
rest van de geheugenruimte in PCM. KG-N reduceert het aantal schrijfoperaties naar
PCM drastisch t.o.v. een geheugensysteem bestaande uit enkel PCM. Kingsguard-
writers (KG-W) gaat een stap verder en plaatst naast de nursery ook nog een ob-
servatieruimte in DRAM. Objecten niet geschreven worden in de observatieruimte
worden vervolgens gealloceerd in PCM. KG-W reduceert het aantal schrijfoperaties
t.o.v. KG-N maar introduceert een kleine impact op prestatie. We tonen aan dat
schrijfrantsoenerend geheugenbeheer de levensduur van PCM drastisch verlengt en
bijgevolg een veelbelovende techniek is voor het beheer van heterogene geheugensys-
temen.

De vierde bijdrage van de thesis verfijnt schrijfrantsoenerend geheugenbeheer op
basis van de observatie dat het schrijfgedrag van objecten nauwkeurig te voorspellen
is op basis van de plaats in de code waar de objecten gealloceerd worden. We
stellen Crystal Gazer voor die op basis van profilering van de allocatiesites objecten
classificeert als al dan niet schrijfintensief. Moderne mobiele toepassingen alsook
servertoepassingen voeren heel vaak steeds dezelfde code uit waardoor profilering te
verantwoorden is. Via profilering en statische voorspelling elimineert Crystal Gazer
de overhead van KG-W voor het monitoren van het schrijfgedrag van objecten.

Crystal Gazer gebruikt de profileringsinformatie om schrijfintensieve objecten
proactief te alloceren in DRAM en de rest van de objecten in PCM. Het resultaat
is geheugenbeheer met een verwaarloosbare overhead en een significante reductie in
het aantal schrijfoperaties naar PCM i.v.m. KG-W. Crystal Gazer laat toe verschillende
heuristieken te gebruiken om objecten al dan niet als schrijfintensief te classificeren.
Deze heuristieken laten toe een Pareto-optimale afweging te maken tussen de levens-
duur van PCM en de benodigde DRAM-capaciteit.

De vier bijdragen in deze thesis tonen collectief aan dat het gebruik van semantische
informatie in een virtuele machine voor beheerde programmeertalen effectief is voor
het optimaliseren van heterogene processors en geheugensystemen.
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Summary

Modern hardware is becoming increasingly heterogeneous. Hardware hetero-
geneity is a response to recent semiconductor device scaling trends. The traditional
shrinking of transistor sizes under Dennard’s rule stopped in the early 2000s. Without
Dennard’s scaling, as transistor budgets increase, so does the power they collectively
consume. As a result, energy efficiency has become a first-order concern during the
design and operation of processors.

Heterogeneousmulticore (HM) processors promise energy efficiency by combining
cores with different architectural capabilities on the same chip. In production HMs, big
(high performance) cores execute instructions out-of-order, whereas small (low-power)
cores execute instructions in program order. Even cores with similar architectural
capabilities have dynamic voltage and frequency scaling (DVFS) which allows for
simultaneously changing a core’s voltage and frequency to save energy. Altogether,
HMs expose a choice to software to execute each task on the most suitable core.

On the memory side, dynamic random access memory (DRAM) is also facing
scaling limitations. The complexity of manufacturing ever-smaller DRAM cells is
increasing. As a consequence, main memory cost is now a serious concern. At the
same time, the capacity demands of modern applications are continually increasing.
Emerging non-volatile memory (NVM) technologies are more scalable than DRAM
and offer higher capacity, byte-addressability, low leakage power, and persistence.
Phase change memory (PCM) is currently the most promising NVM technology.
The main disadvantages of PCM are its limited write endurance and high latency.
Heterogeneous (hybrid) memory combines DRAM and PCM to offer the best of
both technologies. With proper management, a hybrid memory system provides high
performance, low power, high density, and persistent memory.

On the software side, programmers exceedingly prefer managed languages (e.g.,
Java, C#, Python, Go) for software development. Managed languages offer portability
by executing on top of a virtualmachine. These languages also provide various services
to aid programmer productivity in the form of a managed runtime. Managed runtimes
abstract hardware complexity and interact closely with the application. Their close
interaction with the application means they contain rich semantic information about
application needs and behaviors.

This thesis explores the role of managed runtimes in abstracting the complexity
of heterogeneous processors and memories. More specifically, this thesis makes four
distinct contributions that show how semantic information in the managed runtime
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helps to exploit heterogeneous processors and memories better. We present two
contributions formanagingHMs and two contributions formanaging hybridmemories.
Without loss of generality, the managed runtime environment we consider in this thesis
is the Java Virtual Machine (JVM) which is the virtual machine implementation for
the popular Java programming language.

The first contribution in this thesis explores the scheduling of garbage collection on
HMs with big and small cores to improve energy efficiency. Garbage collection (GC)
relieves the programmer from the burden of manually freeing memory. GC is a critical
service that managed languages offer to programmers. Stop-the-world collectors stop
the application to free unused memory on the heap but incurs a performance penalty.
Concurrent GCs run concurrently with the application and have gained popularity
with the arrival of multicore processors. They improve performance because they
do not require the application to stop. However, if the concurrent collector cannot
free memory fast enough to keep up with application allocation, it could stop the
application. We call this GC-criticality.

This thesis shows that several Java applications exhibit GC-criticality when concur-
rent GC runs on the small cores of an HM. Fortunately, GC exhibits instruction-level
parallelism and can run faster on a big out-of-order core. Based on these observations,
we propose GC-criticality-aware scheduling. In our proposal, the concurrent GC
executes on small cores to conserve energy during normal execution. However,
when concurrent GC becomes critical, the JVM delivers a criticality signal to the
OS scheduler. The OS scheduler, in turn, increases the priority of concurrent GC for
big cores. GC-criticality-aware scheduling improves both the performance and the
energy efficiency of Java applications running on HMs compared to state-of-the-art
schedulers for managed applications.

The second contribution in this thesis explores DVFS performance prediction
for managed multithreaded applications. DVFS predictors guide system software in
choosing the most appropriate DVFS setting for a running application or a specific
phase of it. This thesis shows that prior DVFS predictors are only accurate for single-
threaded native applications written in C and C++. The reasons for their inaccuracy
are two-fold: (1) synchronization in multithreaded applications leads to inter-thread
dependences, and (2) managed applications execute bursts of store operations due to
memory management.

Due to inter-thread dependences, changing the DVFS setting of one core (thread)
impacts the execution of dependent threads. In addition, a burst of store operations
stalls a core which affects DVFS. This thesis proposes DEP+BURST, a new predictor,
which takes into account both inter-thread dependences and store bursts. DEP+BURST
intercepts synchronization activity in a multithreaded application. It then uses a simple
analytical model to predict the performance of an application at a different DVFS
setting. Furthermore, DEP+BURST accurately models the impact of store bursts
on DVFS. We integrate DEP+BURST in an energy manager to demonstrate energy
savings using DVFS for popular Java applications.

The third contribution in this thesis explores the role of managed runtimes, and
garbage collection in particular, in mitigating PCM wear-out to improve its lifetime in
hybrid memories. Existing hardware and OS approaches to mitigate PCM wear-out
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suffer from two drawbacks: (1) they operate at coarse-grain page granularity, and
(2) they are reactive. This thesis proposes write-rationing garbage collection that
reorganizes fine-grained objects in hybrid memory with the aim to keep frequently
written objects in DRAM to mitigate PCM wear-out. They keep read-mostly objects
in PCM to exploit its capacity.

Our empirical analysis of popular Java applications using a generational garbage
collector shows that nursery objects and a small number of mature objects get most of
the writes. Based on these observations, we propose two write-rationing Kings-
guard collectors. Kingsguard-nursery (KG-N) places the nursery in DRAM and
survivors in PCM, significantly reducing PCM writes over a PCM-only memory
system. Kingsguard-writers (KG-W) places the nursery in DRAM and survivors
in a DRAM observer space. It dynamically monitors all writes to nursery survivors
and moves unwritten objects to PCM. KG-W further reduces PCM writes but incurs
some performance overhead compared to KG-N. Our results show that write-rationing
garbage collection improves PCM lifetime and is a promising approach to managing
hybrid memories.

The fourth contribution in this thesis contributes further to write-rationing garbage
collection for hybrid memories. Our analysis shows that mature-object writes in Java
applications are predictable on a per allocation-site basis. Based on this observation,
we propose Crystal Gazer, which uses static profiling of allocation sites to identify
frequently written objects. Modern mobile and server applications repeatedly execute,
which makes profiling realistic. Crystal Gazer overcomes the main disadvantage of
KG-W. Specifically, the cost to dynamically monitor mature-object writes in KG-W is
an overhead in performance.

Crystal Gazer uses the profiling information to proactively allocate highly written
objects in DRAM and the rest in PCM. The result is a garbage collector with negligible
overhead and a more significant reduction in PCM writes compared to KG-W. Crystal
Gazer uses different heuristics to classify allocation sites as DRAM or PCM. These
classification heuristics open up Pareto-optimal trade-offs between PCM lifetime and
DRAM capacity.

The outcomes of the four contributions in this thesis show that semantic information
in the managed runtime can help to exploit heterogeneous processors and memories
better. The work presented in this thesis necessitates no changes to the programming
languages or models, requires minimal OS support, and needs no extra hardware
support. These advantages give developers both the productivity ofmanaged languages
and automated ways to utilize HMs and hybrid memories efficiently.
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Chapter 1

Introduction

1.1 Motivation

Semiconductor device scaling trends have ushered modern hardware into an era of
heterogeneity. Heterogeneous computing combines nodes with different capabilities in
the same system to promise performance and energy efficiency. More recently, hetero-
geneous memory systems have emerged that combine different memory technologies
to deliver scalable main memory systems.

Two device scaling trends motivate the ongoing shift to hardware heterogeneity.
First, the combination of Moore’s law and Dennard scaling that delivered greater
transistor budgets within reasonable power envelopes has come to an end. As a result,
energy efficiency is a critical concern during the design and operation of electronic
devices. In recent times, Moore’s law has slowed, raising the cost of manufacturing,
and leading scientists on the look for more scalable device technologies.

Manufacturers have introduced heterogeneous multicore (HM) processors to man-
age a processor’s power. HMs combine cores with different capabilities to offer power
versus performance tradeoffs. Production HMs consist of two core types. Big cores
execute instructions out of the normal program order to deliver high performance.
Small cores execute instruction in-order and consume less power than big cores. Even
cores with similar capabilities have dynamic voltage and frequency scaling (DVFS).
DVFS allows to simultaneously change a processor’s voltage and frequency to save
energy or boost performance.

Heterogeneity is not limited to processors alone. Our memory systems are
also becoming heterogeneous. The main reason is the scalability challenge facing
dynamic random access memory (DRAM). DRAM has served as the primary memory
technology of the last several decades. In recent years, scaling DRAM cells to
smaller dimensions is becoming complicated. The main memory scaling challenge is
worrisome because modern applications have an insatiable need for memory capacity.
Scientists have been exploring emerging non-volatile memory (NVM) technologies
to replace DRAM. The most promising NVM technology is phase change memory
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Figure 1.1: Layers in a managed runtime environment running on top of heterogeneous
hardware.

(PCM). PCM is byte-addressable and scales better than DRAM. Unfortunately, PCM
has two main drawbacks: (1) access latency is high, and (2) write endurance is low.
Hybrid memory combines DRAM and PCM to offer main memory systems with high
performance, endurance, capacity, and energy efficiency.

Heterogeneous processors and memories expose a variety of tradeoffs to software.
Software must take advantage of the emerging hardware heterogeneity. This thesis
explores the role of software in utilizing emerging heterogeneous processors and
memories efficiently.

On the software side, programmers increasingly prefer managed languages such
as Java, C#, Python, Visual Basic, and JavaScript. Managed applications execute on
a virtual machine to abstract hardware details and provide platform independence.
Managed applications also benefit from a range of services offered by a managed
runtime. These services include garbage collection, just-in-time-compilation, memory
safety, and network mobility. Garbage collection (GC) is one of the most critical
services in a managed language. GC relieves the programmer from the burden of
manually freeing heap memory. The result is fast development due to fewer memory
related bugs. A famous managed runtime is the virtual machine implementation of the
Java programming language, namely the Java Virtual Machine (JVM).

Figure 1.1 shows the different abstraction layers in amanaged runtime environment.
Managed runtimes interact closely with the user application and abstract hardware and
operating system details. Thus, these runtime environments contain rich semantic
information about application behaviors. This semantic information can potentially
help us to utilize hardware heterogeneity better. Thus, managed applications running
on top of heterogeneous hardware offer an opportunity. This thesis answers the
question,“how can we exploit the semantic information in a managed language runtime
to improve the utility of heterogeneous processors and memories."

This thesis presents four contributions that use semantic information to utilize
heterogeneous hardware better. In all contributions, the programming model is
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left unchanged. The managed runtime communicates information to the underlying
operating system, which in turns forms better policies to manage hardware. We
demonstrate our proposed techniques using the Java programming language. However,
these techniques are generalizable to other managed languages and runtimes. The next
section discusses the key contributions of this thesis.

1.2 Thesis Contributions

Contribution #1: Scheduling Concurrent Garbage Collection on Heterogeneous
Multicores.

In a managed runtime, the CPU resource demands of application and service
threads change over time. Our particular focus here is the garbage collection service.
Garbage collection threads benefit from a more powerful CPU during phases when the
application rapidly allocates memory on the heap. Similarly, the application threads go
through compute-intensive and memory-intensive phases. Compute-intensive phases
benefit from a more powerful CPU than memory-intensive phases.

Modern garbage collectors run concurrently with the application. This better
exploits multicore processors that have more than one CPU core on a chip. In a
managed environment running on top of a heterogeneous multicore with big and small
cores, there are co-executing application and concurrent garbage collection threads.

Prior literature proposes to run garbage collection (GC) on small cores due to
two reasons: (1) GC is not on the application’s critical path, and (2) GC does not
benefit from big cores in a heterogeneous multicore. We find this scheduling policy
non-optimal for popular Java applications. Specifically, our work shows that GC can
become critical to an application’s performance, and especially during phases when
the application rapidly allocates memory. If left to run on the small cores, GC lags
in freeing up heap memory, and the application eventually stops. This increases GC
overhead and degrades overall application performance. Contrary to intuition, our
work also shows that garbage collection exposes instruction-level parallelism that the
highest-performing cores in an heterogeneous multicore can exploit.

The first contribution of this thesis contributes a new scheduler for managed
applications running on top of heterogeneous multicores. The proposed scheduler
communicates when GC becomes critical to the OS via a GC-criticality signal. In
turn, the OS increases the priority of GC threads to run on the big core. Our GC-
criticality-aware scheduler results in better performance and energy efficiency on a
range of heterogeneous multicore processors for Java applications. This is one of
the first works to exploit semantic information in language runtimes to guide the OS
in making the best scheduling decisions for heterogeneous multicores. This work
appeared in the ACM Transactions on Architecture and Code Optimization in 2016.

S. Akram, J. B. Sartor, K. V. Craeynest, W. Heirman, and L. Eeckhout,
“Boosting the Priority of Garbage: Scheduling Collection on Hetero-
geneous Multicore Processors,” ACM Transactions on Architecture and
Code Optimization (TACO), vol. 13, no. 1, 2016.
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We also compare GC-criticality-aware scheduling to prior work on fairness-aware
scheduling that proposes equally distributing big core cycles among all threads on
a heterogeneous multicore. I contributed to the implementation and evaluation of
fairness-aware scheduling which appeared in the International Conference on Parallel
Architectures and Compilation Techniques in 2013.

K.VanCraeynest, S.Akram,W.Heirman, A. Jaleel, andL.Eeckhout,“Fairness-
Aware Scheduling on Single-ISA Heterogeneous Multi-Cores,” Interna-
tional Conference on Parallel Architectures and Compilation Techniques
(PACT), 2013.

The benefits of GC-criticality-aware scheduling show that the managed runtime
can guide the system software in making better scheduling decisions for heterogeneous
multicores.

Contribution #2: DVFS Performance Prediction for Managed Multithreaded
Applications.

Dynamic voltage and frequency scaling (DVFS) is another knob to trade power for
performance on a heterogeneous multicore processor. To exploit DVFS requires an
accurate DVFS performance predictor. Our analysis of the state-of-the-art performance
predictors shows that they are not accurate for multithreaded managed applications.

We found two reasons for this inaccuracy. First, managed runtimes are inherently
multithreaded. This is because the application and services (such as garbage collection)
execute as separate contexts. On top of that, today’s applications are multithreaded
to best utilize the multiple CPUs (cores) on a multicore processor. All these threads
communicate with each other via shared data. The code that operates on shared data,
a.k.a., critical section, is protected by locks for correct execution. This leads to inter-
thread dependences in a multithreaded managed environment. Therefore, changing
the speed of one thread using DVFS impacts the execution of dependent threads. The
result is an overall impact on performance that is complicated to model.

In addition to inter-thread dependences, the second reason for inaccuracy is that
managed applications issue bursts of store operations. This happens during zero
initialization of memory that ensures memory safety in managed languages. Another
reason is garbage collection activities that move objects around. Existing predictors
ignore store operations assuming they are not on the critical path.

The second contribution of this thesis is an accurate DVFS performance predic-
tor for multithreaded managed applications. Our predictor, namely DEP+BURST,
continuously intercepts the synchronization activity in a multithreaded application.
It then uses analytical modeling to reconstruct the execution of the application at a
different frequency. This allows DEP+BURST to report the predicted execution time
of the application at a different frequency. DEP+BURST also correctly models the
performance impact of store operations.

We use DEP+BURST to propose two energy managers that aim to optimize the
energy consumed by an application under a user-specified (maximum) slowdown
threshold. The DEP+BURST model, along with an energy manager that optimizes
the energy consumed by the processor alone appeared in the IEEE International
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Symposium on Performance Analysis of Systems and Software in 2016. This paper
was chosen as one of the three candidates for the award of best paper at the conference.

S. Akram, J. B. Sartor, and L. Eeckhout, “DVFS performance prediction
for managed multithreaded applications,” IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS), 2016.

An extended version of the above paper appeared in the IEEE Transactions on
Computers in 2017. The extended version discusses the scalability of DEP+BURST
with increasing thread counts; a new energy manager that considers memory system
energy in addition to processor energy; and a wide range of sensitivity studies with the
energy managers.

S. Akram, J. B. Sartor, and L. Eeckhout, “DEP+BURST: Online DVFS
Performance Prediction for Energy-Efficient Managed Language Execu-
tion,” IEEE Transactions on Computers, vol. 66, no. 4, Apr. 2017.

This work shows that existing DVFS predictors can not accurately predict the per-
formance impact of DVFS for multithreaded managed environments. Using semantic
information from the runtime environment allows DEP+BURST to accurately predict
the performance impact of DVFS for popular Java applications and help save energy.

Contribution #3: Write-Rationing Garbage Collection for Hybrid Memories.
The working set sizes of applications are continually increasing. Unfortunately,

DRAM scaling has slowed down in recent years. The resulting manufacturing
complexity is increasing the cost of main memory. Furthermore, DRAM based
memory systems consume significant power. To fulfill main memory demands at
a reasonable cost, scientists are exploring alternatives. Emerging non-volatile memory
(NVM) is persistent, byte-addressable, scalable, and consumes less power. It has two
main disadvantages: (1) latency is higher than DRAM, (2) write endurance is low.
Endurance is a hard problem because each write changes the material form of NVM
cells causing them to wear out. Unfortunately, wear-out limits overall memory lifetime.
Hybrid memories combine DRAM and NVM to deliver the best of both technologies.

The third contribution of this thesis is write-rationing garbage collection for hybrid
memories. Write-rationing garbage collection uses managed language semantics to
guide allocation of program (heap) memory in DRAM and NVM with the aim of
improving NVM lifetime. Our analysis of 15 popular Java applications shows that
newly allocated objects and a small number of old objects are frequently written.
This thesis proposes two write-rationing (Kingsguard) garbage collectors, namely
Kingsguard-nursery and Kingsguard-writers. They both place the nursery for newly
allocated objects in DRAM. In addition, Kingsguard-writers (KG-W) dynamically
monitors writes to nursery survivors in a new observer space. On an observer
collection, KG-W copies a small number of frequently written objects to DRAM,
and copies the remaining objects to NVM.

KG-W performs two additional optimizations to protect NVM from writes. It
places object meta-data in a new space in DRAM. The managed runtime writes to
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object meta-data during a full-heap garbage collection. In addition, KG-W performs
an optimization targeted at large objects. State-of-the-art collectors allocate large
objects in a special region of the mature space. KG-W allocates some large objects
first in the nursery to give them time to die. It then copies them to special regions for
large objects in DRAM or NVM. The two optimizations, in addition to dynamically
monitoring objects, protectNVMfromwrites. Our results indicate orders ofmagnitude
improvements in NVM lifetimes using KG-W.

Prior hardware andOSapproaches tomitigateNVMwear-out have the disadvantage
that they work with coarse-grained pages several kilobytes in size. Our analysis shows
that KG-W leads to better NVM lifetimes (for similar or less DRAM usage) compared
to prior approaches.

Write-rationing garbage collection appeared in the ACM SIGPLAN Conference
on Programming Language Design and Implementation in 2018. This work won the
NVMWMemorable Paper Award at the Annual Non-Volatile Memories Workshop in
2019.

S.Akram, J. B. Sartor, K. S.McKinley, andL. Eeckhout, “Write-Rationing
Garbage Collection for Hybrid Memories,” ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), 2018.

This work shows that managing hybird memories using semantic information in
the managed language runtime is promising and can make NVM practical as main
memory. Our proposed Kingsguard collectors requires minimal OS support and no
changes to the programming model.

Contribution #4: Profile-Driven Write-Rationing Garbage Collection for Hybrid
Memories.

The fourth and final contribution of this thesis is a profile-driven variant of write-
rationing garbage collection for hybrid memories. Profile-driven write-rationing
garbage collection uses offline profiling of objects’ write behavior to place highly
written objects in DRAM. The profile-driven collector proposed in this thesis is called
Crystal Gazer. Mobile and server applications execute repeatedly which motivates
Crystal Gazer and profiling to manage hybrid memories.

CrystalGazer overcomes the three drawbacks of the previously describedKingsguard-
writers garbage collector. Specifically, KG-W dynamically monitors object writes to
find frequently written objects. Monitoring is highly effective but sometimes hurts
performance. KG-W is also reactive and relies on the accurate discovery of highly
written objects in a limited time window. Finally, KG-W consumes excessive DRAM
capacity.

This thesis shows that writes in popular Java applications are predictable on a per
allocation-site basis. A few allocation sites allocate the majority of highly written
objects. We first profile object writes and their allocation sites. We use two heuristics
to classify allocation sites as read-mostly (NVM) or highly written (DRAM). Crystal
Gazer uses the allocation-site advice at runtime to place a small number of highly
written objects in DRAM. It places the majority of read-mostly objects in NVM
exploiting the capacity advantage of NVM. Unprofiled allocation sites are labeled
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as NVM by default. Leveraging offline profiling overcomes the main disadvantages
of KG-W. Crystal Gazer eliminates more NVM writes than KG-W while consuming
similar or less DRAM capacity.

A key feature of Crystal Gazer is its ability to tradeoff NVM writes (lifetime) for
DRAMcapacity by using different heuristics to classify allocation sites, while requiring
only one profiling run. Our experimental analysis shows that Crystal Gazer provides
Pareto-optimal tradeoffs whereas KG-W provides a single sub-optimal operating point.
Crystal Gazer appeared in the International Conference onMeasurement andModeling
of Computer Systems in 2018.

S. Akram, J. B. Sartor, K. S. McKinley, and L. Eeckhout, “Crystal Gazer:
A Profile-Driven Garbage Collector to Manage Hybrid Memories,” ACM
International Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS), 2019.

A preliminary workshop paper analyzed the prediction accuracy of different object
attributes, i.e., type, size, and allocation site, for finding frequently written objects.

S. Akram, K. S. McKinley, J. B. Sartor, and L. Eeckhout, “Manag-
ing Hybrid Memories by Predicting Object Write Intensity,” Interna-
tional Conference on the Art, Science, and Engineering of Programming
(<Programming18> Companion), 2018.

We propose and use an emulation platform built using real hardware to evaluate
Crystal Gazer. The details of the emulation platform appeared in the IEEE International
Symposium on Performance Analysis of Systems and Software in 2019.

S. Akram, J. B. Sartor, K. S. McKinley, and L. Eeckhout, “Emulating
and Evaluating Hybrid Memory for Managed Languages on NUMA
Hardware,” IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), 2019.

This work shows that offline profiling to discover access patterns of objects in
managed applications is practical. Furthermore, the profiling advice can guide garbage
collectors in exploiting hybridmemory. When optimizing formemory lifetimes, offline
profiling can help save significantly more writes to PCM than the previously proposed
Kingsguard collectors.

1.3 Structure and Overview

The next chapter discusses the background on contemporary software and hardware
trends related to this thesis, heterogeneous processors and memories, and managed
runtime environments.

The remaining thesis is divided into two main parts. The first part is devoted to
optimizing the performance and efficiency of managed workloads on heterogeneous
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processors. Chapter 3 discusses GC-criticality-aware scheduling that exploits semantic
information in the Java runtime to schedule application and concurrent collector
threads on a heterogeneous multicore. Chapter 4 describes DEP+BURST, a new
DVFS performance predictor for multithreaded managed applications. In the same
chapter, we discuss two applications of DEP+BURST that aim to save the energy
consumed by managed language applications.

The second part of the thesis is devoted to the management of hybrid memories
consisting of DRAM and non-volatile memory (NVM). Chapter 5 and Chapter 6
introduce twowrite-rationing garbage collectors for hybridmemories. These collectors
aim to improve NVM lifetime by guiding a majority of the writes in managed
applications to DRAM. Chapter 5 uses dynamic monitoring to protect NVM from
writes. Unfortunately, dynamic monitoring increases the execution time of managed
applications. Chapter 6 proposes to use offline profiling of allocation sites to place
highly written objects in DRAM.

Chapter 7 concludes this thesis with a summary of the main contributions and
directions for future work.
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Chapter 2

Background

This chapter discusses the essential background in hardware and software. We
discuss semiconductor device scaling trends that encourage hardware heterogeneity.
We then introduce heterogeneous multicore (HM) processors and hybrid memory
systems. We present the reasons for the popularity of managed languages and discuss
garbage collection, a key feature of managed languages. We end this section with a
discussion of the managed runtime environment we use in the rest of this thesis.

2.1 Hardware

2.1.1 Device Scaling Trends

In 1965, GordonMoore predicted that transistor counts on chipswould double every
two years [93] (known asMoore’s law). Moore’s prediction held for several decades and
enabled the successive processor generations to offermore computing power. However,
chips would dissipate much heat if the power density of the shrinking transistors would
remain the same. In 1974, Robert H. Dennard observed that as transistors were
scaled down, their power density remained constant, as both voltage and current scaled
down with length [37] (known as Dennard scaling). The combination of Moore’s law
and Dennard scaling delivered better performing processors every few years within
reasonable power budgets. Power-efficiency was a secondary concern.

The continuing increase in manufacturing complexity has slowed down Moore’s
law in recent times. On the other hand, Dennard scaling has completely stopped. With
Dennard scaling, the transistor dimensions and the supply voltage is scaled down by
the same factor. The threshold voltage is also scaled down to increase switching speed.
However, scaling down threshold voltage increases the static (or leakage) power. The
total leakage power of processor chips continued to grow for several decades.

Today, the rise of leakage power has two main implications for processor design:
(1) processor frequencies are no longer increasing, (2) limiting the power consumed by
processors is a first-order concern. To continue taking advantage of Moore’s law and
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Figure 2.1: ARM’s big.LITTLE processor architecture. Cortex A15 is big out-of-order
core. A7 is LITTLE in-order core.

without any frequency increases, processor manufacturers have turned to multicore
processors. Each multicore processor chip consists of two or more (uniprocessor)
core. Software must expose thread-level parallelism to take advantage of multicore
processors.

Manufacturers employ circuit and architecture techniques to limit the power con-
sumed by processors during their design. During production, manufacturers have
introduced methods that expose a choice to the software to restrict power.

2.1.2 Heterogeneous Multicores

Earlymulticore processorswere homogeneous. All cores had the same architectural
capabilities, i.e., superscalar width, instruction issuing heuristic, and the type of branch
predictor. These similar cores ran instructions out of the program order and exploit
the instruction-level parallelism (ILP) and memory-level parallelism (MLP) exposed
by the software. However, the degree of ILP and MLP in applications varies. At one
extreme are applications that exhibit no ILP or MLP (e.g., pointer chasing code). The
powerful cores on a homogeneous multicore consume much power which is wasteful
for applications that do not expose sufficient ILP or MLP.

Heterogeneous multicores have emerged because of the need for energy-efficient
computing [76, 77]. Industry examples of single-ISAheterogeneousmulticores include
ARM’s big.LITTLE [50], NVidia’s Tegra [96], and Intel’s QuickIA [30]. These
systems contain a mix of cores that vary in their ability to exploit instruction-level
parallelism (ILP) and memory-level parallelism (MLP). Big cores that run instructions
out-of-order exploit ILP and MLP by having many instructions in flight at the same
time, usually achieving the best performance. Small cores that execute instructions in
order provide a low-power alternative and are limited in the amount of ILP and MLP
that they can exploit. Heterogeneity provides a power versus performance tradeoff,
giving the ability to select the core that best matches the software’s characteristics,
within performance and energy constraints. The challenge for system software is to
take advantage of core heterogeneity by dynamically scheduling diverse workloads.

Even cores with similar architectural capabilities have some kind of heterogeneity.
Each core has a dynamic voltage and frequency (DVFS) domain. DVFS allows to
simultaneously change the core’s voltage and frequency during the execution of an
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application. The dynamic power P of a processor core is given by the equation:
P = ACV 2 f , where A takes into account the transistor’s switching activity, C is the
load capacitance, V is the supply voltage, and f is the operating frequency. Note that
if we reduce the supply voltage by a factor x, we obtain a quadratic reduction of x2

in dynamic power consumption. Furthermore, a decrease in supply voltage slows the
transistor switching capability and requires a reduction in frequency. Together, DVFS
enables a cubic decrease in the dynamic power consumed by the processor cores.

Scaling the voltage and frequency down slows down the core. This slowing down
of the core does not impact performance if the core is waiting for memory accesses to
resolve. On the other hand, compute-bound applications (or phases of an application)
experience a slowdown proportional to the reduction in frequency. Software must
carefully regulate DVFS to save energy without hurting performance.

2.1.3 Hybrid Memories

Dynamic random access memory (DRAM) has served as the main memory of
all computer systems for several decades. In recent times, DRAM faces two main
challenges. The manufacturing complexity of DRAM is increasing. More specifically,
analysts report that scaling DRAM to smaller dimensions is becoming complex [69,
58]. The result is an increase in the cost of main memory. Modern applications
demand large capacities as their working set sizes keep increasing. DRAM cells also
consume idle (static) power. Static power severely limits main memory scalability.

Due to the challenges facing DRAM, scientists are investigating new memory
technologies to replace DRAM. Emerging non-volatile memory (NVM) technologies,
e.g., phase-changememory (PCM), spin-torque transfer (STT) RAM,magnetoresistive
RAM (MRAM), and ferroelectric RAM (FRAM) promise better scalability (capacity)
than DRAM. Of these emerging technologies, PCM is the most promising. PCM
has several advantages: (1) it offers more capacity than DRAM, (2) it consumes no
idle power, (3) it is byte-addressable, and (4) it is persistent. Despite its several
advantages, PCM alone cannot replace DRAM. The reason is that PCM has two main
disadvantages: (1) latency is high, and (2) write endurance is low.

Write endurance of PCM is challenging because writes to PCM cells change their
material form. PCM is a resistive memory technology. PCM cells store information
as the change in the resistance of the resistive material. Chalcogenide glass is the
material used in several existing PCM prototypes. Chalcogenide can exist in two
states: amorphous and crystalline. The two states have different resistance values.
Furthermore, heating the chalcogenide switches the material between the two states.

Hybrid memory combines DRAM and PCM to offer the best of both technolo-
gies. When appropriately managed, hybrid memory offers byte-addressability, high
endurance, low idle power, and low latency. There exist many prior works that use
hardware and OS approaches to manage hybrid memory.

PCM can be integrated into the storage hierarchy in different ways owing to its
byte-addressable and persistent features. In this thesis, we assume PCM is part of
the main memory system and place it next to DRAM. Secondary disk storage backs
the data in DRAM and PCM. Figure 2.2 illustrates our assumed memory and storage
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Figure 2.2: Our assumed memory and storage hierarchy.

hierarchy. Using PCM as main memory increases the capacity of the main memory
system in the face of DRAM scaling challenges.

2.2 Software

2.2.1 Managed Languages and Runtimes

According to the TIOBE index for February 2019, managed languages such as Java,
C#, Python, JavaScript, Scala, Ruby, and PHP are the most popular languages among
programmers today [119]. Managed languages enable platform independence. More
specifically, the compiler produces bytecode for an abstract virtual machine. Besides,
these languages offer a range of services to the programmer. A valuable service
is garbage collection that automatically manages heap memory. Garbage collection
relives the programmer from the burden of explicitly freeing heap memory. Another
added advantage of managed languages is improved memory security through zero
initialization. Dynamic or just-in-time compilation from bytecode to machine code
is another essential feature of managed languages. A managed runtime environment
encapsulates all the services offered by managed languages.

This thesis shows how managed runtimes can help exploit modern heterogeneous
hardware better. We use the Java Virtual Machine (JVM) for the popular Java
programming language to evaluate our ideas. We believe our ideas generalize to
other managed runtimes.

The mutator and the collector. Managed languages use garbage-collected heaps.
The mutator executes application code, allocating new objects on the heap. The
mutator updates (mutates) the object graph, changing the destination of reference fields
in objects. These reference fields are contained in heap objects, thread stacks, and static
variables. Due to reference updates and mutation of the object graph, objects become
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disconnected (unreachable) from the heap. The purpose of the garbage collector is to
find unreachable objects, free the memory these unreachable objects occupy, and make
it available to the mutator for fresh allocation. Next, we discuss garbage collection in
more detail.

2.2.2 Garbage Collection

The memory manager, or garbage collector (GC), provides regions of free memory
to the application for fresh allocation, and automatically detects unused parts of
memory and reclaims them to be used again. In this thesis, we are concerned with
tracing garbage collection.

A tracing collector determines which objects should be deallocated by tracing the
reachability graph of the heap. The collector first identifies roots from which to trace.
Roots are objects directly accessible to the mutator without going through other objects
on the heap. Roots include static and global variables, thread stacks, and variables
stored in processor registers.

A tracing collector maintains a list of addresses to be traced. Initially, the roots are
added to the list. The collector threads process the list by following pointers that point
into the heap. When a heap object is found, it is marked as “live”, and is searched for
pointers to other heap objects, which are added to the list. manner. Tracing is complete
when there are no more elements on the processing list. All heap objects that are then
not marked as “live” are unreachable by the application, and thus are freed to be used
again.

Garbage collection has a space-time tradeoff. The more heap space you give the
application, the longer until a collectionmust be invoked. However, when the collection
does occur because the heap is full, it could have more memory to trace, depending
on the lifetime of objects, and thus take longer. On the other hand, if heap space is
limited, garbage collection must be performed frequently, and yet, each collection does
not last as long because the amount of live data is bounded.

Because garbage collection must look at all pointers to heap objects, it must see a
consistent view of the heap. Thus, the easiest way to implement a garbage collector
is by stopping the application completely during tracing and freeing. This is called
stop-the-world (STW) collection. However, stopping the application completely while
the whole heap is scanned causes long application pauses, which are undesirable,
especially for interactive and real-time applications.

2.2.3 Generational Garbage Collection.

High-performance collectors today exploit the generational hypothesis that many
objects die young [120]. The application (mutator) allocates new objects contiguously
into a nursery. When allocation exhausts the nursery memory, a minor collection
first identifies live roots that point into the nursery, e.g., from global variables, the
stack, registers, and the mature space. It then identifies reachable objects by tracing
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references from these roots. It copies reachable objects to a mature space and reclaims
all nursery memory for subsequent fresh allocation.

2.2.4 GenImmix

In this thesis, we modify GenImmix, the default best-performing collector in
Jikes [18], to create Kingsguard collectors. GenImmix uses a copying nursery and a
mark-region mature space. The mark-region mature space consists of a hierarchy of
two regions: blocks and lines. Blocks aremultiples of page sizes and consist ofmultiple
lines. Lines are multiples of cache line sizes. Objects may cross lines, but not blocks.
Bump pointer object allocation is contiguous in the nursery. (Contiguous allocation is
known to outperform free-list allocators due to its locality benefits [12, 18, 61].) Filling
the nursery triggers a collection, which copies nursery survivors contiguously into free
lines within blocks in the mature space. Filling the mature space triggers a full heap
collection. Immix reclaims the mature space at a line and block granularity by marking
lines and blocks live as it traces and marks live objects. Subsequent mature allocation
bump-point allocates first into contiguous free lines in partially free blocks and then
into completely free blocks. Allocation and reclamation use per-thread allocators and
work queues to deliver concurrency and scalability. The per-thread allocators obtain
blocks (partially and completely free) from a global allocator.

We use the default settings for Immix, including the maximum object size (8 KB),
line size (256 bytes), and block size (32 KB). These settings match the Immix line size
to the PCM line size. Immix tailors the heap representation to match the hardware
memory system for performance, but it also matches the needs of PCM memory
management for detecting and tolerating line failures, as Gao et al. [48] show.

2.2.5 Java Virtual Machine

In this thesis, we use the open-source Jikes Research VM (RVM) 3.1.2 as our
platform because it combines good performance with software engineering advances
that make it easy to modify [5, 46]. Jikes RVM is a Java-in-Java VM with a baseline
compiler (no interpreter), just-in-time optimizing compiler of hot code, and a large
number of state-of-the art garbage collectors [13, 12, 18, 111]. It also offers a wide
range of easy-to-change barriers. In particular, we use write barriers, which call a
specially-defined method on all writes to do bookkeeping. Reference write barriers
are widely used in garbage collectors to track pointer references between independently
collected regions [128]. We modify them to profile object writes to values as well
as references. A clean interface between the compiler and collector [46] defines
object layout, references, interior references, and object metadata in a few places. In
contrast, changing barriers, object layout, or metadata in the widely-deployed Hotspot
system [97, 98] requires numerous wide-ranging changes in the compiler and garbage
collection code.
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2.2.6 Java Performance Evaluation

Just-in-time compilation introduces non-determinism in Java performance evalua-
tion. In this thesis, we use replay compilation [11], current practice in rigorous Java
performance evaluation, to eliminate non-determinism introduced by the compiler.
During profiling runs, the optimization level of each method is recorded for the run
with the lowest execution time. The JIT compiler then uses this optimization plan in our
measured runs, optimizing to the correct level the first time it sees eachmethod [11, 61].
To eliminate the perturbation of the compiler, we measure results during the second
invocation, which represents application steady-state behavior. In all results we report
in this thesis, we run each application four times, and report the averages in the graphs.
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Chapter 3

GC-Criticality-Aware
Scheduling on Heterogeneous
Multicores

3.1 Introduction

Themanaged language runtime environment offers increased software productivity
and portability. One key reason why managed languages are used in a broad spectrum
of domains, ranging from data centers to handheld mobile devices, is that they offer
automatic memory management through garbage collection (GC). Garbage collection
reduces the chance of memory leaks and other memory-related bugs, while easing
programming. However, garbage collection introduces overhead to the application’s
execution time [24], in part because managed language applications allocate objects
rapidly [12, 132].

Garbage collection can be run in either a “stop-the-world” mode, where the
application’s progress is stopped while collection occurs, or in a “concurrent” mode,
where the application and GC run at the same time. However, concurrent collection
threads must coordinate and share resources with the application. Moreover, if the
allocation rate exceeds the rate of collection, the application can run out of allocation
space, which requires the application to be stopped while GC frees memory. This can
lead to a large performance penalty.

On the hardware side, heterogeneous multicores promise energy-efficiency. These
processors contain a mix of big and small cores. Big cores execute instructions out-
of-order to exploit instruction-level parallelism (ILP) and memory-level parallelism
(MLP). Small cores are in-order and offer power-efficiency for memory-bound work-
loads. A significant body of recent work emphasizes the importance of scheduling on
single-ISA heterogeneous multicores [9, 27, 49, 72, 79, 87, 88, 112, 114, 123, 122].
However, managed runtime environments include several service threads, such as
garbage collection, that run for a significant fraction of the execution time [24, 40],
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and should be treated differently than application threads, according to recent re-
search [24, 53, 59, 90, 107]. Previous work argues that because GC threads are not on
the critical path, are memory-bound, and do not exhibit ILP, they should be scheduled
on small cores in a heterogeneous multicore for the best performance per energy [24].

In this chapter, we explore the behavior of concurrent garbage collection on
big versus small cores for Java applications, aiming to optimize total application
performance. Running benchmarks in the Jikes Research Virtual Machine (RVM) on
top of amulticore simulator, we find that some applications, particularlymulti-threaded
applications with higher thread counts, are more garbage collection intensive, and
benefit significantly if GC is run on big versus small cores, by as much as 18%. These
benchmarks exhibit GC criticality during execution when the concurrent GC threads
cannot keep upwith application allocation, and thus GC threadsmust pause application
progress and divert to a stop-the-worldmode to collect memory. For other applications,
however, we observe no performance differencewhen runningGC threads on big versus
small cores. In particular, single-threaded and some multi-threaded applications at
small thread counts do not exercise GC much, and we call them GC-uncritical. To
verify the generality of GC criticality, we also compared the performance of Jikes’ best-
performing production collector, stop-the-world generational Immix, when it runs on
big versus small cores. Several benchmarks still benefit from running on out-of-order
cores, as they demonstrate a performance difference of up to 15%. We conclude that
GC criticality can occur in many different system setups. GC criticality is a function
of a number of factors, including processor architecture, virtual machine, garbage
collection algorithm and implementation, heap size, application characteristics, etc.
The bottom line is that if garbage collection is unable to keep up with the application’s
memory allocation rate (because GC is receiving too few resources), garbage collection
will become critical.

Based on these insights, we design a new, adaptive scheduling algorithm that
responds to signals from the managed language runtime about GC criticality, which
dynamically varies during the run, boosting GC threads’ priority on the big core(s)
only if GC is in danger of not keeping up with application allocation. Our GC-
criticality-aware scheduler adapts to phase behavior, balancing performance and energy
efficiency by lowering GC threads’ priority on the big core(s) if GC becomes uncritical.
While our scheduler is performance-neutral for GC-uncritical benchmarks, it improves
performance significantly for GC-critical applications (compared to prior best practice
which puts GC threads always on small cores [24]). Using a set of Java benchmarks
from the DaCapo benchmark suite [14] on top of the Jikes Research Virtual Machine
3.1.2 [4], we report an average performance improvement of 2.9%, 7.8%, and 16% for
the GC-critical benchmarks when running on a four-core system with one, two, and
three big cores, respectively, while at the same time improving energy-efficiency by
3.5%, 10.7% and 20%. Compared to an existing fair scheduler [122] which strives
at achieving fairness across all runnable threads, our GC-criticality-aware scheduler
achieves significantly better performance, especially for architectures with limited
big core resources. We comprehensively evaluate the robustness of GC-criticality-
aware scheduling across core counts, big to small core ratios, heap sizes, and clock
frequency settings, and conclude that GC-criticality-aware scheduling is particularly
beneficial as GC becomes more critical. GC-criticality-aware scheduling improves
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overall application performance by giving sufficient resources to GC so it can keep up
with the application.

This chapter makes the following contributions:

• We demonstrate, contrary to prior work, that garbage collection can significantly
benefit (up to 18%) from out-of-order versus in-order execution by exploiting
ILP.

• We pinpoint when GC becomes critical to overall application performance,
namely when a concurrent collector cannot free memory fast enough for appli-
cation allocation.

• Motivated by the observation that applications exhibit different sensitivities
with respect to GC criticality, we propose an adaptive scheduling algorithm that
receives semantic information from the memory manager about GC criticality,
adjusting GC’s priority for big core time slices, even taking slices away from the
application so as to avoid costly stop-the-world pauses.

• We evaluate our adaptive scheduling algorithm, showing that it performs well
across a large range of heterogeneous architectures and heap sizes. While our
GC-aware scheduler is performance and energy-neutral for GC-uncritical appli-
cations, we see substantial performance and energy efficiency improvements for
GC-critical applications.

This work shows that scheduling modern workloads on heterogeneous multicores
significantly benefits from semantic information (GC criticality) provided by the
managed runtime, in order to provide high performance on future energy-efficient
processor architectures.

3.2 Related Work

Wenow describe work related to schedulingmultithreaded andmanagedworkloads
on (heterogeneous) multicores.

3.2.1 SchedulingManagedLanguageWorkloads onHeterogeneous
Multicores

A number of prior works evaluate how best to schedule managed language work-
loads on heterogeneous multicores, suggesting that it is best to put service threads
on small(er) cores. Recent work characterizes service threads in the Oracle HotSpot
JDK 1.6.0 and Jikes RVM, and explores the opportunity to isolate service threads to
small cores to optimize performance per energy [24]. They focus on service threads in
isolation, and argue that as garbage collection runs asynchronouslywith the application,
is not on the critical path and is memory-bound, it is better to run GC on small cores.
In contrast, we focus on end-to-end performance and find that GC could end up on
the critical path and hurt overall application performance if always left to execute on
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the small core(s). We also achieve better energy efficiency in comparison with their
policy.

Prior work also advocates to exploit simple in-order cores to run low-priority
service threads in co-designed virtual machines [53]. More recent work explores
changing the garbage collection algorithm to be amenable to running on a GPU [90].
Researchers have studied core adaptation for managed applications for the purposes of
energy reduction [59]. They conclude that whereas the application benefits most from
wide-issue out-of-order cores, GC threads prefer simpler cores, albeit still out-of-order
but with a smaller instruction window. Our results are in line with this finding: GC
benefits from periodically running on a big core to improve overall performance.

3.2.2 Managed Language Workloads on Multicores

Prior work explores scheduling Java workloads on modern multicore hardware to
get the best performance. Sartor et al., evaluate the effect of isolating garbage collection
threads to another socket, and scaling down the frequency of that socket [107].
They conclude that slowing down the clock frequency of garbage collection degrades
performance, which is in linewith our findings, also noting that it degrades performance
much less than when scaling down application threads.

Esmaeilzadeh et al., evaluate performance and power consumption across five
generations of processors, concluding that managed language workloads are more
power-hungry and exploit more parallelism than native single-threaded workloads,
further motivating the relevance of our work [43].

Some prior work proposes hardware support for concurrent GC, adding hardware
for new ISA instructions [64], to thememory subsystem [109], to theCPUpipeline [53],
orwith a completely customdesign [32]. In ourwork, we assume ‘stock’ heterogeneous
multicores with big and small cores.

3.2.3 Scheduling on Heterogeneous Multicores

Kumar et al., advocate single-ISA heterogeneous multicores for energy efficiency
reasons [76, 77]. This has spurred a flurry of related work in scheduling for heteroge-
neous multicores; see for example [9, 27, 49, 72, 79, 87, 88, 112, 114, 123].

Prior work proposes fairness-aware scheduling for multi-threaded (native) applica-
tions [122]. A key difference is that we acknowledge the inherent thread heterogeneity
in managed language workloads, treating GC threads differently from application
threads.

A number of recent works have looked into dynamically identifying and speeding
up critical threads or bottlenecks [39, 40, 65, 118]. Suleman et al. accelerate critical
sections by migrating threads to a big core [118]; Joao et al. generalize this concept to
other bottlenecks including barriers and producer-consumer synchronization [65]. Du
Bois et al. identify critical threads during multi-threaded program execution based on
the number of co-executing threads per time interval as delineated by synchronization
activity [39, 40]. None of these readily apply to concurrent garbage collection
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in managed language workloads. Our work demonstrates that providing semantic
information about GC criticality from the managed runtime helps the scheduler to give
big core cycles to GC threads dynamically when needed.

3.3 Background

InChapter 2, we provide background onmanaged languages and garbage collection.
In this section, we first provide background on concurrent garbage collection. We then
discuss garbage collection on heterogeneous multicores.

3.3.1 Concurrent Garbage Collection

Concurrent garbage collection runs garbage collection threads alongside applica-
tion threads to reduce pause times. In this work, we consider the Jikes Research Virtual
Machine’s (RVM) [4] concurrent collector, which is a traditionalmark-sweep snapshot-
at-the-beginning concurrent GC algorithm, based on Yuasa’s algorithm [130]. Fig-
ure 3.1 depicts the phases of an application that has four application threads (a0 to
a3) running with such a collector. This collector has four threads, with g0 and g1
running concurrently with the application, and g2 and g3 running when the application
is stopped.

Most concurrent collectors require a small pause to the application to first identify
a consistent root set (shown in Figure 3.1 as “roots”), and later to actually free memory
(shown as “release”). In our concurrent collector, separate threads are spawned to
perform the STW phases of collection (threads g2 and g3). The traversal of the object
graph can happen in parallel with the application (shown as the action of threads g0
and g1) as long as newly allocated or modified objects are marked as “live” so that they
are not freed by the collector. In addition, all application writes go through a barrier
to coordinate with GC threads so that they are not writing to the same object, and so
the GC maintains a consistent view of heap pointers [17]. Our concurrent collector
initiates a new collection cycle (defined as starting with the “roots” phase, and ending
with the “release” phase) after the previous cycle ends and if a parameter-defined
quantity of memory in bytes has been allocated.

While pauses of the application are minimized when using a concurrent garbage
collector, the application execution can still be stalled. If the application runs out
of memory to allocate into, it must pause until garbage collection frees up enough
memory for it. Jikes’ collector then transitions into a stop-the-world mode (shown
on the right in Figure 3.1 as the “scan” phase that makes collection slower). This
STW pause can have a large performance cost, especially because bookkeeping work
must be performed to transition from the concurrent to the STW mode, and switching
threads could also cause cache perturbation.

21



Chapter 3 - GC-Criticality-Aware Scheduling on Heterogeneous Multicores

Threads
a0a1a2a3 g0g1g2g3

ap
p

lic
a

ti
o

n
book-keeping 

pause ro
o

ts
co

n
cu

rr
en

t 
co

lle
ct

io
n

re
le

as
e

Threads
a0a1a2a3 g0g1g2g3

ap
p

lic
a

ti
o

n

book-keeping 
pause ro

o
ts

collection
pause

sc
a

n
re

le
as

e

    Fast collection   Slow collection

Ph
as

es
 o

ve
r 

ti
m

e

P
h

as
es

 o
ve

r 
ti

m
e

co
n

cu
rr

en
t 

co
lle

ct
io

n

Figure 3.1: Threads and phases of application execution using Jikes’ concurrent
collector, with the optional ‘scan’ pause (right) if concurrent GC threads cannot keep
up with application allocation.

3.3.2 Garbage Collection on Heterogeneous Multicores

While some prior work [24, 59] has explored the behavior of managed language
services, including garbage collection, on heterogeneous cores, they have focused on
optimizing energy. They found that GC can be put on a smaller core, or a scaled-
down big core, in order to save energy. Both prior works argue that GC does not
have instruction-level parallelism, and uses a lot of memory bandwidth. Another
work [107] explored separating GC threads to another socket and scaling down the
frequency, revealing that when GC threads in particular are scaled down, there is an
overall increase in execution time.

In this chapter, we focus on minimizing the execution time of managed language
applications running on a heterogeneous multicore through scheduling. If garbage
collection is performed in STW mode, it is obvious that it is critical (i.e., holding up
the progress of the application), and thus should be transferred to the big core, even
if the heterogeneous system has limited big core resources. However, the problem is
more complex with a concurrent collector that runs alongside the application, which
has to coordinate during allocations and writes to references. Furthermore, the GC
and application compete for core and memory resources. Of course the application’s
progress is most critical; however, if GC has to stop the application to finish scanning
the heap, it is on the critical path. The criticality of concurrent GC depends on how
fast the application is using memory (including its allocation rate and object sizes and
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Figure 3.2: Total execution time increase when concurrent GC threads are run on
small versus big cores, with each other thread always pinned to its own big core. Four
multi-threaded applications are GC-critical, while the others are GC-uncritical.

lifetimes), and how fast the collector is able to free up memory. We aim to design a
scheduler that responds to GC criticality by receiving hints from the managed runtime,
dynamically adapting the GC’s share of big core cycles to achieve the best application
performance.

3.4 Concurrent GC on Heterogeneous Multicores

Before presenting our adaptive scheduling algorithm, we first explore the behavior
of concurrent GC threads on heterogeneous multicores in more detail, to further
motivate the need for an improved scheduling algorithm and to indicate the potential
of heterogeneity. In our first experiment, we assess the behavior of concurrent garbage
collection threads running on different core types, small versus big. We use two GC
threads (as mentioned in Section 3.3.1, this means that there are two concurrent and
two STW threads); we also pin threads to cores, and set the number of cores equal
to the number of threads. To assess GC’s behavior on the different core types, we
compare a run using eight big (out-of-order) cores for all threads to a run using six big
cores for all non-GC and STW GC threads and two small (in-order) cores for the two
concurrent GC threads (see Section 3.6 for more methodological details).

Some multi-threaded benchmarks exhibit GC criticality, while other benchmarks
do not. Figure 3.2 shows the percentage increase in total application execution time
when concurrent GC threads are run on small versus big cores, normalized to when all
GC threads are on the big cores. Figure 3.2 shows that the execution time difference
can go up to 18% for pmd2. All but one four-threaded application, and two two-
threaded applications, have a large difference in execution time, which corresponds
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Figure 3.3: The CPI stacks of only the application threads and of the concurrent
garbage collector (rightmost bars) when run on big (left bar) and small (right bar)
cores. Concurrent GC threads exploit more ILP on the big core, nearly halving the
CPI base component.

with an increase in the time spent in stop-the-world mode. On the other hand, most
single-threaded, and few multi-threaded, benchmarks (antlr, bloat, fop, luindex, avrora,
lusearch-fix2, sunflow2, xalan2, and sunflow4) see no execution time difference. antlr
sees a small execution time change because the concurrent GC time has grown. We
find that avrora and sunflow, despite having many application threads, are compute-
intensive, and do not spend much time performing garbage collection. We call these
nine left-most benchmarks GC-uncritical. The six right-most benchmarks: pmd2,
lusearch2, lusearch-fix4, xalan4, pmd4, and lusearch4, have a large execution time
difference when concurrent GC threads run on the small versus big cores; i.e., they
exhibit GC criticality during execution.

Scheduling concurrent garbage collection on small cores slows down GC-critical
benchmarks. The large difference in execution time for the GC-critical benchmarks
when concurrent GC threads run on small cores is due to longer stop-the-world pauses.
These longer pauses are due to more optional “scan” pauses, as shown on the right in
Figure 3.1. We find that other STWphases, “roots” and “release” are relatively short on
average. What increases execution time substantially is when the concurrent collection
threads cannot scan and free memory in time before an application allocation request
fails, and the world must be stopped for GC threads to finish scanning the heap. This is
more likely to happen in multi-threaded benchmarks, where many threads are rapidly
allocating memory, which increases the amount of GC work and time [40]. Avoiding
the critical and crippling STW “scan” phases is key to improving GC, and therefore
overall application performance.
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Concurrent garbage collection exploits ILP on the big core. To better understand
why concurrent GC benefits from running on a big core for theGC-critical benchmarks,
we present the CPI stacks [45] for the application threads versus the concurrent garbage
collection threads in Figure 3.3 when running on big versus small cores.

To isolate application threads’ behavior on the different core types, we run these
threads on all big versus all small cores. Each stack shows the base component, rep-
resenting committed instructions and useful work done, and the memory components,
including time waiting for cache and memory accesses. The total cycles per instruction
is the sum of the base and the memory components. We find that the concurrent GC
threads (rightmost bars called “Conc GC”) benefit substantially from running on the
big out-of-order versus the small in-order core, with the benefit coming primarily from
a substantial reduction in the base component. This suggests that the out-of-order
core is able to exploit instruction-level parallelism (ILP) in the concurrent GC threads,
hiding instruction latencies and inter-instruction register dependencies. While the
collector stacks show a large memory component, larger than that of our applications,
we observe there is limited memory-level parallelism (MLP), as there is little change
in the memory component between the big and small core runs.

3.4.1 Generalizing to Different Garbage Collectors

Wewant to demonstrate that GC criticality is not just a function of theGC algorithm
we are using. Thus, we perform experiments analyzing the behavior of Jikes RVM’s
best-performing production collector on both big and small cores to show that GC in
general can benefit from out-of-order processing. Immix is a generational, stop-the-
world collector. We run the Immix collector with two threads pinned to two separate
cores on the Sniper simulator, and other experimental setup details (such as heap size)
are the same as in the concurrent GC experiment. We always place application threads
on out-of-order cores. Figure 3.4 shows the percentage increase in total execution
time from running the Immix collector threads on in-order versus out-of-order cores.
The benchmarks identified as GC-critical when running with the concurrent collector
(on the right) also see an increase in execution time when Immix runs on the small
cores: up to 15%. We also see a large execution difference for xalan2 with the stop-
the-world collector. The overall conclusion is that garbage collection exhibits ILP and
thus benefits from running on a big out-of-order core in a heterogeneous multicore
machine.

To further show that GC criticality exists in other environmental setups as well, we
perform experiments with another JVM, OpenJDK. We run the DaCapo benchmarks
with OpenJDK’s concurrent collector on real hardware, and use frequency scaling.
The results show that the same benchmarks that exhibit GC criticality with Jikes also
show GC criticality with OpenJDK.
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Figure 3.4: Total execution time increase when STW GC threads are run on small
versus big cores, with each other thread always pinned to its own big core. The
production garbage collector also benefits from out-of-order execution.

3.5 GC-criticality-aware Scheduling

Our adaptive scheduling algorithm measures GC criticality during run-time and
dynamically adjusts the GC’s priority to run on the big core(s) based on feedback
about STW pauses, particularly detrimental scan pauses, incurred by the concurrent
collector. The algorithm is reactive, but tries to keep GC threads on the small core(s)
when GC is not critical, to let application threads use the big core cycles, while sharing
big core time slices between the GC and application threads when GC is critical.

3.5.1 Base Schedulers

Before describing the GC-criticality-aware scheduler in more detail, we first revisit
previously proposed schedulers on which we build and to which we compare. We
discuss two such schedulers: one called gc-on-small that keeps concurrent GC threads
on small core(s), and a second we call gc-fair that gives all threads equal time on
the big core(s). The first scheduling approach, gc-on-small, is patterned after the
recommendations of previous research to always put GC threads on small cores for
better energy usage [24]. We use this previously proposed scheduler as our baseline.
The second, gc-fair, uses the algorithm proposed in [122], which was devised for native
multi-threaded workloads, and was not previously evaluated for managed language
workloads. This scheduler gives all runnable threads an equal percentage of time
on the big core in a round-robin manner. Each time slice, the thread with the least
cumulative big core time is picked to move to a big core. This implies that with four
application threads, gc-fairwould give two GC threads 33% of time slices on big cores,
whereas with two application threads, it would give 50%, and with one, 66%.

The two base schedulers are graphically depicted in Figure 3.5. Each row of boxes
shows a different scheduler, and the columns depict different four-core heterogeneous
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Figure 3.5: Picture depicting two schedulers across heterogeneous architectures using
four application and two GC threads.

architectures. We denote the architecture of a heterogeneous multicore as mBnS,
with m big cores and n small cores. We vary the number of big cores across these
heterogeneous configurations: 1B3S, 2B2S, 3B1S. The contents of each box then
shows which thread would be scheduled on which core, showing scheduling decisions
for the first six time slices. We consider four application threads and two GC threads in
this figure. These algorithms only change the scheduling of the concurrent GC threads
(i.e., g0 and g1 from Figure 3.1), as we always put STW GC threads on the big core(s)
because the application is no longer running. The bottom of Figure 3.5 also depicts
that in these base schedulers, each thread has an affinity to a particular small core to
exploit locality. However, the schedulers will schedule a thread waiting to run on any
available idle core.

The base schedulers both have limitations. gc-on-small keeps the concurrent GC
threads on the small core(s), which may lead to substantial performance losses for GC-
critical applications. gc-fair, on the other hand, takes away big core cycles from the
application thread(s) when schedulingGC on the big core(s), whichmay be detrimental
for GC-uncritical applications.

3.5.2 GC-criticality-aware Scheduler

Developing a scheduling algorithm for concurrentGCon a heterogeneousmulticore
is not trivial. GC criticality is not only a function of the application and system archi-
tecture, including the number of cores, ratio of big to small cores, clock frequencies,
etc. It is also a function of the GC algorithm and heap size. GC criticality is a dynamic
characteristic that is based on the application’s allocation speed versus the collection
speed. An application becomesGC-critical if its threads progress faster, thus allocating
objects faster and needing GC to collect memory faster. Thus, statically determining
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ALGORITHM 1: Our GC-criticality-aware scheduler. Ts is the sampling interval. Imax is
the threshold for the number of consecutive intervals when GC is observed not to be critical
before degrading to a gc-on-small scheduler.
input
:

Ts, Imax

initial scheduler is gc-on-small;
noise-margin = 100 micro seconds;
while true do

wait for an STW pause;
start a new sampling interval;

Tscan =
n
∑

i=1
Tscan(i);

end of a sampling interval;
if scheduler is gc-on-small then

if Tscan ≥ noise-margin then
new scheduler is gc-boost;

end
end
if scheduler is gc-boost then

if Tscan ≥ noise-margin then
zero-scan-intervals = 0;
upgradeGCBoostState();

end
if Tscan < noise-margin then
degradeGCBoostState();
zero-scan-intervals ++;
if zero-scan-intervals = Imax then

new scheduler is gc-on-small;
end

end
end

end

GC criticality for a particular application run, and choosing between gc-on-small and
gc-fair is not enough. We need an adaptive GC-criticality-aware scheduling algorithm
that is robust across system architectures and workload execution variations.

The fundamental principle and key insight of our adaptive scheduling algorithm
is to schedule collector threads on small cores unless GC is currently critical to the
application’s progress; if GC is critical, we give GC threads some big core cycles,
and if it remains critical, we continue to give GC more big core cycles so that it can
keep up with the application and does not need to stall to clean up memory during a
long stop-the-world pause. Our dynamic algorithm to schedule GC on heterogeneous
cores is shown in Algorithm 2. We always start with the gc-on-small scheduler. We
use the notion of a sampling interval (Ts) during which we profile the behavior of the
garbage collector, measuring the crippling STW scan time in particular, which we aim
to reduce with this algorithm. We then react to that in the next time interval, giving
GC threads more big core cycles if they incurred STW scan time, and fewer cycles if
there was none. Note that the mandatory STW pause (shown in Figure 1 as “roots”),
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Figure 3.6: A single sampling interval in our GC-criticality-aware scheduler.

Table 3.1: GC boost states, updated/degraded by our algorithm.
State Q(t): number of big core

quanta for thread t

P0 Q(g0) = 1 ms, Q(g1) = 1 ms

P1 Q(g0) = 2 ms, Q(g1) = 1 ms

P2 Q(g0) = 2 ms, Q(g1) = 2 ms

P3 Q(g0) = 3 ms, Q(g1) = 2 ms

P4 Q(g0) = 3 ms, Q(g1) = 3 ms

marks the beginning of a new sampling interval.

A single sampling interval is shown in Figure 3.6, and each interval begins when
the application encounters an STW pause. The managed runtime’s memory manager
communicates the beginning and end of any STW scan pause to the scheduler (i.e.,
the extra solid lines for threads g2 and g3 on the right in Figure 3.1). The scanning
pause is only encountered when the concurrent GC could not keep up with application
allocation, indicating GC criticality. During a particular sampling interval, we sum up
all the STW scan pauses (Tscan). If Tscan is greater than a noise-margin (100µs), the
scheduler switches from gc-on-small to gc-boost scheduling. Initially, gc-boost gives
the GC threads equal priority with the application threads to run on the big core(s),
effectively being the same as gc-fair. If, in subsequent sampling intervals, scan time
continues to be significant, we further increase the priority of the GC threads, giving
them even more time slices on the big core(s), thus implicitly slowing some application
threads. If, on the other hand, in subsequent intervals scan time is zero, i.e., no GC
criticality, we decrease GC’s big core priority to give more time slices to application
threads. If no scan time is observed for several intervals, we put GC threads back to
run only on small cores. In this way, we continuously profile the garbage collector and
update our scheduling policy, adapting to application phase behavior.

We regulate GC thread priority using the states depicted in Table 3.1. Our schedul-
ing time slice is 1 ms, and thus when initially transitioning to gc-boost scheduling,
we are in state P0 where each GC thread gets a 1 ms time quantum on the big
core in a round-robin fashion with application threads. When Algorithm 2 calls
upgradeGCBoostState to boost GC threads’ priority, our algorithm goes up one state,
giving one GC thread yet another big core time slice. We allow GC threads to go
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Table 3.2: Simulated system parameters.
Component Parameters

Processor 1 socket, 4 cores, 2.66 GHz

Big core 4-issue, out-of-order, 128-entry ROB

Small core 4-issue in-order, stall-on-use

Cache hierarchy Private L1-I/L1-D/L2, Shared L3

Capacity: 32 KB/32 KB/256 KB/16 MB

Latency : 2/2/11/40 cycles

Set-associativity: 4/8/8/16

64 B lines, LRU replacement

Coherence protocol MESI

Memory controller FR-FCFS scheduling

30.4 GB/s bandwidth to DRAM

up to state P4 which gives each GC thread 3 ms on a big core when it is scheduled
there. Similarly, if our algorithm discovers insignificant scan time, or that GC is not
critical, it calls degradeGCBoostState, which decreases GC threads’ priority on the big
core(s) by going down one state. We also provide a counter, zero-scan-intervals, that
is incremented every consecutive interval we see no GC criticality, and if it reaches
a certain threshold, Imax, we switch back to the gc-on-small scheduler, to maintain
energy efficiency.

3.6 Experimental Setup

For evaluating GC-criticality-aware scheduling, we use the experimental setup
outlined in this section.

Simulator We perform our experiments on a simulator to evaluate scheduling
algorithms across a range of potential heterogeneous architectures more easily. We use
Sniper version 4.0, a parallel, high-speed and cycle-level x86 simulator for multicore
systems [25]. We use the most detailed core model in Sniper. Because Sniper is a user-
level simulator, it was extended by [108] to correctly run a managed language runtime
environment including dynamic compilation, and emulation of frequently used system
calls. Java applications are run to completion in our experiments. For reported energy
results, we use McPAT version 1.0 [54] with a 22nm technology node.

Processor architecture We simulate a single-ISA heterogeneous multicore proces-
sor consisting of big out-of-order and small in-order cores, as described in Table 3.2.
We set both core types to run at the same clock frequency, although we explore a small
core with reduced frequency in Section 3.7.3. The core types also have the same cache
hierarchy, i.e., each core has private L1 (32 KB) and L2 (256 KB) caches; the last-level
L3 cache (16 MB) is shared among all cores. Most of our experiments set the total
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Table 3.3: The heap sizes we use for running our benchmarks from the DaCapo suite
and execution time with Sniper using a big core per thread.

Benchmark Heap size Execution

[MB] time (ms)

avrora6 98 1,250

luindex 44 499

fop 80 322

antlr 48 811

pmd4 98 1,150

pmd2 98 950

sunflow2 108 5,917

sunflow4 108 3,065

bloat 66 4,633

xalan2 108 1,793

lusearch.fix2 68 1,779

xalan4 108 1,136

lusearch.fix4 68 1,134

lusearch4 68 4,431

lusearch2 68 4,878

number of cores to four, and we vary the ratio of big and small cores, exploring the
following configurations: 1B3S, 2B2S, 3B1S. We explore configurations with a total
of six cores in Section 3.7.4.

JVM-scheduler communication Our main contribution is a dynamic scheduler for
heterogeneous processors that reacts to signals from the software’s memory manager
about GC criticality. Therefore, we modify Jikes’ garbage collector to send signals
to the simulator, as done by [108], using a magic instruction. During execution, the
memory manager sends signals when STW GC threads start or stop, and in particular
when they perform scanning. The thread scheduler, which is implemented in the
simulator, then adapts its schedule. In all of our schedulers we use a time slice of
one millisecond. The overhead of migrating threads between cores is accounted for,
including restoring architecture state (we use a fixed cost of 1000 cycles), plus cache
warming effects.

Java workloads We evaluate ten Java benchmarks from the DaCapo suite [14] that
we can get toworkwith Jikes RVM3.1.2 [4]. We use six benchmarks from theDaCapo-
9.12-bach benchmark suite (avrora, luindex, lusearch, pmd, sunflow, xalan) and three
benchmarks from the DaCapo 2006 benchmark suite (antlr, bloat, and fop). We also use
an updated version of lusearch, called lusearch-fix (described by [129]), that eliminates
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needless allocation. Four benchmarks, antlr, bloat, fop, and luindex, are single-threaded
while the remaining benchmarks are multi-threaded. The avrora benchmark uses
a fixed number (six) of application threads, but has limited parallelism [40]. For
the remaining multi-threaded benchmarks, we perform evaluation with two and four
application threads, resulting in a total of fifteen workloads (we place the number of
application threads after the benchmark’s name). We vary the number of threads to
explore the space because, as mentioned by [40], the amount of GC work and time
increases as the number of application threads increase, and thus, GC can become
more critical. Table 3.3 lists our benchmarks, the heap size we use in experiments
(reflecting moderate, reasonable heap pressure [108]), and their running time when
using Sniper with one big core per thread.

Concurrent collector The concurrent garbage collector in Jikes RVM is an im-
plementation of the mark-sweep snapshot-at-the-beginning algorithm described by
[130]. Jikes’ concurrent collector runs with n stop-the-world threads and n concurrent
threads, where n is a command-line parameter. In our work, we set n = 2, as previous
research [40] shows that Jikes performs best with two GC threads, even with single-
threaded benchmarks, and it does not scale well with GC thread counts above two.
Because the application is not running during STW mode, in this work we always
schedule the STW GC threads on the big core(s). If there is only one big core, we
schedule one STW thread on the big core and leave the other on the small core because
GC is a work-stealing algorithm. We use a default heap size specified in Table 3.3,
which we vary in a sensitivity study in Section 3.7.5. Unless otherwise stated, a
concurrent GC cycle is triggered to begin after every 8MB of allocation (after the
previous cycle finishes).

3.7 Experimental Evaluation

We now evaluate our GC-criticality-aware scheduler in terms of performance
and energy-efficiency, across a range of heterogeneous multicore processors and
configurations.

3.7.1 Performance

Figure 3.7 presents per-benchmark performance results for our adaptive, GC-
criticality-aware scheduler on three heterogeneous architectures, also comparing to the
execution time reduction of the gc-fair scheduler. In all results, we normalize to when
GC is run on small cores (gc-on-small). The graphs present our adaptive scheduler
results using different algorithm parameter configurations, with a sampling interval of
100 ms and Imax of 8, as well as an interval of 50 ms and Imax of 4. Our graphs present
averages per category: for benchmarks identified as GC-uncritical, GC-critical, and
then a total average across all benchmarks.
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(c) 3B1S
Figure 3.7: Execution time reduction (%) of adaptive and gc-fair schedulers compared
to gc-on-small on three heterogeneous architectures. Our adaptive scheduler is robust
across architectures.
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GC-criticality-aware scheduling performs well across heterogeneous architec-
tures, greatly improving the performance of GC-critical applications over gc-
on-small Looking at individual benchmark trends in Figure 3.7, we see the same six
benchmarks that Figure 3.2 identified as GC-critical as those that benefit most from our
adaptive scheduling algorithm. We see a clear trend that performance gains increase
as we add more big cores. For the three heterogeneous architectures, 1B3S, 2B2S
and 3B3S, we observe an average performance improvement of 2.9%, 7.8%, and 16%,
respectively, for the GC-critical benchmarks. The reason for this increase is that with
more big cores, application threads run, and thus allocate, faster. GC becomes more
critical, hence boosting the priority of GC through our GC-criticality-aware scheduler
becomes more beneficial.

GC-criticality-aware scheduling improves over gc-fair for heterogeneous multi-
cores with limited big core resources On a 1B3S architecture, gc-fair severely
degrades performance for GC-uncritical benchmarks, whereas our adaptive scheduler
is on-average performance-neutral. Furthermore, for GC-critical benchmarks, our
algorithm generally sees slightly higher performance improvements than gc-fair, with
some results being similar or slightly lower due to the reactive nature of our scheduler.
We see larger reductions in execution time when our algorithm responds to phase
behavior about GC criticality and boosts the number of big core cycles given to GC
threads over gc-fair.

We show one such case in Figure 3.8 for pmd4 on 1B3S. The x-axis shows each
sampling interval, and the y-axis shows the portion of that 100 ms interval that was
measured as being stop-the-world, as well as the STW time just for scanning. In the
2nd interval, STW scan time is significant, hence the scheduler switches to gc-boost
in the next interval. As STW scan time keeps on being significant, the GC boost state
(shown at the top) is increased up to P4, giving more big core cycles to GC threads.
GC threads continue to be critical, as they cannot scan the heap fast enough to keep up
with application allocation. We see that in interval 9, GC finally becomes non-critical,
but again becomes critical in intervals 10 and 11. This case clearly illustrates the need
for boosting GC priority beyond gc-fair while adapting to GC criticality.

GC-criticality-aware scheduling greatly reduces the negative impact of gc-fair for
the GC-uncritical applications On average across all benchmarks, while gc-fair
increases total average execution time by 4% on a 1B3S architecture, our adaptive
algorithm decreases execution time slightly, by 1%— a net performance improvement
of 5% over gc-fair. We see the same trend on a 2B2S architecture, noting that our
adaptive algorithm improves performance by about 3%. On a 3B1S architecture, the
gc-fair scheduler can improve performance by about 5% over gc-on-small; however, it
also degrades performance severely by over 15% for sunflow2. Our adaptive algorithm,
on the other hand, improves performance on average by over 6%, and is more robust
across applications (with no negative outliers).

Both antlr and bloat exhibit slowdowns with our adaptive algorithm on a 1B3S
architecture. For antlr, using the larger sampling interval size of Ts = 100 and the
large degradation threshold of Imax = 8 particularly hurts performance. We explain
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Figure 3.8: STW phase behavior over time for pmd4 on 1B3S with our adaptive
scheduler, Ts = 100ms and Imax = 8.
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Figure 3.9: STW phase behavior over time for antlr on 1B3S with our adaptive
scheduler, Ts = 100ms and Imax = 8.

antlr’s behavior in Figure 3.9. In antlr’s 1st interval, it has a significant STW scan
time, and thus our adaptive algorithm switches to the gc-boost scheduler. When using
a large Imax like 8, the scheduler remains set to gc-boost until it sees 8 consecutive
intervals where GC is not critical, meanwhile taking many big-core cycles away from
the application. Because antlr is such a short-running benchmark, it never switches
back to the gc-on-small scheduler, and thus performance is degraded because antlr is
in fact GC-uncritical. Figure 3.7 shows that with more conservative values, Ts = 50,
Imax = 4, antlr’s performance degradation reduces.

GC-criticality-aware scheduling is robust to its parameter settings Figure 3.10
evaluates the impact of different parameters on our algorithm: with a sampling interval
of 100ms and an Imax of 2, 4, and 8, then setting Imax to 4 and using a sampling interval
of 50 ms. We present averages across heterogeneous architectures per benchmark
category, showing little performance variation across parameters. However, we find
that, as shown in Figures 3.7 and 3.10, larger Ts and Imax values are not as beneficial for
an architecture with only one big core. Big core cycles are more precious, i.e., taking
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Figure 3.10: Average percentage execution time reduction across benchmarks per
category for different Ts and Imax values. Our GC-criticality-aware scheduler is robust
across its parameter settings. Small values of Ts and Imax are better performing with a
single big core, whereas larger Ts and Imax are better with more big core resources.

them away from the application thread(s) hurts total performance more, especially for
the short-running antlr benchmark (as shown in Figure 3.9). We therefore use Ts = 50
and Imax = 4 for our scheduler on the 1B3S architecture to more conservatively use
the big core, while for all other heterogeneous configurations, we use the default of
Ts = 100 and Imax = 8.

3.7.2 Energy Efficiency

While GC-criticality-aware scheduling improves performance, it also improves
energy-efficiency for GC-critical applications. We use the energy-delay product (EDP)
as a metric for quantifying the energy-efficiency of GC-criticality-aware scheduler.
EDP is the product of energy consumed by an application and its execution time,
and thus emphasizes both energy-efficiency and performance. Figure 3.11 presents the
reduction in energy-delay product across benchmarks and heterogeneous architectures,
relative to gc-on-small which was designed for energy-efficiency [24]. Our scheduler
beats gc-on-small by a significant margin—20% on average—for the GC-critical
benchmarks on the 3B1S architecture. The key insight here is that when applications
will be stalled due to slow collection, giving GC time on the big core can be more
energy-efficient than always leaving it on small cores. GC-uncritical benchmarks, on
the other hand, are affected neutrally in terms of energy efficiency, except for antlr
which sees a slight increase in EDP, for the reasons explained with Figure 3.9.

3.7.3 Scaling Small Core Frequency

While the previously-presented results are more conservative due to the big and
small cores running at the same frequency, we now explore scaling down the frequency
of the small core. Figure 3.12 presents the results of our GC-criticality-aware scheduler
as we change the small core’s frequency from the default of 2.66GHz to 1.66GHz
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Figure 3.11: Percentage reduction in energy-delay product. By improving perfor-
mance, GC-criticality-aware scheduling also improves energy efficiency over keeping
GC threads on small cores.
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Figure 3.12: Percentage execution time reduction for 3B1S when scaling down the
frequency of the small core. GC-criticality-aware scheduling improves performance
more when small cores run at a lower frequency than big cores.

with a 3B1S architecture. When the small core is run at a lower frequency, even some
of the benchmarks categorized as GC-uncritical exhibit GC criticality in their runs.
This happens because application threads run at a higher frequency compared to GC
threads, which default to be on the small core and thus cannot keep up with allocation
demand. With the 1.66GHz small core, antlr, bloat, lusearch-fix2, and xalan2 see
performance improvements that they did not see with 2.66GHz. Furthermore, all six
GC-critical applications see even larger execution time reductions with the small core’s
scaled-down frequency, leading to the GC-critical average of 20% better performance.
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Figure 3.13: Percentage execution time reduction of our adaptive scheduler for various
heterogeneous architectures with six total cores and four-threaded applications. GC
criticality still exists when thread count equals core count and GC-criticality-aware
scheduling still improves performance.

3.7.4 Larger Core Counts

Figure 3.13 presents performance results for heterogeneous architectures with six
total cores, varying the number of big cores: 1B5S, 2B4S, 3B3S. Our scheduler uses its
default parameters of Ts = 100 and Imax = 8. We present results for only four-threaded
applications as then the number of threads and cores are equal, modeling a non-over-
subscribed system. With equal numbers of threads and cores, all threads have the
opportunity to progress, and thus we see less GC criticality in these configurations.
However, while gains are modest, particularly for 1B5S, GC criticality does still exist
for these four-threaded applications (besides sunflow4). Particularly with more big
cores to divide between application and GC threads, GC-criticality-aware scheduling
achieves performance improvements.

3.7.5 Heap Size Sensitivity Study

We now show experiments varying the heap size. Figure 3.14 plots execution
time reductions for our adaptive scheduler with a smaller and larger heap: 0.75× and
1.5× the default (in Table 3.3) used in other experiments, for the 3B1S architecture.
Our algorithm performs well across heap sizes. As when the small core’s frequency
is scaled down, we see that benchmarks previously labeled GC-uncritical, such as
luindex, bloat, lusearch-fix2, and xalan2, exhibit GC criticality when the heap size is
reduced, and have significant performance benefits from using our dynamic scheduler:
up to 18%. For three GC-critical applications, we also see higher improvements with
a smaller heap size, indicating that our scheduler will be more beneficial with a more
constrained memory system. Naturally, when the heap grows, the application has more
space into which to allocate, and thus does not encounter GC STW scan phases as
much. GC-critical benchmarks, however, still realize performance improvements at the
larger heap size: on average 5%. We also performed experiments using a larger trigger
value (32MB compared to our default 8MB), which initiates concurrent collection
cycles less frequently. The results show that as expected, similar to using larger
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Figure 3.14: Percentage execution time reduction of our adaptive scheduler with
varying heap sizes (ratios of those in Table 3.3) on 3B1S. GC-criticality-aware
scheduling performs well across heap sizes.

heap sizes, GC criticality is reduced because collection runs concurrently with the
application less. However, GC-critical benchmarks still experience scan pauses, and
ourGC-criticality-aware scheduler still realizes significant performance improvements.

3.8 GC Criticality in OpenJDK

In this section, we demonstrate that some applications still exhibit GC criticality in
a different environment, namely, when run on top ofOpenJDK6HotSpot JVMusing its
Concurrent Mark Sweep (CMS) collector. We perform experiments on a real machine
using frequency scaling. Unlike Jikes’ concurrent collector, which is not generational,
OpenJDK’s CMS collector is generational. We perform experiments on an eight-core
machine with two Intel Xeon X5570 processors. We modify OpenJDK to pin threads
that perform the GC-related tasks to a separate socket (Socket-GC). All other threads,
including other service threads, run on their own socket (Socket-App). These threads
are easily identified in OpenJDK by noting their ThreadType attribute (pgc-thread and
cgc-thread). We run multithreaded CMS with two concurrent collection threads and
two stop-the-world threads. We use the same heap size as before. The frequency of
each socket can be scaled between 1.6 GHz and 3.0 GHz. We fix the frequency of
the socket running the application threads and the JVM service threads (other than the
GC threads) to 3.0 GHz (Socket-App). We run benchmarks from the DaCapo suite
twice, first running the Socket-GC at 3.0 GHz, and then at 1.6 GHz. Figure 3.15 plots
the percentage increase in execution time when GC threads run at 1.6 GHz versus 3.0
GHz. Some benchmarks do not suffer from running the GC socket at 1.6 GHz, which
is advantageous in terms of energy-efficiency. However, seven benchmarks observe
a more than 4% increase in execution time, and up to 8%. All benchmarks (to the
right) that we identified as GC-critical when running with Jikes’ concurrent collector
are also GC-critical with OpenJDK’s concurrent collector. Our GC-criticality-aware
scheduler aims to mitigate this performance loss by preemptively boosting concurrent
GC threads to have more big core machine resources when they are observed to be

39



Chapter 3 - GC-Criticality-Aware Scheduling on Heterogeneous Multicores

0

2

4

6

8

%
 i
n
c
re

a
s
e
 i
n
 e

x
e
c
u
ti
o
n
 t
im

e
 

Figure 3.15: Total execution time increase for OpenJDKwhen the GC threads, isolated
on a separate socket, are run at 1.6 GHz versus 3.0 GHz. Results are with OpenJDK’s
concurrent generational mark-sweep collector.

critical.

3.9 Summary and Interpretation

In this chapter, we study how to schedule managed language applications, and
concurrent garbage collection in particular, on single-ISA heterogeneous multicores.
We demonstrate, contrary to prior work, that concurrent garbage collection can sig-
nificantly benefit (up to 18%) from out-of-order versus in-order execution. Moreover,
we find that applications exhibit GC criticality when the application allocation rate
exceeds the collection rate; in this case, it is then beneficial to take big core cycles
from the application to give to concurrent GC threads so that they can collect the
heap faster, avoiding costly stop-the-world pauses that make GC critical. These results
motivate our novel adaptive scheduling algorithm that dynamically sets the GC’s
priority for getting big core cycles based on GC criticality signals from the managed
runtime. GC-criticality-aware scheduling improves performance by 2.9%, 7.8%, and
16% and energy-delay product (EDP) by 3.5%, 10.7% and 20% for a set of GC-critical
benchmarks when using one, two, or three big cores with four total cores, respectively;
while being performance-neutral for GC-uncritical applications.

Our scheduling algorithm is reactive, adapting to benchmark phase behavior,
dynamically changing GC’s priority on the big core(s) while the benchmark runs.
For phases and executions where GC is uncritical, our algorithm keeps GC threads
on the small core(s), achieving similar energy efficiency and performance as when
using a gc-on-small scheduler. For GC-critical phases, our algorithm boosts the GC
threads’ priority on the big core(s), beyond gc-fair if needed, balancing cycles between
application and GC threads.

GC-criticality-aware scheduling is robust across core counts, big to small core
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ratios, heap sizes, and clock frequency settings. Our results indicate that the im-
portance of GC-criticality-aware scheduling increases as GC becomes more critical.
Furthermore, GC can become critical for a number of reasons such as with applications
running with more threads, on heterogeneous multicores with more big cores, with a
smaller heap size, and/or with small cores running at a lower frequency. For popular
managed applications, making schedulers aware of GC criticality leads to dynamically-
optimized application performance and energy on future heterogeneous architectures.

The application and concurrent collection threadsmanifest thewidely used producer-
consumer pattern in concurrent programming. One class of threads produces informa-
tion (mutator or application) and another class of threads consumes the information
(concurrent collection). Producers and consumers communicate via shared queues.
The insights in this research generalize to applications that use the producer-consumer
pattern. Slow producer threads can eventually stall the consumer threads and vice-
versa. Communicating the relative progress of producers and consumers to the OS
scheduler can lead to better scheduling decisions on a hetrogeneous multicore.
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Chapter 4

DVFS Performance Prediction
with DEP+BURST

4.1 Introduction

In modern times, improving the energy-efficiency of computer systems is of prime
importance. One way to manage the processor’s power and energy consumption
is using Dynamic Voltage and Frequency Scaling (DVFS). DVFS allows one to
simultaneously change a processor’s voltage and frequency. To effectively utilize
DVFS,we need the ability to predict its performance impact on applications at run-time.
AccurateDVFSperformance prediction enables different opportunities for reducing the
energy consumed by our applications. In particular, two possibilities include reducing
the energy consumption while honoring a user-specified performance constraint, or
running applications at the frequency that minimizes total energy consumption.

During the last decade, significant progress has been made in understanding and
predicting the performance impact of DVFS for native sequential applications written
in C and C++, see for example [44, 106, 70, 92, 127, 31]. However, prior work lacks
a DVFS predictor for multithreaded applications, especially those written in managed
languages, such as Java.

Existing DVFS predictors for sequential applications view a processor core as
either executing instructions or waiting for memory accesses to return. The time
spent executing instructions scales with frequency, whereas the time spent waiting
for memory does not. Although this view suffices for sequential applications, it
is not sufficient for multithreaded applications. For one, synchronization activity in
multithreaded applications leads to inter-thread dependencies. Consequently, speeding
up or slowing down one thread using DVFS impacts the execution of dependent
threads, leading to complex interactions which affect overall application performance.
A DVFS predictor for multithreaded applications therefore needs to take into account
synchronization when predicting the total execution time at the target frequency.

Managed applications, which run on top of a virtual machine, exhibit even more
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inter-thread dependencies than native applications. Service threads, such as those that
perform garbage collection and just-in-time compilation, run alongside the application
threads [24, 104]. Application and service threads need to synchronize from time to
time, leading to increased synchronization activity, which further complicates DVFS
performance prediction.

An additional complication is that managed applications issue bursts of store
operations. These occur for two reasons: due to garbage collection activities that
move memory around, and due to the zero-initialization upon fresh allocation that
many managed languages, such as Java, require to provide memory safety. Current
predictors ignore store operations assuming they are not on the critical path. We find
that ignoring store operations leads to incorrect DVFS performance prediction for
managed applications.

In this work, we propose DEP+BURST, a novel DVFS performance predictor for
managed multithreaded applications. DEP+BURST consists of two key components,
DEP and BURST. DEP decomposes the execution time of a multithreaded application
into epochs based on the synchronization activity of both the application and service
threads. We predict the duration of epochs at a different frequency, and aggregate
the predicted epochs while taking into account inter-thread dependencies to predict
the total execution time at the target frequency. A crucial component of DEP is its
ability to predict critical threads across epochs. BURST identifies store operations
that are on the application’s critical path, and predicts their impact on performance
across different frequency settings. Based on a run at the baseline frequency of 1 GHz,
DEP+BURST achieves an average absolute error of 6% when predicting performance
at a 4 GHz target frequency, for a set of multithreaded Java applications from the
DaCapo suite [14]. DEP+BURST’s error is a significant decrease from the 27% error
achieved by M+CRIT, a multithreaded extension of the state-of-the-art CRIT [92]
performance predictor.

We integrate DEP+BURST into an energy management framework for managed
applications. We first use the energy manager to reduce the processor’s energy
consumption by tolerating a slowdown in performance compared to running at the
highest frequency. Our energy manager is able to dynamically select DVFS settings
that result in energy savings in return for a slowdown of the application close to
a user’s expectation. On average, for a user-specified slowdown threshold of 5%
and 10%, our energy management framework reduces energy consumption by 13%
and 19%, respectively, for a set of memory-intensive applications. In a second use
case, the energy manager optimizes for total system energy consumption, including
that of the processor plus DRAM. On average, our energy manager reduces total
energy consumption by 15.6% through dynamically responding to application’s phase
behavior to pick a frequency per time quantum that lowers total system energy. For each
use case, we compare against an oracle scheme that explores all possible frequency
settings, and for a number of benchmarks, we outperform this scheme by exploiting
dynamic phase behavior.

This chapter makes the following contributions:

1. We identify that inter-thread dependencies and store bursts need to be taken into
account to have an accurate performance predictor for multithreaded managed
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applications.

2. We introduce a performance predictor, DEP+BURST, that significantly lowers
the error of accurately predicting performance when scaling the frequency.

3. We perform two case studies with an energy manager that 1) targets reducing
the processor’s energy consumption by slowing down a program not more than a
user-specified slowdown threshold, and 2) optimizes total system energy, taking
memory’s energy consumption into account.

4. We perform experiments exploring the scalability of DEP+BURST, the ramifica-
tions of having a coarser frequency step setting, and the execution time overhead
of running the proposed DVFS predictor.

Having an accurate performance predictor for DVFS is crucial to maintaining
good performance, especially for multithreaded managed applications, while reducing
energy consumption.

4.2 Related Work

In this section, we discuss three areas of related work. With this context, the next
section discusses background on existing DVFS performance predictors.

4.2.1 DVFS Performance and Power Prediction

Performance and power prediction is either done using analytical models or
using regression models. Section 4.3 discusses previously proposed analytical DVFS
performance predictors in great detail [45, 106, 70, 92, 127, 113, 31]. These papers
introduce newhardware performance counters specifically for the purpose of predicting
the performance impact of DVFS. Su et al. [116] have recently shown how to implement
the Leading Loads DVFS predictor on real AMD CPUs. In contrast, other works
propose regression models that are built using offline training to predict the power and
performance impact of frequency and architectural changes [33, 80, 117]. To build
a regression model, these works leverage existing hardware performance counters to
measure various microarchitectural events.

Deng el al. [36] propose an algorithm to manage DVFS for both the processor
and the memory while honoring a user-specified slowdown threshold. However, this
and many other works on DVFS power management do not consider multithreaded
applications.

In this work, we investigate predicting the performance impact of chip-wide DVFS
settings. Prior work investigates the potential of per-core DVFS to manage the energy
consumption of multithreaded applications [71, 55]. However, we leave this for future
work.
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4.2.2 Scheduling Multithreaded Applications

Recently, there is increased interest in scheduling multithreaded applications on
multicore hardware to optimize performance and energy. The main focus to date
is in identifying and accelerating bottlenecks in multithreaded code, such as serial
sections, critical sections, and lagging threads [10, 118, 66, 65, 39]. Accelerated
Critical Sections (ACS) is a technique that leverages support from the ISA, compiler,
and the large cores on a single-ISA heterogeneous multicore to accelerate critical
sections [118]. Unlike accelerating only critical sections, Bottleneck Identification
and Scheduling (BIS) also targets other bottlenecks that occur during the execution of
a multithreaded application such as serial sections, lagging threads, and slow pipeline
stages [65]. The above works use ISA and compiler support to delimit bottlenecks in
software, and use this information during execution to accelerate bottlenecks. On the
other hand, Criticality Stacks, proposed by Du Bois et al. [39], identify critical threads
in multithreaded applications by monitoring synchronization behavior.

Finally, when running multithreaded applications on heterogeneous multicore
processors, an important goal is to prevent one or more threads from lagging behind
other threads. To this end, Van Craeynest et al. [122] propose a fair scheduler for
multithreaded applications that provides a fair share of the big, out-of-order cores
to each thread in a heterogeneous multicore processor. Akram et al. [3] propose a
GC-criticality-aware scheduler for managed language applications on heterogeneous
multicores.

4.2.3 Energy Management

Prior work has proposed frameworks to manage power, energy and thermals
through DVFS, hardware adaptation and heterogeneity for multithreaded applica-
tions [89, 99, 39]. Although managed code is now ubiquitous and used in many
application domains and run on a variety of hardware substrates, relatively few
works have looked into the energy management of managed applications. Sartor
et al. [107] explored the potential of DVFS for managed applications, teasing apart
the performance impact of scaling the frequency of application and service threads
in isolation. However, their work does not propose an analytical model to quantify
the performance impact. Other works that shed light on different aspects of managed
applications relating to energy consumption include [108, 24, 43].

4.3 Background and Motivation

Chapter 2 provides background on managed languages and garbage collection.
In this section, we first provide background on the state-of-the-art predictor for
sequential applications. We then describe the challenges introduced by multithreading
and managed languages. Finally, we discuss naive extensions to the state-of-the-art
predictor to predict the performance of multithreaded managed applications.
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4.3.1 DVFS Performance Predictors for Sequential Applications

The impact of changing the frequency on application performance is easily un-
derstood by dividing execution time into ‘scaling’ and ‘non-scaling’ components.
The scaling component scales in proportion to frequency; the non-scaling component
remains constant when changing frequency. This simple division of execution time
into scaling and non-scaling components works because changing the processor’s
frequency does not alter DRAM service time, whereas an increase or decrease in
processor frequency has a proportional impact on the rate at which instructions execute
in the core pipeline. The key challenge for accurately predicting the performance
impact of DVFS is due to the out-of-order nature of modern processor pipelines in
which memory requests are resolved while executing and retiring other instructions.
Three DVFS performance predictors have been proposed over the past few years for
sequential applications, with progressively improved accuracy. We now briefly discuss
these three predictors.

Stall Time. The simplest, and least accurate, of the three models is the stall
time model [44, 70], which estimates the non-scaling component by measuring the
time the pipeline is unable to commit instructions. The non-scaling component is
underestimated because it does not account for the fact that instructions may commit
underneath a memory access. The simplicity of this model implies that it is easy to
deploy on real hardware using existing hardware performance counters.

LeadingLoads. Proposed by three different groups around the same time [44, 70, 106],
the leading loads model computes the non-scaling component by accounting for the
full latency of the leading load miss in a burst of load misses. Modern out-of-
order pipelines are able to exploit memory-level parallelism and handle independent
long-latency load misses simultaneously. The leading loads model assumes that each
long-latency load miss incurs roughly the same latency, and hence, for a cluster of
long-latency load misses, the miss latency of the leading load is a good approximation
for the non-scaling component. Recent work shows that the leading loads model can
be deployed on real hardware by using performance counters available on modern
processors [117].

CRIT. A fundamental limitation of the leading loads model is that it does not take
into account that long-latency load misses may incur variable latency, for a variety
of reasons, including memory scheduling, bank conflicts, open page policy, etc. This
leads to prediction inaccuracy for the leading loads model, which is overcome by
CRIT, the state-of-the-art DVFS predictor proposed by Miftakhutdinov et al. [92].
CRIT identifies the critical path through a cluster of long-latency load misses to
model a realistic, variable-latency memory system. CRIT includes an algorithm
to identify dependent long-latency load misses and uses their accumulated latency
as an approximation for the non-scaling component. We will use CRIT as our
DVFS performance predictor for an individual thread. Note that as of today, no
implementation of CRIT exists on real hardware.
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4.3.2 Challenges in DVFS Performance Prediction for Managed
Multithreaded Applications

There are three major challenges for predicting the performance impact of DVFS
for multithreaded managed applications.

Inter-thread dependencies due to multithreading. To protect shared variables, dif-
ferent threads of a multithreaded application use synchronization primitives. Common
examples of synchronization include critical sections and barriers. Synchronization
leads to inter-thread dependencies. No thread is allowed to continue past the barrier
until all threads reach the barrier. The slowest thread determines the barrier execution
time at the target frequency. With a critical section, the progress of a thread waiting for
a lock will depend on how fast the thread currently holding the lock is progressing at
the target frequency. Scaling the frequency of one thread in amultithreaded application
impacts the execution of other dependent threads, affecting overall performance in a
non-trivial way.

Interaction between application and service threads. A managed language execu-
tion engine, such as the Java Virtual Machine (JVM), consists of application threads
and service threads. The most important service threads include garbage collection
and just-in-time compilation. Application and service threads interact with each other.
For instance, a stop-the-world garbage collector suspends the application for a short
duration to traverse a region of memory called the heap, and reclaim memory being
used by objects that are no longer referenced. To estimate the total execution time
at a different frequency, a DVFS predictor thus needs to take the interaction between
application threads and service threads into account.

Store bursts. To provide memory safety, the Java programming language requires
that a region of memory is zero-initialized upon fresh allocation. The process of zero-
initialization leads to a burst of store operations that fill up the processor’s pipeline.
Another source of store bursts is the copying of objects during garbage collection.
Ignoring store operations completely, as prior DVFS predictors do, leads to incorrect
predictions for managed language workloads.

4.3.3 Straightforward Extensions of Prior Work

Before describing our new predictor in the next section, we first present two
straightforward extensions of priorwork to dealwithmultiple threads and, in the second
case, service threads. Wewill quantitatively compareDEP+BURST against these naive
extensions in the results section, and detail why these models are insufficient.

M+CRIT.We call the first predictor M+CRIT (short for multithreaded CRIT), which
is generally applicable to any multithreaded application. M+CRIT uses the intuition
that the execution time of a multithreaded application is determined by the critical
(slowest) thread. We first use CRIT to identify each thread’s scaling and non-scaling
components at the base frequency. We then predict each thread’s execution time at the
target frequency. The thread with the longest predicted execution time is the critical
thread. The execution time of the critical thread is also the total execution time of the
application at the target frequency.
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Figure 4.1: Showing how DEP breaks up a multithreaded application (a) into
synchronization epochs (b) while running at the base frequency. DEP then estimates
per-thread epoch durations at the target frequency, calculates the critical thread per
epoch (c), and accounts for changes in the critical thread across epochs (d).

COOP.We term the second predictor COOP (short for cooperative), which is specific
to Java applications. A typical Java application with a stop-the-world garbage collector
goes through an ‘application’ phase, followed by a ‘collector’ phase. COOP intercepts
the communication between the application and collector threads using signals from
the JVM. Using these signals, COOP is able to distinguish application and collector
phases. Once these individual phases are identified, COOP then uses M+CRIT to
predict the execution time of the individual phases and aggregates the predictions to
obtain a prediction for the total execution time.

4.4 The DEP+BURST Model

We now discuss our new DVFS performance predictor for managed multithreaded
applications in detail.

4.4.1 Overview

Our proposed DVFS predictor estimates the performance of a managed multi-
threaded application in two steps. In the first step, the predictor decomposes execution
time into epochs based on synchronization activity in the application to account for
inter-thread dependencies and the interaction between the application and service
threads. In the second step, the predictor estimates the execution time of each active
thread at a target frequency, taking into account which thread is critical and adjusting
for dependencies with other epochs. Our model, which we call DEP, estimates the
epoch execution time at the target frequency, and aggregates epochs to predict the total
application execution time. To additionally take into account store bursts, we modify
the second step to adjust the calculation of the scaling and non-scaling portions per
thread within an epoch. When accounting for store bursts, we call our full model
DEP+BURST. In the following sections, we first describe DEP, and then BURST.
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4.4.2 Identifying Synchronization Epochs

First, we describe how DEP decomposes execution time into synchronization
epochs. A synchronization epoch consists of a variable number of threads running in
parallel. Two events mark the beginning of a new synchronization epoch: a thread
is scheduled out by the OS and put to sleep, or a sleeping (or newly spawned) thread
is scheduled onto a core. In multithreaded applications, threads typically go to sleep
when access to a critical section is not available, or sleep while waiting at a barrier for
other threads to join.

We identify synchronization epochs by intercepting the futex_wait and futex_wake
system calls. Multithreading libraries such as pthreads use futexes, or fast kernel
space mutexes [47] for handling locking. In the uncontended case, the application
acquires the lock using atomic instructions without entering the kernel. Only in
the contended case does the application invoke the kernel spin locks using the futex
interface. Intercepting futex calls incurs limited overhead (less than 1%) [40].

To understand why futex-based decomposition is necessary, consider the example
of a multithreaded execution in Figure 4.1(a). Two threads t0 and t1 from the same
application are running in parallel. When t1 attempts to enter a critical section, t0 is
already executing the critical section, which leads to t1 being scheduled out and made
to wait for t0 to finish executing the critical section. When t0 is done executing the
critical section, t1 is woken up.

An intuitive way to estimate the execution time of the example in Figure 4.1(a)
is to first identify the non-scaling component of t0 and t1 when running at the base
frequency, and subtract those from the total execution time to obtain the scaling
components. This is what M+CRIT does. Using these per-thread components, it
is straightforward to estimate the execution time of individual threads at the target
frequency (see Section 4.3). Then the estimated execution time of the slowest thread
serves as an estimate of total execution time. However, this leads to an incorrect
estimation of execution time. The non-scaling component of execution time is actively
accumulated in a counter only during the time a thread is active. During the time t1
is waiting, its non-scaling component depends on the activity taking place on the core
where the thread holding the lock is running (t0). In the simple approach, the time t1
is waiting gets incorrectly attributed to the scaling component. Accurately estimating
the execution time requires taking the dependency between t0 and t1 into account.

Figure 4.1(b) shows how our predictor decomposes the execution shown in Fig-
ure 4.1(a) into three epochs. a and x represent the duration of the first epoch, for threads
t0 and t1, respectively. While these values are equal at the base frequency, we label
them differently per thread because these values could be different when estimating
time at the target frequency. b represents the duration of time that t0 is active during
the second epoch when running at the base frequency. Similarly, c and z represent
the duration of the third epoch. By decomposing execution time into epochs, DEP is
able to model the dependency between t0 and t1 by analyzing b and predicting the new
duration of b at a different frequency, which affects when both threads begin the third
epoch at the new frequency.

It should be noted that the synchronization incurred by service threads, namely
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between garbage collection threads, and the coordination between application and
garbage collection threads is also communicated through futex calls. Therefore, by
breaking down execution into epochs, we not only model the inter-thread dependencies
between the application threads, but also account for the extra interactions between
managed language application and service threads.

4.4.3 Predicting Performance at a Target Frequency

We now discuss how DEP estimates the duration of an epoch at a target frequency.
During an epoch, DEP uses CRIT to accumulate the non-scaling component of each
active thread in a counter. At the end of an epoch, both the scaling and non-scaling
components are known. This provides DEP with a prediction of the duration of each
thread at the target frequency. This is shown in Figure 4.1(c) and Figure 4.1(d) where
a’, b’ and c’ represent the estimated duration of t0’s first, second and third epoch,
respectively, at the target frequency. Similarly, x’ and z’ is the estimated duration
of t1’s first and third epoch at the target frequency. The next goal is to predict the
execution time of an epoch from these individual estimates of all the active threads.

Per-epoch Critical Thread Prediction (CTP). An intuitive approach is to take the
duration of the thread that runs the longest in the epoch, i.e., the critical thread, as the
duration of the epoch at the target frequency. This approach is shown in Figure 4.1(c).
This approach is simple to implement and does not require any bookkeeping across
epochs. This technique does model the dependency between threads t0 and t1 in our
running example and predicts when the third epoch would begin for both threads in the
target frequency. However, using per-epoch critical thread prediction does not result
in an accurate estimate of total execution time.

Across-epochCritical ThreadPrediction (CTP).Weadd across-epoch critical thread
prediction to our DEP model to make it more accurate. This is shown in Figure 4.1(d).
In the figure, a’ is estimated to be shorter than x’. But if x’ is taken as the duration of
the first epoch, this leads to an incorrect estimation of the duration of the three epochs
i.e., x’ + b’ + max(c’,z’). The correct duration is a’ + b’ + max(c’,z’), because thread t0
would just continue running after a’ time units. In effect, part of x’ gets overlapped with
b’ at the target frequency. Therefore, during each epoch, we need to store extra state
to be able to identify the identity and duration of the critical thread to take that into
account across epochs. Following the current example, we store the delta, x’ - a’, in a
separate counter at the end of the first epoch. We also speculatively estimate the total
execution time at the end of first epoch to be x’. In the second epoch, we subtract the
delta-counter from b’. This way, at the end of the second epoch, we correctly estimate
the total execution time to be a’ + b’.

Algorithm. Our algorithm for performing across-epoch critical thread prediction is
shown in Algorithm 2. First, we introduce the terminology used in Algorithm 2.
αt represents the estimated duration of a thread t at the target frequency. δt is the
difference between the estimated duration of thread t and the estimated duration of
the critical thread; δt of the critical thread is zero. The first step in Algorithm 2 is
to compute the estimated duration, αt , of each thread using CRIT (line 2). Next, we
calculate the ‘effective’ execution time (et ) of each thread by subtracting δt from αt
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ALGORITHM 2: Algorithm for across-epoch CTP.
input : A synchronization epoch S (I time units)
input : Initial delta-counters (δt ) of all threads
input : Identity of the stalled thread if any (stall_tid)
output
:

Estimated duration (I’ time units) of S at target frequency

1 for each active thread t in S do
2 αt = computeEstimatedTimeUsingCRIT()
3 et = αt - δt

4 end
5 I’ = Largest et
6 for each active thread t in S do
7 δt = (I’ - αt ) + δt
8 end
9 δstall−tid = 0

(line 3). The thread with the largest et is the critical thread, and the corresponding et is
the duration of the epoch (I′) (line 5). Note that δt is accumulated across epochs, with
a term representing the difference between I′ and αt added during each epoch until the
thread stalls (line 7). We reset δt of a stalling thread to zero (line 9).

4.4.4 Modeling Store Bursts

Store bursts occur more frequently in managed language workloads than in native
applications. In Java in particular, store bursts originate from two main sources: (1)
zero-initialization to provide memory safety, and (2) copying of objects during garbage
collection. A DVFS model for Java applications should incorporate the impact of store
bursts.

CRIT assumes that store instructions are not on the application’s critical path.
This is true for a few isolated store requests that miss in the L1 cache because
the store queue provides modern processors with the ability to execute loads in the
presence of outstanding stores (through load bypassing and store-to-load-forwarding).
Furthermore, it contains committed stores until they are retired by the memory
hierarchy, freeing up space in the ROB or active list. Normally, the work done
underneath a store miss scales with frequency. However, a fully-occupied store queue
stalls the processor pipeline. Store bursts fill up the store queue before eventually
stalling the pipeline.

In typical out-of-order pipelines, an entry is allocated in the ROB and the store
queue at the time the store instruction is issued. When a store commits from the head
of the ROB, the entry is no longer maintained in the ROB, but the entry is maintained
in the store queue until the outstanding request is finally retired. Commit stalls when
the store queue is full and the next instruction to commit is a store.

To account for store bursts, we accumulate the amount of time the store queue is
full in a counter when running at the base frequency. For each active thread during
an epoch, we add the counter’s contents to the non-scaling component measured by
CRIT. When modeling the impact of store bursts, we add BURST next to the model
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name. Thus, our proposed model that takes both inter-thread dependencies and store
bursts into account is called DEP+BURST.

4.4.5 Implementation Details

Now, we discuss implementation issues when porting DEP+BURST to real hard-
ware. First, the OS is the best place to identify synchronization epochs, for instance,
as a kernel module. The OS is aware of thread creation, deletion, and other events
regarding thread scheduling including the futex_wait and futex_wake system calls.

Multiple threads time-sharing a single core is a common practice to consolidate
resources. In such a case, the OS periodically schedules out the currently executing
thread out of the core, and schedules one of the waiting threads in. Whenever that
happens, we start a new epoch. As a result, time-multiplexing cores among threads is
seamlessly handled by DEP.

We require extra counters to implement DEP+BURST on real hardware. We use
CRIT [92] within an epoch to divide a thread’s execution into scaling and non-scaling
portions, so our model requires the same bookkeeping information as CRIT.

Tracking store bursts requires simple additional logic in the store queue that
generates a signal once all its entries are occupied. The performance counter hardware
monitors this signal to account for the time the store queue is full.

To account for critical threads across epochs, we require one counter per thread.
This counter can be maintained in software inside the kernel module that intercepts
the futex calls.

4.5 Experimental Methodology

Before evaluating the accuracy of DEP+BURST, we first describe our experimental
setup.

Simulator. We use Sniper [26] version 6.0, a parallel, high-speed and cycle-level
x86 simulator for multicore systems; we use the most detailed cycle-level core model
available. Sniper was further extended [108] to run a managed language runtime
environment including dynamic compilation, and emulation of frequently used system
calls.

Benchmarks. We use seven multithreaded Java benchmarks from the DaCapo
suite [14] that we can get to work with Jikes RVM 3.1.2 [4]. We use five benchmarks
from the DaCapo-9.12-bach benchmark suite (avrora, lusearch, pmd, sunflow, xalan).
We also use an updated version of lusearch, called lusearch-fix (described in [129]),
that eliminates needless allocation. Finally, we use an updated version of pmd, called
pmd-scale (described in [40]) that eliminates the scaling bottleneck due to a large input
file. All benchmarks we use in this work are multithreaded. The avrora benchmark
uses a fixed number (six) of application threads, but has limited parallelism [40]. For
the remaining multithreaded benchmarks, we evaluate using four application threads.
Table 4.1 lists our benchmarks, a classification ofwhether they arememory or compute-
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Table 4.1: Our benchmarks from the DaCapo suite, including a classification of their
type, heap size, execution time and GC time at 1 GHz. M represents a memory-
intensive benchmark, and C represents a compute-intensive benchmark.

Benchmark Type Heap size Execution GC time

[M/C] [MB] time (ms) (ms)

xalan M 108 1,400 270

pmd M 98 1,345 230

pmd.scale M 98 500 80

lusearch M 68 2,600 285

lusearch.fix C 68 1,249 42

avrora C 98 1,782 5

sunflow C 108 4,900 82

intensive, the heap size we use in our experiments (reflecting moderate, reasonable
heap pressure [108]), and their running time when using Sniper with each core running
at 1 GHz. We classify the benchmarks based on the intensity of garbage collection.
An application that spends more than 10% of its execution time in garbage collection
is considered a memory-intensive benchmark. lusearch.fix, avrora, and sunflow are
compute-intensive, and the remaining five benchmarks are memory-intensive.

Processor architecture. We consider a quad-core processor configured after the Intel
Haswell processor i7-4770K, see Table 5.2. Each core is a superscalar out-of-order
core with private L1 and L2 caches, while sharing the L3 cache. We vary the cores’
frequency between 1 and 4 GHz.

Power and energy modeling. We use McPAT version 1.0 [86] for modeling power
consumed by the processor. For DVFS support, we use the Sniper/McPAT integration
described in [54] while considering a 22 nm technology node. We use a frequency
step setting of 125 MHz when dynamically adjusting the frequency to save energy
(Section 4.7). We use the voltage and frequency settings for a 22 nm technology
node, closely following Intel’s i7-4770K (Haswell) [34]; see Table 5.2 for a subset of
settings1. When reporting power numbers, we include both static and dynamic power.
We model the DVFS transition latency as a fixed cost of 2 µs [57].

4.6 Model Evaluation

We now evaluate the accuracy of DEP+BURST. We first compare the accuracy
of DEP against M+CRIT and COOP to understand the impact of taking inter-thread
dependencies into account. We then evaluate DEP with and without BURST, teasing
apart the contribution of taking store bursts into account.
1The remaining settings can be found using the linear relationship between core voltage (v) and frequency
(f), v = 0.11 * f + 0.63 [34].
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Table 4.2: Simulated system parameters.
Component Parameters

Processor 4 cores, 1.0 GHz to 4.0 GHz

4-issue, out-of-order, 128-entry ROB

Outstanding loads/stores = 48/32

Cache hierarchy L1-I/L1-D/L2, Shared L3 (1.5 GHz)

Capacity: 32 KB / 32 KB / 256 KB / 4 MB

Latency : 2 / 2 / 11 / 40 cycles

Set-associativity: 4 / 8 / 16

64 B lines, LRU replacement

Coherence protocol MESI

DRAM FR-FCFS, 12 GB/s, 45 ns latency

DVFS states (1, 0.737); (1.5, 0.791); (2, 0.845);

(GHz,Vdd) (2.5, 0.899); (3, 0.958); (3.5, 1.012);

(4, 1.07)

4.6.1 Prediction Accuracy

Evaluating the accuracy of a DVFS performance predictor is done as follows.
We run the application at both the baseline and target frequency. We predict the
execution time at the target frequency based on the run at the baseline frequency,
and we compare the predicted execution time against the measured execution time.
We quantify prediction accuracy as the relative prediction error (estimated - actual)
/ actual. A negative error thus implies an underestimation of the execution time or a
performance overestimation. The reverse applies for a positive error.

Evaluating a DVFS performance predictor requires choosing a baseline and target
frequency. When used as part of an energy management framework — as we
will explore in our case study — it is important that we are able to accurately
predict performance both at higher and lower frequencies. We hence consider two
scenarios: one in which we consider a low base frequency and predict performance at
higher frequencies, and one in which we consider a high base frequency and predict
performance at lower frequencies. Figure 4.2 quantifies the prediction error for all
benchmarks (including the average absolute error) for three target frequencies when
the base frequency is set at 1 GHz, i.e., predicting performance at a higher frequency
than the baseline frequency. Figure 4.3 shows similar data for target frequencies
smaller than the base frequency set to 4 GHz.

M+CRIT has the worst prediction error of all models. The average absolute error
is 27% when predicting from 1 GHz to 4 GHz, and 70% when predicting from 4 GHz
to 1 GHz. Clearly, not taking into account synchronization, inter-thread dependencies
and store bursts leads to highly inaccurate DVFS performance prediction for managed
multithreaded applications.

Taking into account the interaction of application and managed language service
threads, as COOP does, slightly improves accuracy over M+CRIT. However, the
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prediction error is still significant with average absolute prediction errors for COOP of
22% and 63% for the base 1 and 4 GHz scenarios, respectively.

Taking all synchronization activity into account, as DEP does, further improves
accuracy, with an average absolute error of 19% and 57% for the base 1 and 4 GHz
scenarios, respectively. The conclusion from this result is that managed multithreaded
applications require accurate modeling of inter-thread dependencies both through
coarse-grained synchronization between application phases and garbage collection
phases, as well as through fine-grained synchronization between application threads
and between garbage collection threads. Unfortunately, although the prediction error
is decreased compared to M+CRIT and COOP, DEP’s error is still high.

Modeling store bursts brings the error down substantially, especially for the
memory-intensive benchmarks. In fact, all three models, M+CRIT, COOP and DEP,
benefit from BURST modeling. It is interesting to note that DEP benefits most
from BURST, and COOP benefits more than M+CRIT. Because DEP more accurately
identifies critical threads, adding the modeling of store bursts, which affect the critical
thread, improves accuracy more substantially. Likewise, COOP identifies critical
threads more accurately than M+CRIT, and hence benefits more from store burst
modeling than M+CRIT.

This leads to the overall conclusion that DEP+BURST is the most accurate DVFS
performance predictor, with an average absolute error of 6% when predicting from
1 GHz to 4 GHz, and an average absolute error of 8% when predicting from 4 GHz
to 1 GHz. This result shows that modeling both synchronization and inter-thread
dependencies as well as store bursts is critical for DVFS performance prediction of
managed multithreaded applications.

Prediction errors tend to increase for target frequencies that are ‘further away’
from the base frequency, due to accumulating errors, which is especially noticeable
for memory-intensive applications. Further, when predicting the execution time in
the high-to-low scenario, an error in incorrectly estimating the scaling component
multiplies as the target frequency increases. This leads to increased inaccuracy in
identifying the critical thread in an epoch. When predicting low-to-high, the scaling
component is divided by a factor, making the error less prominent.

Explaining lusearch and avrora. From the results in Figure 4.2 and Figure 4.3,
we note a higher estimation error for two benchmarks: avrora and lusearch. Our
analysis indicates that each of the two benchmarks stresses a different component of
DEP+BURST. avrora has the largest number of epochs among all of our benchmarks,
pointing to a large number of inter-thread dependencies, thus stressing the DEP
component. On the other hand, lusearch allocates the most memory. Its error is
high because it is overly sensitive to the approximation we make to model store bursts.

4.6.2 Per-Epoch vs. Across-Epochs CTP

As argued in Section 4.4, it is important to accurately predict the critical thread
at each point during the execution. We described two approaches to this problem,
namely per-epoch critical thread prediction (CTP) and across-epoch CTP. We now
quantify the importance of across-epoch CTP. Figure 4.4 reports the prediction error
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Figure 4.4: Comparing per-epoch versus across-epoch critical thread prediction.
Detecting critical threads across epochs leads to a more accurate predictor for
multithreaded managed applications.

for DEP+BURST with across-epoch CTP versus per-epoch CTP. Across-epoch CTP
brings down the average absolute error by a significant margin compared to per-epoch
CTP: by 4% (from 10% to 6% average absolute error) at 4 GHz with a 1 GHz base
frequency, and by 6% (from 14% to 8% average absolute error) at 1 GHz with a 4 GHz
base frequency. This result confirms that being able to accurately predict the critical
thread at all points during the execution time, and carry this dependence across epochs,
is a key component of DEP+BURST.

4.6.3 Scalability

We have shown the accuracy of DEP+BURST with four application and two GC
threads. We now experiment with different thread counts to explore our predictor’s
scalability. Increasing the number of application threads stresses the predictor in
different ways. More application threads lead to more inter-thread dependencies.
Increasing the thread count also increases the rate that store bursts are issued, because
there is also more memory allocation. This is because thread-local storage increases
the total amount of memory allocated when running benchmarks with more threads.
Prior work also shows that the amount of work that GC performs increases with more
application threads [40].

To understand the scaling behavior of our proposed model, we show the accuracy
of DEP+BURST with 1, 2, 4 and 8 application threads. Because of the presence of
service threads such as the garbage collector, managed environments are multithreaded
even with one application thread. When running the benchmarks with one application
thread, we use a single garbage collector thread. We use two garbage collector threads
for experiments with more than one application thread. Prior work by Du Bois et
al. [40] reports that Jikes’ generational Immix garbage collector does not scale beyond
two threads. We use a single core per application thread in our experiments. We set the
last-level cache to have 1 MB/core and the memory bandwidth is set to 3 GB/s/core.
Our modeled processors reflect many commercial designs on the market today.

Figure 4.5 shows the average absolute error of our predictor with different thread
counts. The average error with one application thread is 5.4% when predicting from
1 GHz to the highest target frequency of 4 GHz, and 3.2% when predicting from
4 GHz to 1 GHz. Thus, our DEP+BURST predictor is also accurate for single-threaded
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Figure 4.5: The accuracy of DEP+BURST for different thread counts. DEP+BURST’s
error increases only slightly as the number of threads is increased from one to eight.

managed applications. As the thread count increases, the average absolute error goes
up. However, for up to eight threads, the increase is not dramatic. When predicting
from 1 GHz to higher frequencies, the average error with eight application threads is
below 10% for any target frequency. The average error with more than one application
thread is slightly higher when predicting from 4 GHz to 1 GHz (9.3% with eight
threads). Note that the frequency range that we explore, 1 GHz to 4 GHz, represents a
verywide frequency spectrum. Memory behavior is likely to change across such awide
frequency spectrum, making it harder to predict performance accurately, especially as
the number of threads is increased.

4.7 Case Studies

Having described and evaluated the DEP+BURST DVFS performance predictor,
we now use it in two case studies involving an energy manager. In the first case
study, the energy manager leverages a performance predictor to reduce the processor’s
energy consumption without slowing down the application more than a user-specified
threshold. In the second case study, the energy manager uses analytical performance
and energy models to optimize the full system energy consumed by an application.

4.7.1 Case Study 1: Energy Minimization under Performance
Constraints

It is well-known that it is possible to reduce the processor’s energy consumption
by lowering the frequency. The intuition is that lowering the frequency reduces power
consumption, leading to a more energy-efficient execution. Lowering the frequency
reduces energy consumption as long as the reduction in power consumption is not
offset by an increase in execution time. This is typically the case for memory-
intensive applications for which lowering the frequency incurs a small performance
degradation. For compute-intensive applications on the other hand, the reduction
in power consumption may be offset by an increase in execution time, leading to a
(close to) net energy-neutral operation. In other words, different applications exhibit
different sensitivities to scaling the processor’s frequency. Moreover, compute- and
memory-intensive phases may occur within a single application; this is especially
the case for managed language workloads for which garbage collection is typically
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Figure 4.6: Example illustrating the energy manager using DVFS performance
prediction. The input parameters of the energy manager are shown in italics.

memory-intensive [24, 104]. Hence, this calls for an energy management approach
that dynamically determineswhen and towhat extent to scale the frequency tominimize
energy consumption while not exceeding a user-specified slack in performance.

Energy Manager

To demonstrate the importance of having an accurate DVFS performance predictor
for multithreaded managed applications, we design an energy manager that minimizes
energy consumption while guaranteeing performance within a user-specified threshold
compared to running at the highest frequency. The high-level design is shown in
Figure 4.6. The figure shows how the manager works for the first four intervals of
the application. We always start the application at the highest frequency (4 GHz
for our modeled processor). During this interval, the performance predictor reads
the DVFS-related performance counters as described in Section 4.4. At the end of
the first interval, the manager estimates performance at all of the DVFS states. The
tolerable-slowdown is a user-specified parameter that the manager uses to identify all
of the DVFS states that satisfy the performance constraint, i.e., performance is slowed
down by no more than tolerable-slowdown, as a percentage compared to running at the
highest frequency. Of all the states that satisfy the performance constraint, the manager
then chooses the state with the minimum energy consumption (lowest frequency) for
the next quantum. The hold-off parameter represents the number of intervals to wait
before changing the frequency again. In the example shown in the figure, hold-off is
set to two. Therefore, the third interval also runs at the same frequency as the second
interval. In case the application has no phase behavior, using a large hold-off prevents
needless profiling. The scheduling quantum is also an adjustable parameter, and is
set to 5 ms in our experiments. We set the hold-off parameter to one unless otherwise
specified.

The key idea we use to guarantee that the application does not experience a
slowdown more than the specified threshold is that, if each interval experiences a
slowdown of x%, then the entire application experiences a slowdown of x% compared
to always running the application at the highest frequency. To fulfill this requirement
during each interval, we need to estimate the slowdown that the application experiences
compared to running at the highest frequency, evenwhen running at a slower frequency.
We solve this problem in two steps. The energy manager first estimates the execution
time at the highest frequency, before predicting execution time at the target frequency in
the second step and its relative slowdown compared to running at the highest frequency.
The manager finally chooses the minimum frequency setting that does not slow down
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the next interval more than the user-specified threshold.

In the following sections, we explore the opportunity to reduce energy consumption
with our proposed energy manager in detail.

Evaluation

Figure 4.7 reports the slowdown experienced by each benchmark and the cor-
responding reduction in energy consumption for user-specified slowdown thresholds
of 5% and 10%. We observe substantial reductions in energy consumption for the
memory-intensive benchmarks, by 13% on average (and up to 15%) for the 5%
threshold, and by 19% on average (and up to 22%) for the 10% threshold. As expected,
the reduction in energy consumption is not as significant for the compute-intensive
workloads.
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Figure 4.7: Per-benchmark reductions in energy consumption using DEP+BURST
in our energy manager for a slowdown threshold of (a) 5% and (b) 10%. Memory-
intensive benchmarks are to the left while compute-intensive are to the right. Using
the DEP+BURST predictor as part of our energy manager leads to a significant
reduction in energy consumption for the memory-intensive benchmarks with only a
slight performance degradation.
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Figure 4.8: Per-quantum frequency settings chosen by the energymanager for xalan and
sunflow for a slowdown threshold of 5%. There is a larger variation in the processor’s
frequency during the execution of the memory-intensive benchmarks, compared to the
compute-intensive benchmarks.

It is interesting to note that the obtained performance is close to the user-specified
performance target, i.e., the execution slowdown is around 5% and 10% for most
benchmarks for the 5% and 10% thresholds, respectively. The benchmarks for which
we observe an exception are avrora and lusearch, with a slight overshoot for avrora at
the 5% threshold, and an undershoot for lusearch at both the 5% and 10% thresholds.
The reason is the inaccuracy of the DVFS performance predictor: lusearch and avrora
experience the largest prediction errors, as shown in Figure 4.2 and Figure 4.3. This
result re-emphasizes the importance of accurate DVFS performance prediction for
effectively managing energy consumption and performance when running managed
multithreaded applications. Nevertheless, since lusearch stresses the memory subsys-
tem the most, we observe a large reduction in its energy consumption despite slowing
its execution less than the user-specified slowdown threshold.

Figure 4.8 shows the frequency settings chosen by our energy manager for xalan
and sunflow for a slowdown threshold of 5%. The frequency settings chosen by our
energy manger for the memory-intensive xalan cover a wider range compared to the
compute-intensive sunflow. We observe similar trends in other benchmarks.

Comparison to static-optimal. To further analyze the robustness and importance
of dynamically adjusting frequency, we compare our dynamic energy manager (using
DEP+BURST) against the optimal frequency setting obtained statically. Static-optimal
(Static-Opt) is determined by running the application multiple times offline, and
selecting the optimal frequency that minimizes energy consumption across the entire
run; because this static frequency is obtainedwhile using the same input data set, we can
consider the static-optimal frequency as an oracle setting. Note that Static-Opt is not
a practical approach and is shown here for purposes of comparison only. Figure 4.9
compares the reduction in energy consumption by our dynamic energy manager to
the reduction achieved by Static-Opt for a slowdown threshold of 10%. Our energy
manager leads to larger reductions in energy consumed by all of the memory-intensive
benchmarks with the exception of lusearch. For lusearch, DEP+BURST exhibits a
larger error compared to the other benchmarks, which is the reason our energymanager
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Figure 4.9: Reduction in energy consumption achieved by our energy manager
compared to the static optimal (Static-Opt) for a slowdown threshold of 10%. For
six out of seven benchmarks, our energy manager reduces the energy consumption
about the same as, or more than, that of Static-Opt.

misses the full potential for reducing the energy consumption. The overall reduction
is 2% on average and up to 10%. The reason why our energy manager outperforms
Static-Opt for xalan, pmd and pmd.scale is because it is able to dynamically adjust
the frequency in response to varying execution phase behavior, which Static-Opt, by
definition, is unable to do. The reduction on average is on par with static-optimal for
the compute-intensive applications.

Frequency Step Setting

The granularity at which you can change the frequency, or the step setting, is an
important factor in meeting performance targets yet striving for energy efficiency. In
the previous results, we assumed a frequency step setting of 125 MHz with a total of
25 DVFS settings between 1 GHz and 4 GHz. A coarser frequency step setting makes
it difficult to meet the user-specified slowdown thresholds. For instance, assume that
slowing down one phase of a benchmark by 5% requires a frequency setting of 3.8 GHz.
If the machine only offers a frequency step setting of 500 MHz, our energy manager
will run that benchmark’s phase at 4 GHz, since running at 3.5 GHz slows down the
phase by more than 5%. This leads to a missed opportunity to save energy.

We add extra accounting to our energy manager to keep track of these missed
opportunities per phase so that in a later phase, the application can run at a lower
frequency while still meeting the user-specified slowdown target over the entire run,
thus reducing energy consumption. More specifically, during each profiling quantum,
our energy manager stores the difference between the execution time of running at the
ideal frequency that would get closest to the slowdown threshold and the execution
time given the best-available frequency setting (less than the highest frequency and
does not violate the slowdown threshold). In our example above, this would be the
execution time difference when running the benchmark’s phase at the desired 3.8 GHz
versus the energy manager’s chosen 4 GHz. We call this difference σexcess, which is
shown in Equation 4.1. Tdesired is the execution time running at some ideal frequency if
we did have fine-grained step settings, and Testimated represents the estimated execution
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Figure 4.10: Per-benchmark slowdown for different frequency step settings with and
without modeling excess-time. Modeling excess-time results in an average slowdown
close to the user’s expectations, regardless of the available frequency step setting.

time at best-available frequency setting. Note that Tdesired is just the time quantum’s
duration plus the user-specified slowdown. σexcess is multiplied by the hold-off to
account for there being no change in frequency for hold-off quantums.

Tdesired = quantum∗ (1+ tolerable_slowdown)

σexcess = (Tdesired−Testimated)∗hold_o f f
(4.1)

During a subsequent profiling quantum, themanager adds this previously calculated
σexcess to the execution time we want to achieve in this phase. For example, because
we did not slow down the previous phase at all, even though we had a target of 5%,
we can slow down the current phase by more than 5%. However, over the entire run,
we expect to still meet the user’s specified slowdown threshold, while reducing more
energy consumption.

Figure 4.10 presents the per-benchmark slowdown with and without modeling
σexcess for two systems with a different number of DVFS states. One system provides
a frequency step setting of 125 MHz (25 DVFS states), and the other system provides
a frequency step setting of 500 MHz (7 DVFS states), which is more limiting. The
slowdown threshold is set to 5%; hold-off is one; and the quantum length is 5 ms.
With a frequency step setting of 125 MHz, the slowdown is 3.7% on average both
with and without modeling σexcess. However, with a 500 MHz frequency step setting,
the average slowdown without modeling σexcess (w/o-excess-500) is 0.7%, which is
much lower than the 5% target. For several benchmarks, a 5% slowdown in execution
time compared to running at 4 GHz is achieved by running at a frequency somewhere
between 3.5 GHz and 4 GHz. However, running at 3.5 GHz is likely to slow down the
execution more than 5% for these benchmarks. Therefore, the energy manager runs
these benchmarks at the highest frequency during most of the execution. The average
slowdown increases to 3.2% when modeling σexcess (excess-500). In fact, all except
one benchmark (avrora) experience a slowdown similar to excess-125.

Figure 4.11 shows the reduction in energy consumption with and without modeling
σexcess. For both the compute-intensive and the memory-intensive benchmarks, the
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Figure 4.11: Per-benchmark reduction in energy consumption for different frequency
step settings with and without modeling excess-time. Modeling excess-time results in
an average energy reduction for both the compute-intensive and the memory-intensive
benchmarks regardless of the frequency step setting.

energy reduction of w/o-excess-125 and excess-125 is almost the same. However,
w/o-excess-500 achieves only 7.7% reduction in energy consumption for the memory-
intensive benchmarks compared to 12.5% provided by excess-500. For the memory-
intensive benchmarks, modeling σexcess helps get closer to the user-specified slow-
down threshold, and thus achieves a higher reduction in energy consumption. For
the compute-intensive benchmarks, w/o-excess-500 barely provides any reduction in
energy consumption at all. We conclude that modeling σexcess is especially important
with coarser frequency step settings, and that it makes our energy manager robust to
whatever DVFS granularity is provided by the processor.

Varying Hold-off and Length of Profiling Quantum

In all previous experiments, we use a hold-off of one and a quantum length of 5
ms. In this section, we vary these parameters to see if it is possible to meet the user’s
execution time requirement while running the model less often. A large hold-offwould
translate to the energy manager running the model less often. Similarly, if the quantum
is small, then the overhead of running the model is small.

In Figure 4.12, we vary the hold-off and keep the quantum length fixed at 5 ms. We
show results with a hold-off of 1, 5, and 10. The tolerable slowdown is set to 5%. Using
a large hold-off results in a slowdown further away from the user-specified threshold
for three benchmarks, namely xalan, pmd and pmd.scale. Others either show no trend
when increasing the hold-off or a slowdown slightly closer to the user’s expectations.
The average slowdown with a hold-off of 5, which runs the model less often, is 3.8%,
compared to an average slowdown of 3.7% with a hold-off of one.

We show the impact of varying the quantum length on each benchmark’s slowdown
in Figure 4.13. We show results for five different quantum lengths, each a multiple
of five. Because we are investigating the sensitivity to quantum length, we keep the
hold-off at one. As before, the slowdown threshold is 5%. Each benchmark is affected
differently, and we observe no general trend. For instance, avrora and pmd generally
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Figure 4.12: Per-benchmark slowdown for different values of hold-off. On average, a
hold-off of 5 is a good compromise between running the model less often, and being
close to the user-specified slowdown threshold.

0

1

2

3

4

5

6

7

%
 S

lo
w

d
o

w
n

 

5 ms 10 ms 15 ms 20 ms 25 ms

Figure 4.13: Per-benchmark slowdown for different quantum lengths. The smaller
quantum length of 5 ms incurs less overhead for the model while still achieving a
slowdown close to the user-specified threshold.

see increasing performance slowdowns as the quantum is increased, and sometimes
their slowdown exceeds the user-specified 5%. lusearch.fix is not sensitive to quantum
length, implying little or no phase behavior. We conclude that using a quantum length
of 5 ms and a hold-off of 5 leads to performance that is, on average, close to the user’s
expectation. Using these parameters, the DEP+BURST model is active during only
20% of the benchmark’s execution time.

To estimate the overhead of running DEP+BURST, we first note the number of
epochs during the time we run DEP+BURST. We then use the latency of reading
DVFS-related performance counters per epoch from prior work [35]. Our analysis
show that the overhead of running DEP+BURST is less than 1% of the execution time
of our benchmarks on average.
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4.7.2 Case Study 2: Minimizing Full System Energy

To demonstrate the robustness of our energy manager to different optimization
targets, we perform another case study, this time optimizing total system energy, i.e.,
the sum of the energy consumed by both the processor and DRAM. The optimal
system energy is not obtained by running the processor at the lowest frequency, since
as the processor frequency is lowered, the energy consumed by DRAM becomes
the dominant factor. To optimize total system energy, the energy manager estimates
the energy consumption at all the available DVFS states at the end of each profiling
quantum, using the predictions of DEP+BURST for estimating the execution time, T ′.
The optimal frequency is the one which results in the lowest energy consumption. To
estimate the total energy at a target DVFS setting (v′, f ′), when running at a base DVFS
setting (v, f ), we perform the following steps:

1. We scale the static power of the processor (processor-p-static) by a factor v/v′

to estimate the processor-p-static at (v′, f ′) [22].

2. We collect the estimated execution time, T ′, at f ′ from DEP+BURST. We
multiply T ′ by the estimated processor-p-static to get the estimated static energy
of the processor (processor-e-static).

3. We estimate the dynamic energy of the processor (processor-e-dynamic) as the
sum of the dynamic energy of individual cores. The dynamic energy of each
core at (v′, f ′) is estimated by multiplying the energy consumed by the core at
(v, f ) with the factor, (v/v′)2, similar to [44].

4. The static energy of DRAM (dram-e-static) at (v′, f ′) is estimated as T ′ multi-
plied by the static power consumed by the DRAM at (v, f ).

5. For the number of DRAM requests seen in the previous quantum, we obtain the
dynamic energy consumed by DRAM (dram-e-dynamic) from McPAT. Since a
change in execution time does not impact the number of DRAM requests (only
the request rate), we use the value obtained from McPAT as an estimate of the
dynamic energy consumed by DRAM at the target frequency.

6. Finally, the total estimated energy at (v′, f ′) is the sumof the estimated processor-
e-static, processor-e-dynamic, dram-e-static and dram-e-dynamic.

Figure 4.14 shows the per-benchmark reduction in energy consumption obtained
from different executions: running at the lowest frequency (1 GHz); running each
benchmark multiple times offline, each time statically setting the frequency, and
choosing the optimal energy consumption (Static-Opt); and dynamically adjusting the
frequency at the end of each quantum using the above steps (Dynamic). Our baseline
is the energy consumption obtained by running the entire benchmark at 4 GHz. We
simulate a DDR3 DRAM main memory based on specifications from Micron [91].

First, some benchmarks experience an increase in energy from running at 1 GHz.
Running at 1 GHz increases the execution time, which in turn increases the DRAM
static energy. On average, running at 1 GHz reduces the energy consumption by only
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Figure 4.14: Per-benchmark reduction in energy consumption when the energy
manager optimizes for total system energy. Our energy manager achieves reduction
in energy consumption that is comparable to or better than the optimal reduction in
energy consumption obtained statically.

5%. On the other hand, Static-Opt provides a higher reduction in energy consumption
for all benchmarks. The average energy reduction is 15%, and the maximum reduction
is 20% for sunflow. Since this case study does not impose a performance constraint,
even the compute-intensive benchmarks benefit greatly from DVFS because reducing
the processor voltage and frequency results in a quadratic drop in the dynamic energy
consumed by the processor (at the expense of performance).

Next, we observe that our dynamic energy manager delivers a reduction in energy
consumption on par with or better than Static-Opt. The average reduction in energy
consumption is 15.6% with a maximum reduction of 18.5% for sunflow. For three
benchmarks, including xalan, pmd, and pmd.scale, our proposed energy manager
achieves a higher reduction in energy consumption than Static-Opt. Unlike Static-
Opt, our dynamic manager is able to exploit phase behavior. Having an accurate
performance predictor is necessary to optimize the full system energy consumption of
multithreaded managed language applications.

In this section, we considered only the energy consumed by the processor and the
DRAM. Other components such as the cooling unit, motherboard etc., also contribute
to the system energy. Our energy manager can be easily extended to take into account
any of these non-scaling components of system energy. It should be noted that if
the increase in execution time due to lowering the processor’s frequency leads to
an increase in the total system energy - because the energy consumed by the other
components offsets the reduction in the processor’s dynamic energy consumption - our
energy manager will run the processor at the highest frequency.

4.8 Summary and Interpretation

Accurate performance predictors are key tomaking effective use of dynamic voltage
and frequency scaling (DVFS) to reduce energy consumption in modern processors.
Multithreadedmanaged applications are ubiquitous yet priorwork lacks accurateDVFS
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performance predictors for these applications. In this work, we propose DEP+BURST,
a novel performance prediction model to accurately predict the performance impact
of DVFS for multithreaded managed applications. DEP decomposes execution time
into epochs based on synchronization activity. This allows DEP to accurately capture
inter-thread dependencies, and take the critical threads into account across epochs.
BURST identifies critical store bursts and predicts their impact on overall performance
as the frequency is scaled.

Our experimental results withmultithreaded Java applications on a simulated quad-
core processor report an average absolute error of 6% when predicting from 1 GHz
to 4 GHz, and 8% when predicting from 4 GHz to 1 GHz using DEP+BURST, which
is a substantial improvement over prior work. We demonstrate the usefulness of
DEP+BURST by integrating it into an energy manager that 1) reduces the processor’s
energy by sacrificing a user-specified amount of performance, and 2) optimizes total
system energy. For 1), with a user-specified slowdown of 5% and 10%, the energy
manager is able to reduce energy consumption by 13%and 19%on average for a number
of memory-intensive benchmarks. We show that our energy manager is robust to
coarser frequency step settings, and incurs negligible execution time overhead. Finally,
for 2), our energy manager demonstrates 15.6% total system energy consumption
reduction on average.

This work opens up a new approach to build performance predictors. Hardware
provides the necessary performance counters to keep track of microarchitectural events
such as loads and stores. Software uses the semantic information in the runtime
environment such as, e.g., inter-thread dependences, to predict the performance for
different hardware parameters. Our focus in this work is predicting the performance
impact of DVFS. More challenging is to predict the performance impact of changing
core types on multithreaded managed applications. We leave it to future work.

This work is the first to propose a DVFS performance predictor for managed
multithreaded applications. Several directions for future work are possible. Fine-
grained dependencies between threads, such as those resulting from shared critical
sections, could change at the target frequency. When this happens, DEP mispredicts
the execution time at the target frequency. Efficiently dealing with mispredictions
could improve the accuracy in meeting the user-specified slowdown thresholds, further
reducing energy consumption. Another avenue for future work would be to explore
per-core DVFS, as opposed to our current implementation that changes the frequency
setting of all cores running a multithreaded application. DEP needs modifications to
predict the performance impact of per-core DVFS. What is even more challenging is
identifying the threads whose frequency change would result in the largest reduction
in energy consumption. Finally, investigating the performance impact of DVFS when
there is contention for either bandwidth or shared cache capacity, is a direction for
future work.
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Kingsguard: Write-Rationing
Garbage Collection for Hybrid
Memories

5.1 Introduction

DRAM manufacturing complexity is shrinking supply and increasing main mem-
ory cost. Recent semiconductor analyses show that the DRAM price per gigabit
increased by 50% between 2017 and 2018, whereas the year-over-year bit volume
growth continued to decline [69, 58]. Main memory supply trends are especially
worrisome as emerging applications have an insatiable desire for memory. Researchers
have explored Non-Volatile Memory (NVM) technologies to expand main memory
capacity [81, 82, 103]. Expecting DRAM supply shortages, Facebook is also building
systems with NVM [42].

The most promising NVM technology, Phase Change Memory (PCM) [75, 81, 82,
103], offers five advantages: byte-addressability, high density, scalability (capacity),
low standby power, and non-volatility, but four shortcomings: high access latency,
write latencies exceed read latencies, high write energy, and low write endurance.
Although improvements in PCM manufacturing technology are reducing latency [62,
95], it comes at the expense of write energy and endurance (lifetime). Endurance is
the biggest challenge because each write changes the material form [21] and has thus
far prevented NVM’s uptake.

Prototype PCMhardware has an endurance of 1million (M) to 100Mwrites [81, 7].
This wide range results from: (1) the tradeoff between write speed and endurance,
and (2) the properties of PCM materials. Prior architecture, operating system (OS),
and programming language optimizations redirect and eliminate writes to improve
lifetimes [20, 48, 81, 82, 103, 105, 125]. In particular, hybrid memories combine
DRAM and PCM technology, seeking the best of both approaches [81, 82, 103]: (1)
DRAM hides the high access latency of PCM by buffering frequently accessed pages,
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and (2) hardware and the OS diffuse PCM writes with wear-leveling and reduce writes
with page migration [20, 81, 82, 84, 103, 105, 125]. Wear-leveling moves pages and
lines in pages to distribute writes uniformly. Page migration reactively places highly
mutated pages in DRAM and read-mostly pages in PCM.

An open question for NVM memory systems is if modern applications can use
NVM directly or if they require changes to runtimes and their programming models.
Figure 5.1 explores this question with measurements of PCM lifetimes when executing
Java applications. (Section 5.5 describes our experimental methodology.) These
lifetimes motivate hybrid memories and including software support. The figure
presents average lifetimes of a 32 GB PCM-only system for three different PCM
endurance levels reported and used in prior work [81, 103, 101, 100, 84, 100, 21].
A 32-core PCM-only system with 32GB of main memory and an endurance of
30M writes per cell would wear out in 4 years, even with line write-back and wear-
leveling [103, 101, 100]. Because lifetime is a linear function of writes, increasing
endurance to 100M per cell would improve PCM’s lifetime to 13 years. However,
running the Java application with the highest write rate would wear out a 32 GB PCM
memory in less than 5 years. With current PCM endurance levels, a pure PCMmemory
system is thus impractical. For a 32 GB PCM-only system to last 15 years across a
range of applications and endurance levels, write rates need to reduce by at least an
order of magnitude.

In this chapter, we show that specializing the Java runtime system results in a
promising and practical approach for using hybrid memories. Limiting changes
to the runtime system, rather than requiring changes to programming models and
applications, will ease adoption of hybrid memories.

We introduce the design and implementation of a new class of write-rationing
garbage collectors that reorganize objects to limit writes to PCM in hybrid main
memories, while still utilizing PCM capacity. We exploit the managed runtime
implementation for languages such as Java, C#, JavaScript, and Python. Prior work
either manages coarse-grained pages or allocation sites in C++ programs [125, 131]
or profiles allocation sites ahead-of-time in a Java managed runtime, optimizing
performance, but not the liftetime in hybrid memories [124]. In contrast, write-
rationing collectors move and monitor individual objects in managed runtimes.

A detailed analysis of write behaviors in Java applications motivates our work.
Figure 5.2 presents writes in an instrumented generational collector as a function of
object age: young (nursery) versus mature space objects. 26% to 99% of writes
occur to nursery objects, averaging 70%. The results are consistent with prior
measurements [108, 132] and exhibit a wide range of behaviors. 2% of mature objects
capture 81%mature object writes. 94% of all writes fall in one of these two categories.
Our designs exploit the correlation between writes and object demographics (age) and
detect the small fraction of mature objects that incurs most writes.

We introduce two write-rationing collectors that guard (i.e., Kingsguard) PCM
from writes. They organize heap memory in DRAM and PCM virtual memory,
directing the OS explicitly. The Kingsguard-nursery (KG-N) collector allocates new
objects in a DRAM nursery, since they incur between 25% and 98% of writes, and
then promotes all nursery survivors to a PCM mature space.
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Figure 5.1: PCM-only is impractical. 32 GB lasts only 4 years on average with 30M
writes per cell and hardware line wear-leveling in simulation. The proposed KG-N and
KG-Wwrite-rationing garbage collectors manage DRAM and PCM, extending PCM’s
lifetime to practical levels.
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Figure 5.2: Nursery objects incur 70% of writes and mature objects incur 30% on
average. The top 10% of written mature objects incur 93% of mature writes and the
top 2% incur 81%.

Kingsguard-writers (KG-W) adds fine-grained monitoring and per-object place-
ment of mature objects. It also uses a DRAM nursery, but promotes nursery survivors
to a DRAM observer space. The Java Virtual Machine (JVM) tracks all mature
object writes with a write-barrier [38, 46, 111, 128]. Observer space collections copy
objects with zero writes from the observer space to the PCM mature space and copy
any written objects to the DRAM mature space, using past writes to predict future
writes. Kingsguard-writers promotes most observer space survivors (90%) to PCM
memory, thus exploiting its capacity. When it detects written objects in PCM, it moves
them back to DRAM. KG-W also includes optimizations for large objects and object
meta-data.

Because hybrid memory systems are not available, we use cycle-level multicore
simulation and hardware measurements for evaluation. We find that KG-N and KG-W
improve PCM lifetime by 5× and 11×, respectively on our simulated Java applications.
KG-W needs 16 MB of DRAM to achieve these lifetimes. We compare to state-of-
the-art OS write partitioning (WP) [131]. WP consumes about the same amount of
DRAM, but has 3× more writes to PCM than KG-W. Even though memory accesses
to PCM are slower, Kingsguard-nursery reduces the energy-delay product by 36%
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over a DRAM-only system and 33% over a PCM-only system. Kingsguard-writers
adds 5% average overhead to monitor nursery survivors in the observer space and to
copy objects between spaces. Kingsguard-writers reduces the energy-delay product by
32% on average over DRAM-only and by 29% over a PCM-only system. Compared
to Kingsguard-nursery, Kingsguard-writers thus trades some overhead and DRAM to
significantly improve PCM lifetime.

In summary, this chapter makes the following contributions:

• an empirical characterization of Java applications that motivates hybrid memo-
ries and fine-grained object placement;

• the design and implementation of write-rationing garbage collectors that manage
hybrid memories, minimizing PCM writes while maximizing the use of their
capacity;

• Kingsguard collectors that explicitly allocate and move objects into DRAM and
PCM heap spaces based on their demographics and write behavior;

• execution and simulation results that show these collectors exploit PCM capacity
while substantially improving PCM lifetimes and energy by reducing writes as
compared to prior OS and hardware approaches; and

• a practical approach to exploit hybrid memories that requires no new OS or
hardware support.

5.2 Related Work

This section discusses work related to PCM hardware, and OS and runtime
approaches to manage hybrid DRAM-PCM memory systems.

Hardware and OS support for PCM. The two predominant approaches for im-
proving PCM lifetime are making writes more uniform over the PCM capacity, called
wear-leveling, and reducing the number of writes. Wear-leveling of pages allocates
and moves pages to distribute writes uniformly through memory. Wear-leveling of
lines within a page remaps lines to distribute writes uniformly on each page. Prior
work proposes a number of wear-leveling approaches [101, 102, 110]. We use line
wear-leveling from Qureshi et al. [103] as our baseline hardware.

Prior work proposes hardware and OS techniques for hybrid DRAM-PCM memo-
ries that monitor and move pages to reduce PCM writes [20, 48, 81, 82, 84, 103, 105,
125]. Their two main drawbacks are (1) they are reactive, and (2) they work at the page
granularity. None of these systems considers reorganizing objects on pages to create
pages of read-mostly objects and pages of mutated objects, as we do.

We implement OS Write Partition (WP) by Zhang et al. [84, 105, 131] and find
that our write-rationing garbage collectors decrease writes by 3 × more than WP (see
Section 5.6.1). WP treats DRAM as a partition for highly mutated pages, which it
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identifies using a ranking scheme. The ranking scheme is a variation of the widely used
Multi Queue algorithm for managing OS buffer caches [133]. The OS places a new
page in PCMfirst. The memory controller then counts writes to each physical page and
tracks pages in queues ordered by power of 2 writes. When a page incurs a threshold
number of writes, the memory controller promotes that page to a higher ranked queue:
at 2n writes, the OS promotes the page to the queue with rank n. The OS periodically
migrates pages in the highest-ranked queues to DRAM. Subsequent work builds upon
WP, adding performance optimizations, but does not change lifetime [84, 105]. Since
write-rationing collectors optimize lifetime, we compare to WP and find our approach
incurs substantially fewer PCM writes.

Memory management and garbage collection. The closest related work also uses
the managed runtime, but optimizes for performance in hybrid memories, as opposed
to lifetime [124]. It performs an offline profiling phase to identify object allocation
sites for cold (rarely read or written) and hot old objects. It places all nursery objects
in DRAM. It promotes nursery survivors according to their tag, moving hot objects
to DRAM and cold ones to PCM. Our work optimizes for a different goal — PCM
lifetime. Our work requires no ahead of time profiling, which suffers when inputs do
not match the profile. It dynamically monitors individual object writes in the observer
space to manage writes to PCM.

A similar offline-profiling approach for C programs finds allocation sites that pro-
duce highly mutated memory and ones that produce read-mostly memory, modifying
allocations sites to specify PCM or DRAM [125]. C semantics limit this approach
because objects cannot move. Our work exploits managed language semantics to
monitor and move objects, making fine-grained per-object decisions and correcting
them if need be, regardless of allocation site.

To tolerate PCM line failures in a page while running managed language appli-
cations, Gao et al. introduce new hardware and OS approaches to mask defective
lines, but when lines fail, they expose defective lines in page maps to the garbage
collector [48]. The OS provides this map to the runtime and copies of data during a
runtime failure, which prevents using or losing failed lines by the collector. They did
not consider hybrid memories.

Prior work observes that nursery collections leave behind written cache lines full
of dead objects and propose cache scrubbing instructions that mark these lines as
dead after a nursery collection, preventing writes to DRAM [108]. Our approach is
complementary. It exploits this observation to protect PCM from writes of highly
mutated nursery objects. Complementary approaches also include dividing the heap
into hot and cold regions to better manage DRAM energy consumption [63], and
data structure-aware heap partitioning to improve lifetimes, locality, and region-based
memory management [94].
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5.3 Background

Chapter 2 discusses our assumed memory and storage hierarchy and also provides
background on the Immixmark-region generational garbage collector (GenImmix) [18]
on which we build. Here, we discuss additional background relevant to Kingsguard
collectors.

Immix: a generational mark-region collector. We modify GenImmix, the default
best-performing collector in Jikes [18], to create Kingsguard collectors. GenImmix
uses a copying nursery and amark-regionmature space. Themark-regionmature space
consists of a hierarchy of two regions: blocks and lines. Blocks are multiples of page
sizes and consist of multiple lines. Lines are multiples of cache line sizes. Objects may
cross lines, but not blocks. Bump pointer object allocation is contiguous in the nursery.
(Contiguous allocation is known to outperform free-list allocators due to its locality
benefits [12, 18, 61].) Filling the nursery triggers a collection, which copies nursery
survivors contiguously into free lines within blocks in the mature space. Filling the
mature space triggers a full heap collection. Immix reclaims the mature space at a
line and block granularity by marking lines and blocks live as it traces and marks
live objects. Subsequent mature allocation bump-point allocates first into contiguous
free lines in partially free blocks and then into completely free blocks. Allocation
and reclamation use per-thread allocators and work queues to deliver concurrency and
scalability. The per-thread allocators obtain blocks (partially and completely free)
from a global allocator.

We use the default settings for Immix, including the maximum object size (8 KB),
line size (256 bytes), and block size (32 KB). These settings match the Immix line size
to the PCM line size. Immix tailors the heap representation to match the hardware
memory system for performance, but it also matches the needs of PCM memory
management for detecting and tolerating line failures, as Gao et al. [48] show.

5.3.1 Write Barriers

For correctness, generational collectors use write-barriers to record pointer ref-
erences from mature generation objects to nursery objects in order to collect the
nursery independently [121, 128]. Valid remembered references serve as roots during
a minor collection. The collector updates source objects in the mature space with the
new locations of referent objects, now relocated in the mature space. The compiler
inserts a few lines of code on every write that records (remembers) references when
an application write installs a pointer from a mature object to a nursery object.
Generational collectors organize all nursery objects on one side of a boundary and
all mature objects on another, so the write barrier simply tests if pointers cross the
boundary from mature to young. Prior work shows these references are relatively rare,
but even when more frequent, the cost of barriers is low, ranging from less than 1% to
3% on modern hardware [128].
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5.3.2 Large Objects

Jikes RVM manages objects larger than the 8 KB threshold separately, allocating
them directly into a non-copying large object space, and uses a treadmill to avoid
copying them [56, 67]. A treadmill consists of two doubly-linked lists that store all
references to large objects. During collection, live traced references are removed from
one doubly-linked list and snapped to another. The collector then reclaims the large
objects reachable from any unsnapped references. The cost of using a treadmill is high
due to storing all the references to each large object, which is only justified because it
eliminates marking large objects.

5.3.3 Object Metadata

In addition to application writes, the JVM and collector also generate writes. In
particular, theywrite objectmetadata during allocation and collection. Objectmetadata
includes an object’s type, layout, and liveness information. The liveness information is
often stored in a header word next to the object. Garbage collectors write to metadata
when they mark objects live and they write to objects directly when they update their
references after copying objects. When GenImmix marks a mature object live, it
also writes block and line bits, stored separately from the object. Because marking
live mature objects in PCM generates a lot of PCM writes when liveness is stored in
the object header, the KG-W write-rationing collector includes an optimization that
eliminates these writes by storing object liveness metadata in DRAM space separate
from the objects.

5.4 Write-Rationing Garbage Collection

This section presents the design of write-rationing garbage collectors that seek
(1) all the performance advantages of high-performance garbage collection, (2) to
maximize the use of PCM for its scalability properties, and (3) to limit writes to PCM
to extend its lifetime. These collectors limit write traffic to PCMsignificantly compared
to PCM-only memory by judiciously placing highly mutated objects in DRAM.

Our baseline memory systems contain DRAM-only or PCM-only memory and
use the generational Immix (GenImmix) collector (see Chapter 5.3). Figure 5.3(a)
illustrates this baseline generational heap organization with DRAM-only (and PCM-
only) memory. The mutator allocates objects into the nursery and large object space.
The collector copies surviving nursery objects to the mark-region mature space. The
JVM uses a metadata space. Mature and large object space collection is non-moving
(not shown).

5.4.1 Kingsguard-nursery for Hybrid Memory

As motivated by the data in Figure 5.2, a promising strategy for limiting writes to
PCM in hybrid memories is placing nursery objects in DRAM and all other objects in
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Figure 5.3: Main memory heap organizations (not to scale).

PCM.We call this collector Kingsguard-nursery (KG-N). It also puts nursery survivors
(mature), large objects, and JVM metadata in PCM memory. Figure 5.3(b) illustrates
how Kingsguard-nursery maps the baseline heap organization onto hybrid memory.
The system requests DRAM memory from the OS for the nursery, where objects
are freshly allocated, and requests PCM memory from the OS for everything else.
Requests to the OS are at the page granularity (4 KB). This heap organization is
appealing because it maximizes the number of objects that reside in PCM and it
requires minimal changes to the VM and garbage collector.

Compared to a PCM-only system, Kingsguard-nursery eliminates the nursery
writes to PCM (70% of all writes), saves energy, and increases PCM’s lifetime.
Because applications also write to mature objects, many applications will still wear
out PCM with this approach.

78



5.4 - Write-Rationing Garbage Collection

5.4.2 Kingsguard-writers for Hybrid Memory

Kingsguard-writers (KG-W) adds new heap regions and mechanisms to further
limit writes to PCM by monitoring and placing individual objects in DRAM or PCM.
Kingsguard-writers also allocates all new objects in a DRAM nursery. In addition, it
creates a new DRAM observer region for nursery survivor objects where it monitors
their writes. It then chooses on an individual object basis to put mutated objects in
a mature DRAM space and unwritten objects in a mature PCM memory space. Of
course these objects can have subsequent writes, so we call them read-mostly objects.
KG-W has two large object spaces: one in DRAM and one in PCM. KG-W initially
places large objects in the nursery if space is available, since a surprising number die
quickly, or otherwise allocates them directly to PCM memory. KG-W monitors small
and large objects in PCM, and when it detects written objects, it moves them to their
corresponding space in DRAM during the next collection. Figure 5.3(c) illustrates
Kingsguard-writers’ heap organization.

The Observer Space

Rather than monitoring all objects for writes, we restrict object monitoring to
mature objects that survive at least one nursery collection. Because nursery objects
are rapidly mutated, monitoring them would incur high overhead. Even when many
survive, zeroing, initialization, and data structure creation produce a flurry of writes.
Table 5.4 reports nursery survival rates of 17 % on average, as low as 0.001 %, and as
high as 66%.

KG-W adds a new DRAM generation for all nursery survivors, called the observer
space. While objects reside in the observer space, KG-Wmonitors all writes andmarks
a bit when objects are written. The observer space is a contiguous region and uses
bump-pointer allocation. Wemake the observer space twice as large as the nursery and
trigger an observer space collection when it is full. An observer collection thus results
in pause times longer than nursery collections, but shorter than full heap collections.
An observer collection moves live unwritten objects to the PCMmature space and live
written objects to the DRAM mature space.

The observer space achieves two goals. (1) It gives objects more time to die, so
fewer objects are even candidates for PCM memory. (2) If the system detects a write
to an object while it resides in the observer space, the collector never moves it to PCM,
because it uses writes to objects in the observer space as a predictor of future writes.

KG-W copies all surviving nursery objects to the observer space instead of the
mature space and collects the observer space more frequently than the mature space in
the baseline system. KG-W reserves a small amount of room in the observer space into
which it copies surviving nursery objects during an observer space collection. It sizes
this room using recent nursery survival rates. Some surviving objects will therefore die
soon afterward in the observer space. Kingsguard-nursery would copy these objects
to the PCM mature space, which creates dirty dead cache lines that are likely to be
written back once the mutator resumes execution. Kingsguard-writers avoids these
useless writes to PCM by using the observer space to avoid tenuring garbage.
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In Hotspot [38, 98], a survivor space in the young generation serves a similar
purpose of giving objects more time to die, but objects reside in this space only until
the next nursery collection. Other collection strategies also seek to avoid tenured
garbage [121, 115, 126]. All these approaches are orthogonal to our work.

Monitoring and Write Barriers

An observer collection includes the nursery and observer space, in isolation of
other spaces, to make timely promotions from the observer space to PCM. To ease the
recording of references into the nursery and observer space required to collect them
independently of the mature space, we colocate the nursery and observer space on the
same side of a virtual address space boundary. We thus can and do use the same fast
boundary write-barrier as used by a standard generational collector. Figure 5.4 shows
our modified reference write-barrier in Jikes RVM.

In generational collections, pointers from outside the nursery into the nursery
are added to the root set for nursery collections. Similarly in KG-W, pointers from
outside the nursery and observer spaces into those spaces are added to the root set for
observer collections. Lines 7 to 12 in Figure 5.4 shows the code KG-W executes for
remembering the pointers from outside the nursery and observer spaces. This part of
the write-barrier is the same as a standard generational write-barrier. The later part of
the barrier monitors reference and primitive writes to objects.

1 @Inline
2 public final void objectReferenceWrite(
3 ObjectReference src,
4 Address slot,
5 ObjectReference tgt)
6 {
7 if(!inNursery(slot) && inNursery(tgt)) {
8 remset.insert(slot);
9 }

10 if(!inNurseryOrObservers(slot) && inNurseryOrObservers(tgt)) {
11 remset_observers.insert(slot);
12 }
13 if(!inNursery(src)) {
14 Object o = ObjectReference.fromObject(src);
15 Address a = o.toAddress();
16 a.store(Word.one(), EXTRA_WORD_OFFSET);
17 }
18 Magic.setObjectAtOffset(src, slot, target);
19 }

Figure 5.4: Our modified reference write-barrier. Lines 10 to 17 show the extra code
KG-W executes on each reference write.

The main benefit of the observer space is to monitor writes to objects and use
their behavior to determine on a fine-grained object level whether to put an object in
the DRAM or in the PCM mature space. Our analysis shows that 81% of writes to
non-nursery objects happen to 2% of objects, as shown in Figure 5.2. Objects written
a number of times are, therefore, likely to be written again.

80



5.4 - Write-Rationing Garbage Collection

To monitor observer space writes, we use the write-barriers on (1) references and
(2) primitives that are provided by MMTk [12]. All of our systems must monitor
references (pointers) to collect the nursery and observer spaces independently, so
additionallymonitoringwrites to references in the observer space incurs little additional
overhead. On the other hand, monitoring primitives, writes to all other values, has
higher overhead because primitive writes are more common than reference writes and
are not necessary for collecting independent regions correctly. Reference writes, often,
but not always, predict primitive writes. We show the performance-accuracy tradeoff
of using the two types of barriers in Section 5.6.2.

We modify the generational write-barrier to monitor writes to references and
primitive fields outside the nursery space. To remember written objects, we add a
write word in each object header. When the program writes an object in the observer
space, the write-barrier sets a bit in this header word as shown in lines 13 to 17 in
Figure 5.4. We add a headerword becauseGenImmix uses all the existing object header
bits [18]. A careful re-design or disabling some Immix features, such as pinning, could
steal a bit instead. Since we have an entire word, the barrier could record the number
of writes. We leave reducing this extra header space and counting writes for future
work. We use one of the remaining extra header bits for the metadata optimization
presented below.

Mature DRAM and Mature PCM Spaces

During an observer collection, Kingsguard-writers checks the write bit and then
copies all written objects from the observer space into the mature DRAM space, and
the remaining objects to the mature PCM space. Figure 5.3(c) shows this selective
copying with dotted lines.

KG-W monitors all writes in the mature DRAM and mature PCM spaces. During
whole-heap collections, KG-Wmoves objects in the mature DRAM space whose write
bit is zero, and we therefore predict will not be written, to the mature PCM space.
This step adds copying work to more fully exploit the capacity of PCM. Similarly,
when KG-W detects a written object in mature PCM, it copies the object to the mature
DRAM space, and resets its write bit to zero. This step adds copying work to limit
future writes (predicted by the past writes) to PCM by this object.

We trigger a full heap collection when the combined mature DRAM and mature
PCM spaces run out of space, based on the heap size used. Kingsguard-writers does
not limit the amount of DRAM space. However, because of the high mortality rates
in both the nursery and observer spaces, very few objects are put into the mature
DRAM space, which is between 26 MB and 40 MB for our applications. By design,
the PCM portion of the mature generation contains objects that are likely long-lived
and infrequently written. For applications that mostly create small objects, mature
PCM is the largest portion of the heap. We discuss the amount of DRAM and PCM
used per benchmark in Section 5.6.
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Large Object Optimization (LOO)

Most collectors manage large objects separately because they are costly to copy. In
hybridmemories, if they are frequentlywritten, they are also costly inwrites, degrading
PCM lifetime. We achieve the best of both worlds by creating a large object space in
DRAM and in PCM. To exploit the capacity of PCM, KG-W initially puts large objects
directly in the large PCM space. If the mutator writes to large objects when they are in
the large PCM space, we move them to the large DRAM space during the next major
collection. We modify the non-moving treadmill data structure used for large objects
to handle moving objects. When copying from large PCM to large DRAM, objects are
unsnapped from the former treadmill’s linked list and snapped on to the latter space’s
treadmill. Because copying large objects incurs a high overhead, once a large object
is copied to DRAM, we never move it back to PCM.

We find empirically that large objects often follow the weak-generational hypoth-
esis, i.e., they die quickly. Therefore we perform a dynamic optimization (LOO) to
place some large objects in the nursery first to give them a chance to die and to avoid
allocating large objects that die quickly in PCM. If a large object survives a nursery
collection, we copy it to the observer space. If it survives an observer collection,
KG-W copies it directly to the large PCM space, without consulting the write bit, to
leverage the capacity of PCM.

Allocating large objects in the nursery should be done with caution, to ensure space
for small objects. KG-W dynamically monitors the allocation rate to choose whether to
devote part of the nursery to large objects or not. If at the end of a nursery collection,
the allocation rate in the large PCM space is faster than the nursery’s allocation rate,
then we enable this optimization. The allocator allocates large objects less than half
of the remaining nursery size in the nursery, and otherwise allocates them in the large
PCM space. This technique gives large objects time to die and for arrays of references,
gives any referent objects time to die as well. Section 5.6 shows this optimization saves
a lot of allocation and writes to PCM, thus improving its lifetime. This optimization
trades some copying overhead to limit writes to the large PCM space.

Metadata Optimization (MDO)

As mentioned in Section 5.3, garbage collectors require metadata to track object
liveness. GenImmix stores the mark state of objects in their headers, which would
result in writes to all live mature objects in PCM memory when collecting the whole
heap. Updating a single byte in the header of each live object in PCM would result in
writing back one cache line for every live object in PCM on every major collection.
KG-W thus performs an optimization (MDO) to decouple the mark state metadata
from the PCM object.

KG-W stores the mark states of objects in mature PCM in a separate metadata
region in DRAM (shown in Figure 5.3(c)). Using the Immix allocator, the PCM
mature space reserves new space 4 MB at a time. When this happens, KG-W allocates
a table in DRAM for the mark state of objects in that 4 MB region. The table size
depends on the number of objects that fit in 4 MB. Object sizes vary from 4 bytes
(a header with no payload) to 8 KB (the biggest small object). Accounting for the
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Table 5.1: Collector configurations. Large Object nursery allocation (LOO) and PCM
metadata in DRAM (MDO) are dropped in two configurations.

monitor metadata LOO
Configurations writes in DRAM in nursery

KG-N: Kingsguard-nursery % % %

KG-W: Kingsguard-writers 4 4 4

KG-W–LOO 4 4 %

KG-W–LOO–MDO 4 % %

smallest object would incur a 25% DRAM overhead. We empirically find that most
objects are larger than 16 bytes. We therefore reserve 262 KB for the mark state table
for each 4 MB region of PCM, incurring a 6.25% overhead for storing the mark states
separately. We use this table for all objects over 16 bytes. For objects 16 bytes and
smaller, we mark them small in the write word in the object’s header and use the
normal mark bit in the header instead of the mark state table. For fast access, we store
the address of the mark state table at the beginning of each 4 MB PCM region. To
calculate the mark state address of a PCM object, we add the object offset in the 4 MB
region to the starting address of the table. When the collector frees a 4 MB region
in PCM, it also frees the DRAM space reserved for the mark state table. Section 5.6
shows that this optimization reduces the collector’s writes to PCM for highly allocating
applications.

5.5 Experimental Methodology

This section describes our experimental methodology, including our JVM, ap-
plications, collector configurations, hardware, architectural simulator, and memory
models.

5.5.1 Software

Garbage collectors and configurations. We compare to Jikes RVM’s default stop-
the-world generational Immix collector [18], with DRAM-only and PCM-only heaps.
We use the default settings for maximum object size (8 KB), line size (256 bytes),
and block size (32 KB). We explore four write-rationing garbage collectors shown in
Table 5.1: Kingsguard-nursery, Kingsguard-writers, and two variants that exclude the
Large Object Optimization (LOO) and the Metadata Optimization (MDO) to tease
apart their impact.

The nursery size impacts performance, pause time, and space efficiency [6, 12,
121, 132]. Our default configurations use a 4 MB nursery and a fixed-size maximum
heap size of 2× minimum live size for each application, following prior work [1, 18,
108, 132, 94]. Fixing the heap size fairly controls the space-time tradeoffs that different
collectors make. We set the default observer space size at 8 MB. We empirically find
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Table 5.2: Simulated system parameters.
Component Parameters

Processor 1 socket, 4 cores

Core 4-way issue, 4.0 GHz, 128-entry ROB

Branch predictor hybrid local/global predictor

Max. outstanding 48 loads, 32 stores, 10 L1-D misses

L1-I 32 KB, 4 way, 4 cycle access time

L1-D 32 KB, 8 way, 4 cycle access time

L2 cache 256 KB per core, 8 way, 8 cycle

L3 cache shared 4 MB, 16 way, 30 cycle

Coherence protocol MESI

Memory controller FR-FCFS scheduling, line-interleaved

mapping, closed-page policy

Memory bandwidth 12 GB/s

Memory systems 32 GB DRAM-only

32 GB PCM-only

Hybrid 1 GB DRAM + 32 GB PCM

Organization 8 1 Gb chips per rank

1-8 ranks per DIMM, 1-4 DIMMs

DRAM parameters 45 ns read/write

0.678 Watts read, 0.825 Watts write

PCM parameters 180 ns read, 450 ns write

0.617 Watts read, 3.0 Watts write

30.0 million writes per cell

Fine-grained wear-leveling [103]

DRAM device Micron DDR3 [91]

that sizing the observer space to be twice that of the nursery is the best compromise
between tenured garbage and pause time. We explore other configurations, including
larger nursery sizes (Section 5.6.2). Large nurseries reduce writes to mature objects,
but are not sufficient to manage hybrid memories.

Java applications. We use 16 Java applications: 12 DaCapo [14], pseudojbb2005
(pjbb) [16], and 3 graphchi [78] applications. The graphchi applications are disk-
based graph processing applications, including: (1) page rank (PR), (2) connected
components (CC), and (3) ALS matrix factorization (ALS). For PR and CC, we use
the LiveJournal online social network [85] as the input dataset. For ALS, we use the
training set of the Netflix Challenge. We process 1 M edges using PR and CC, and 1 M
ratings using ALS. We use the default datasets for DaCapo and pjbb2005. In addition
to the original versions of lusearch and pmd in DaCapo, we use an updated version
of lusearch, called lu.Fix (described in [129]), that eliminates useless allocation, and
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an updated version of pmd, called pmd.S (described in [40]) that eliminates a scaling
bottleneck due to a large input file.

5.5.2 Hardware and Simulation

Our evaluation uses both simulation of hybrid memories and execution on real
hardware with DRAMmemory because we lack access to systems with hybrid memo-
ries. We use simulation to evaluate Kingsguard collectors because simulation models
PCM properties accurately. Because this is the first work to use garbage collection to
mitigate PCMwear-out, we want to compare to a prior OS solution. We find it feasible
to implement the OS solution in the simulator. We also use the simulator to obtain
the energy efficiency results for memory systems with DRAM and PCM. Finally, the
simulator helps us to gain insight into the sources of cache writebacks to main memory
and thus the origin of PCM writes. Encouraged by the comparison to the OS approach
and energy efficiency results, the next chapter uses an emulation platform to compare
different write-rationing garbage collectors.

Due to limitations, the simulator unfortunately can execute only a subset of the
benchmarks. Fortunately, these benchmarks cover the extremes and thus a wide
range of write of behaviors. All our applications execute on real hardware. We
furthermore configure the real hardware in various ways to match and validate many
of the simulation results.

Hardware Platform

We use the Intel Nehalem-based IBM x3650 M2 with two Intel Xeon X5570
processors for hardware execution time measurements. Each Xeon processor has 4
cores. Although there are two sockets, we use one to limit non-determinism and to
match the multicore simulator, for which it is only practical to run with at most 4 cores.
Each core has a private L1 with 32 KB for data and 32 KB for instructions. The unified
256 KB L2 cache is private, and the 8 MB L3 cache is shared across all four cores on
each socket. The machine has a main memory capacity of 14 GB.

Simulator

Because PCM is not commercially available, we modify a simulator to model
hybrid memories. We use Sniper [26] v6.0, an x86 simulator because it is cycle-level,
parallel, high-speed and models multicore systems. We use its most detailed cycle-
level and hardware-validated core model. Prior work extended Sniper for managed
language runtimes, including dynamic compilation, and emulation of frequently used
system calls [108]. Because Sniper is a user-level simulator, we are only able to execute
ten of the Java applications. We eliminate fop, luindex, and avrora from simulation
results because of their low allocation rates (see Table 5.4). These limitations motivate
our additional results gathered on actual hardware.
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Memory system and processor architectures. We compare three main memory
systems in the simulator: (1) a 32 GB DRAM-only system, (2) a 32 GB PCM-only
system, and (3) a hybrid system with 1 GB DRAM plus 32 GB PCM. We model
PCM with a base read latency of 4× the DRAM latency, and a write latency of 12×
the DRAM latency [62, 81, 95]. Table 5.2 presents other key architecture, DRAM,
PCM, and cache memory parameters, which we hold constant. We model a quad-core
processor configuration similar to the Intel Haswell processor i7-4770K. Each core is
a superscalar out-of-order core with private L1 and L2, and shared L3 caches.

Power and energy estimation. We use McPAT v1.0 [86] to model processor power
consumption. We model DRAM power according to Micron’s DDR3 device specifica-
tions [91]. PCM uses a 1 KB row buffer similar to DRAM. The remaining peripheral
circuitry is also similar with one important distinction. When writing data from a row
buffer to a PCM array, only the modified line is written back. PCM read operations
do not require pre-charging due to their non-destructive nature and consume less
energy than DRAM. The static power of PCM prototypes are negligible compared
to DRAM [82]. Using latency and energy estimations of PCM prototypes from Lee
et al. [81], we compute the average power to write a cache line to a PCM array as
3 Watts. When estimating PCM latency and power consumption, we assume the same
technology node for DRAM and PCM, and the scaling model from Lee et al. [81].

PCM lifetime modeling. We estimate PCM lifetime using an optimistic analytical
model from the literature [103, 62, 95]. Prior work demonstrates wear-leveling mech-
anisms for future non-volatile memories [20, 48, 81, 82, 103, 105, 125]. Therefore, we
assume writes can be made uniform over the entire capacity of PCM. PCM memory
lifetime in terms of years before failing is estimated as follows:

Y =
S×E

B×225 (5.1)

The size (S) of PCM main memory is 32 GB. We consider the PCM endurance
(E) level used in prior work [100, 101]: 30 M writes per PCM cell. Finally, B is the
write rate of an application during execution. Next, we describe our methodology for
estimating the write rates of our applications on a 32-core machine.

Write rate estimation. Due to limitations in simulator scalability, we are unfor-
tunately only able to simulate a 4-core system. To extend our simulation results to
write rates for a 32-core machine, we first obtain write rates for the 4-core system in
Table 5.3. We then measure on a real hardware platform how write rates scale as we
increase the number of cores from 4 to 32. We multiply the observed scaling behavior
by our simulated write rates to estimate the write rates on a 32-core system. Our
32-core system has two Intel E5-2650L processors. Each processor has 8 cores and
each core is 2-way SMT. Each processor has a 20 MB last level cache. The machine
has 132 GB of main memory.
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Table 5.3: Measured scaling of and estimated write rates.
Benchmark Normalized scaling factor Write rate in GB/s

(measured) (estimated)

Xalan 7.3× 8.5

Pmd 7.7× 3.1

Pmd.Scale 10.0× 7.0

Lusearch 5.0× 9.3

Lu.Fix 5.2× 7.0

Antlr 52.0× 19.0

Bloat 63.0× 24.0

To measure write rates on real hardware, we use the Processor Counter Monitor
from Intel. To fully utilize the 32 cores on our system, we run 32 instances of the
same single-threaded benchmark, and 8 instances of the multithreaded benchmarks.
Table 5.3 shows the scaling factor and write rates with multiple instances of each
benchmark normalized to running a single instance of the benchmark. A few bench-
marks scale linearly with the increase in core counts, but for others, such as antlr and
bloat, the write rates increase by more than an order of magnitude. These applications
experience increased contention in the last level cache. Table 5.3 shows estimated
write rates vary from 3.1 GB/s to 24 GB/s.

5.6 Results

Section 5.6.1 presents our simulation results which evaluate PCM lifetimes, write
behavior, energy, and overhead. We compare DRAM-only, PCM-only, and hybrid
systems with Kingsguard collectors. Our cycle-level simulator faithfully models the
cache hierarchy found in real systems and wear-leveling hardware. Modeling caches is
important because they absorb writes, and are thus the first line of defense in protecting
PCM from writes. Modeling wear-leveling is important because by spreading writes
to lines and pages evenly, it makes write rate the only necessary target for optimization.

Section 5.6.2 presents performance results on real hardware of all Kingsguard
configurations. It includes statistics on how Kingsguard collectors organize the heap
to influence PCM write traffic for 16 Java applications and write traffic to PCM
measured in an architecture-independent manner.

Both sets of results show significant improvements in PCM lifetimes when using
hybrid memories and our write-rationing garbage collectors. The hardware results
confirm the simulation results and explore overheads and optimizations in more detail.
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Figure 5.5: Kingsguard-nursery (KG-N) and Kingsguard-writers (KG-W) increase
PCM lifetime.

5.6.1 Simulation Results

Lifetime

Figure 5.5 presents PCM lifetime improvements normalized to PCM-only using
lifetime estimates from the models detailed in Section 5.5. On a 32 GB PCM-
only system with an endurance of 30M writes, line-level write back and wear-
leveling, application lifetimes average 4 years, but are sometimes as low as 15 months
for lusearch. Kingsguard collectors executing on a hybrid memory system deliver
substantial lifetime improvements over PCM-only systems. KG-N improves lifetime
on average by 5×. Individual benchmarks improve by 1.9× for xalan and up to 11×
for lu.Fix. KG-W improves lifetime even more: 11× longer than a PCM-only system
on average. Individual benchmarks improve by 6× for lusearch and up to 17× for
lu.Fix. KG-W achieves these long lifetimes by minimizing writes to PCM memory,
while using an average of only 16 MB of DRAM and at most 24 MB of DRAM for
these applications (see Table 5.4 and Section 6.7.7).

Write Analysis

Figure 5.6 plots writes to PCM using the Kingsguard configurations from Table 5.1
normalized to PCM-only. While KG-N reduces writes to PCM by 81% on average,
KG-W reduces writes by 91% compared to a PCM-only system. Leaving out the large
object optimization (KG-W–LOO) and metadata optimization (KG-W–LOO–MDO)
has a small overall impact, except for xalan. In xalan, the large object optimization
reduces writes to large objects and, more surprisingly, writes to small objects to which
the large objects point. While the effect on total writes is small with MDO, it does
eliminate a lot of writes to PCM during major collections: 50% and 12% respectively
for xalan and lusearch.
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Figure 5.6: All Kingsguard configurations substantially reduce writes compared to the
PCM-only baseline (1.0).
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Figure 5.7: OS-managed write partitioning (WP) results in more writes to PCM than
KG-N and KG-W.

Comparison to Write Partitioning (WP)

We now compare Write Partitioning (WP), the state-of-the-art OS technique for
reducing writes to PCM [131, 133]. Our implementation, as described in Section 5.2,
uses the recommended eight queues, an OS mapping time quantum of 10 ms, migrates
pages in the four highest ranked queues to DRAM, and demotes all pages in DRAM
to a lower ranked queue every 50 ms to optimize for phase behavior. We explore other
configurations, but these parameters perform best for our workloads. Figure 5.7 plots
PCMwrite reductions byKG-N, KG-W, andWP, normalized to PCM-only. Writebacks
include writes by the application and collector. Migrations show writes due to WP
migrating pages from DRAM to PCM. WP’s reactive policy does eventually detect
nursery pages as highly written, but this detection takes time. WP is effective at
reducing application writes to PCM, but its migration policy moves pages from PCM
to DRAM and back to PCM. For example, WP observes lots of writes when the default
collector copies nursery objects to the mature space, which triggers WP to migrate
pages from PCM to DRAM. Many of these pages incur few subsequent writes, so WP
migrates them back to PCM. WP reduces writes to PCM by 69%, whereas KG-N and
KG-W reduce writes by 81% and 91%, respectively. By using object demographics
and fine-grained per-object monitoring, KG-W has over 3× fewer writes than WP.
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Figure 5.8: Kingsguard reduces the energy-delay product (EDP) compared to DRAM-
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Figure 5.9: PCM access time overheads dominate collector and monitor overheads in
KG-W.

Energy

To quantify the energy efficiency of KG-W, KG-N, and a PCM-only system,
Figure 5.8 shows the energy-delay product (EDP) normalized to a DRAM-only system.
EDP is energy multiplied by execution time, so it takes the higher latencies of PCM
into account. The EDP is sometimes worse on a PCM-only system compared to
DRAM-only, particularly for lusearch. Using KG-N reduces the average energy-delay
product by 36% over the DRAM-only system, and also significantly improves over a
PCM-only system. Because of KG-W’s additional overhead, its energy-delay product
is slightly higher, saving 32% over a DRAM-only system. In addition to reducing the
EDP, both KG-N and KGW reduce the total energy consumption by 47% on average.

Breakdown of Overheads

A PCM-only system adds 70% to the execution time of a DRAM-only system
on average. Our simulator results show that KG-N reduces overheads by over 50%
compared to PCM-only, but still adds 31% to execution time on average over DRAM-
only. KG-W adds overhead compared to KG-N (40% on average) because it monitors
individual objects and copies long-lived objects at least one more time than KG-N,
since it first copies them to the observer space and then to a mature space.
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We break down KG-W overheads into: (a) Remsets—write-barriers to remember
pointers to the observer space; (b) GC — KG-W adds collections of the observer
space, which often adds overhead; however, collection time sometimes reduces because
objects die in the observer space, reducing full heap collections; (c)Monitoring—KG-
W’s write-barrier records more information about all writes to non-nursery objects;
and (d) PCM — PCM has longer read and write latencies than DRAM. Other effects,
such as cache locality, are unmeasured in this experiment and we report them in (e)
Other. We configure the simulator and the VM in a variety of different ways to measure
all these overheads.

Figure 5.9 presents this breakdown relative to DRAM-only. The largest overhead
is the longer PCM access latencies (PCM), which add 25% to total time on average.
The overhead of collecting KG-W’s extra spaces (GC), and of monitoring writes to
non-nursery spaces (Monitoring) are each a little under 5% on average. Keeping
track of more remembered sets to collect the observer space in isolation (Remsets)
adds around 3% overhead. Other overhead (Other) accounts for another 3% of extra
execution time. Pmd has a high Other overhead because it has a high nursery survival
rate (see Table 5.4) which triggers more observer collections and has cache effects.
Our real system performance results in Section 5.6.2 confirm that the Kingsguard
mechanisms themselves add little to total time. Using a hybrid DRAM-PCM memory
system for its scalability properties inevitably adds latency to execution times. KG-W
mitigates these latencies by redirecting some reads and writes to a small amount of
DRAM.

The Origin of Writes

Figure 5.10 classifies where writes to PCM originate: the application, nursery
collection, observer collection, or major collection. We modify the simulator to track
which phase last wrote each cache line, since LRU policies evict lines to PCM or
DRAM well after their last access. KG-W reduces PCM application writes for most
benchmarks compared to KG-N. This reduction corresponds to an increase in DRAM
writes (not shown), as designed. The average increase in writes to both DRAM and
PCM together (not shown) with KG-W over KG-N is 12% and the worst case is pmd
at 25%. This increase stems from additional collection work. Figure 5.10 shows only
the writes to PCM.

The collector induces writes when it initially places an object in PCM and when
it updates PCM references to other objects. When analyzing the writes performed by
the collector, we note that: (1) KG-N incurs writes to PCM during a nursery collection
both due to copying survivors into the PCM mature space and due to updating the
references in PCM that point to them; (2) KG-W eliminates major collections for lu.fix
and bloat by reclaiming objects in the observer space; (3) writes to PCM during a
nursery collection with KG-W are solely due to updating references in PCM spaces
that point to surviving nursery objects copied to the observer space. These results
suggest further PCMwrite reductions are possible by avoiding pointer updates in PCM
and deploying better predictors of application writes.
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Figure 5.10: Where writes to PCM originate. KG-W reduces application and collector
writes to PCM.

5.6.2 Real Hardware Results

We now evaluate Kingsguard on real hardware. We analyze write behavior,
performance, and memory characteristics. Lacking PCM hardware, all latencies are
to DRAM.

Write Analysis

Figure 5.11 presents writes to the PCM heap using KG-N and KG-W as reported
by write-barriers. These results are thus architecture-independent since they do not
consider cache effects that filter out some writes to both DRAM and PCM. We
normalize to KG-N with a 4MB nursery and compare to KG-N with a larger 12MB
nursery, and to KG-W with a 4MB nursery with and without primitive write-barriers.
Using a larger nursery reduces the writes to PCM by 24% on average compared to
KG-N. A larger nursery is not effective at reducing PCM writes for four out of the five
applications with more writes in the mature space than the nursery (the five left-most
applications in this figure and in Figure 5.2). KG-W is muchmore effective than simply
using a larger nursery, reducing writes to PCM by 80% on average.

For sunflow, KG-W eliminates 99.7% of writes to PCM by copying the written
objects tomatureDRAMduring observer collections. For pjbb and hsqldb, we similarly
observe many writes to the few mature DRAM objects. On the other hand, KG-W
eliminates 97% of writes to PCM for lusearch by moving primitive arrays from PCM
to DRAM during mature collections. KG-W reduces writes for all the GraphChi
benchmarks, which all need very large heaps, by over 50% as compared to KG-N.
For luindex and CC, large objects in PCM incur a lot of writes, and are only moved
to DRAM during a mature collection. Interestingly, luindex with KG-W requires no
mature space collections because so many objects die in the observer space. For
CC, writes happen before a mature collection is triggered. These behaviors motivate
additional policies for mature collection to be triggered by writes to PCM. We leave
this exploration to future work.
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Figure 5.12: KG-N performs best. KG-W adds 7% overhead to execution time on
average.

Primitive versus reference monitoring. We observe that excluding primitive mon-
itoring (KG-W–PM) in Figure 5.11 significantly reduces writes compared to KG-N for
several applications. For instance, in the case of pmd, eclipse, and bloat, reference
writes capture most of the highly mutated objects. On the other hand, for seven
applications, PCM writes increase quite a bit over KG-W. On average, KG-W-PM
eliminates 65% of PCM writes compared to 80% for KG-W.

Performance

Figure 5.12 presents the performance of KG-W configurations normalized to KG-
N. The results in Figure 5.12 understate the performance advantage of KG-W over
KG-N. On a system with PCM, the large reduction in writes to PCM reduces execution
time due to latency savings. With respect to KG-W, the large object (KG-W–LOO)
and metadata space optimizations (KG-W–LOO–MDO) are performance-neutral on
average. KG-W increases the execution time on average by 7%, and hsqldb by 25%
over KG-N. This overhead is mostly due to the additional observer collections. During
each observer collection, some highly mutated objects are placed in mature DRAM,
which results in a large reduction in writes to PCM, as shown in Figure 5.11. KG-W
reduces execution time for a few benchmarks: sunflow, eclipse, and bloat, due to
fewer full-heap collections. This result is a feature of KG-W. Observer collections are
cheaper than full-heap collections because (1) they operate over smaller regions and
(2) when they reclaim objects, they prevent mature DRAM and PCM from filling up.
Finally, we observe that eliminating primitive monitoring (KG-W–PM) has the highest
impact on lusearch: a 7% reduction in execution time.

Memory and Demographic Analysis

Table 5.4 shows allocation and survival rates, and heap space occupancy per
benchmark for our collectors. Applications allocate frequently, between 56 MB and
14 GB ofmemory (column 1), especially the GraphChi benchmarks. We gray out those
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applications with less than 100 MB of allocation and exclude them from the averages.
Our applications have an average nursery survival rate of 17% and a maximum of 66%
(columns 3 and 4).

A 4 MB DRAM nursery maximizes the use of PCM for 97% of the KG-N heap,
averaging between 21 and 280 MB, and up to 502 MB of PCM, for the GraphChi
benchmarks (columns 5 and 6). KG-W uses more DRAM: 6 to 86 MB of DRAM on
average and up to 224 MB (columns 9 and 10), and 16 MB to 263 MB of PCM and
up to 484 MB for CC (columns 7 and 8). KG-W trades higher utilization of DRAM
(10%) for disproportionate increases in PCM liftetimes.

Columns 11 and 12 show the DRAM consumed by WP. The average DRAM
consumption is 7% more than KG-W. Individual benchmarks behave differently. For
instance, for lusearch and xalan, WP consumes 3× and 5× more DRAM on average.
Both these benchmarks allocate many large objects directly in PCM. WP’s reactive
algorithm keeps these pages in DRAM. For the remaining benchmarks, WP consumes
less or similar DRAM memory compared to KG-W.

Column 13 reports the percent of the total heap (column 1) occupied by KG-W’s
mature DRAM space, which ranges from 1.3 MB to 186 MB, only 8% of the heap on
average. Columns 14 and 15 show that the DRAM metadata space consumes a small
fraction of the KG-W heap. Overall, KG-W stores 80% of the heap in PCM versus
KG-N’s 98%.

Column 16 shows that the observer-space survival rate ranges from 0.2% to 99%.
Benchmarks with large observer survival rates, such as hsqldb, PR, pmd, pmd.S, and
CC have correspondingly higher overheads in Figure 5.12 due to having to copy objects
twice before they reach themature space. In contrast, the benchmarkswith lowobserver
space survival rates have lower overheads. The last columns shows KG-W copies most
objects to PCM: it retains only between 0.2% and 41% of surviving observer objects in
DRAM. KG-W uses less PCM memory than KG-N for two reasons: objects die in the
observer space and KG-W keeps a few written objects in mature DRAM. Even though
our applications exhibit a wide range of behaviors with respect to object demographics
and writes, KG-W is extremely effective at limiting PCM writes by managing object
placement and migration in hybrid DRAM-PCM memories.
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5.6 - Results
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Figure 5.13: MB in PCM (left-hand y-axis label) versus MB in DRAM (right-hand y-
axis label) as a function of time for Page Rank and Eclipse. KG-W uses large amounts
of PCM and small amounts of DRAM.

Heap Composition

This section explores thewayKG-WusesDRAMand PCMusing heap composition
graphs. Figure 5.13 plots the usage of PCM versus DRAM inMB over time for PR and
eclipse. For both applications, full heap collections cause the amount of PCMmemory
used to decrease drastically, mostly because many objects die, but also because some
are copied to DRAM.

For PR, while the amount of PCM used grows to close to 500 MB, the maximum
amount of DRAM used (right axis) is around 40 MB. Visually, DRAM occupancy
increases at the same time as PCM shrinks due to a full heap collection that moves
objects from PCM toDRAM. For instance at around 10 seconds into execution, DRAM
occupancy increases due to a full heap collection that copies written mature objects
out of PCM. As Table 5.4 shows, Page Rank has a high observer survival rate, yet
KG-W promotes very few of these surviving observer objects to mature DRAM. The
graph shows how these observer collections quickly populate PCM and consequently
trigger full heap collections.
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Weobserve that eclipse uses up to 145 MBof PCM, but theDRAMusagemaxes out
around 2.5 MB. Highly mutated objects in DRAM also have long lifetimes for eclipse.
During mature collections (around the 5 second and 14 second marks), whereas the
PCM usage drops by almost half, much of mature DRAM stays alive. Table 5.4 shows
that observer collections copy only 1% of surviving objects on average to mature
DRAM. Fortunately, these DRAM objects are highly written, which protects PCM
from writes.

5.7 Summary and Interpretation

This chapter introduces write-rationing garbage collectors, which seek tomaximize
the use of PCM while improving its lifetime in hybrid memory systems. Our Kings-
guard collectors exploit object demographics and individual object write behaviors
in Java applications. Kingsguard-nursery (KG-N) places nursery objects in DRAM
and all other objects in PCM. Kingsguard-writers (KG-W) adds monitoring of mature
object writes and moves objects between DRAM and PCM based on their individual
write history. KG-N places 92% of heap objects on average in PCM, but still removes
over 80% of writes to PCM compared to PCM-only with hardware wear-leveling,
leading to a 5× improvement in PCM lifetime. KG-W places 68% of the heap in PCM
to remove over 90% of all writes, thus greatly extending PCM lifetime by 11×. Both
KG-N and KG-W improve over WP, the state-of-the-art OS approach [105, 131]; WP
writes to PCM 3× more than KG-W. Overall, this work demonstrates that managed
runtimes have a significant advantage over hardware and OS-only approaches because
they can exploit, observe, and react to coarse-grained object demographics and to
fine-grained object behaviors, opening up a new and promising direction to manage
hybrid DRAM-PCM memory systems.

Researchers are still developing non-volatile memory technologies, so endurance
levels, access latency, and energy characteristics may improve. Regardless, PCM cell
endurance is very unlikely to reach DRAM levels because of material properties. Other
technologies, such as resistive random-access memory prototypes, have higher, but
still finite endurance, e.g., one trillion writes per cell [83]. We believe write-rationing
garbage collection is also relevant for other memory technologies.

Unfortunately, KG-W suffers from three main drawbacks. (1) It incurs high
overhead from monitoring objects to dynamically discover frequently written objects.
(2) It is reactive; it monitors object writes in a limited time window and must wait until
the next collection to act on the information, leading to mispredictions and allocation
of frequently written objects in PCM, particularly large objects. (3) It consumes
excessive DRAM capacity. The next chapter introduces a different approach towards
write-rationing garbage collection that addresses the drawbacks of KG-W.
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Chapter 6

Crystal Gazer: Profile-Driven
Write-Rationing Garbage
Collection for Hybrid Memories

6.1 Introduction

Including PCM into the main memory system requires solutions to tolerate the
limited write endurance. The previous chapter introduced write-rationing garbage
collection for hybridDRAM-PCMmemory to improve endurance by placing frequently
written objects in DRAM spaces and read-mostly objects in a PCM mature space [2].
The best write-rationing collector, Kingsguard-Writers (KG-W), has shortcomings: it
is reactive and suffers from high overhead, and consumes excessive DRAM capacity.

This chapter introduces profile-driven write-rationing garbage collection for hybrid
memories, called Crystal Gazer (CGZ). We leverage the fact that modern mobile and
server workloads execute frequently, which makes profiling practical. Prior work
shows that allocation site, or the code location where the object is allocated, is a good
predictor of object lifetimes [8, 19, 15, 29, 68], and we find it is also a good predictor
of write-intensity. We first profile individual object writes and their allocation sites,
classifying a site as producing read-mostly or highly written objects in an offline run.
We show that the predictor is highly accurate with true advice (different inputs for
training than classification) for 15 Java benchmarks from three suites (DaCapo, Pjbb
and GraphChi).

CGZ uses the profile at runtime to guide object placement in mature DRAM-
backed and PCM-backed memory spaces. CGZ initially allocates all objects in the
DRAM nursery. It uses the advice to label objects at allocation time as coming from
read-mostly or highly written allocation sites. When it promotes a nursery survivor,
it copies the object to the DRAM or PCM mature space according to the predicted
write-intensity label. If there is no advice at all, a production system should fall back
on KG-W for dynamic monitoring. Unprofiled allocation sites may default to PCM or
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DRAM. CGZ promotes frequently written objects to DRAM, protecting PCM from
writes. It promotes read-mostly objects to PCM, exploiting PCM capacity. It places
the majority of mature objects in PCM, because only a small fraction of objects are
frequently written.

Leveraging profile information overcomes the three major drawbacks of existing
write-rationing garbage collectors. (1) Profile-driven promotion to mature DRAM
and PCM spaces eliminates the overhead of dynamically monitoring objects. (2)
CGZ is proactive in placing objects in DRAM or PCM, which combined with the
high accuracy of ahead-of-time profiling, reduces mispredictions, particularly of large
objects, and the need to copy objects between spaces, further extending PCM’s lifetime.
(3) Because writes are concentrated in a small fraction of objects and well predicted
by allocation site, it reduces the amount of DRAM capacity needed, leveraging PCM’s
large capacity.

A key feature of CGZ is its ability to trade off PCM lifetime for DRAM capacity
by using different heuristics and thresholds to classify allocation sites, using only
one profiling run. Our experimental evaluation shows that CGZ provides a Pareto-
optimal tradeoff between PCM lifetime and DRAM capacity. In contrast, KG-W
provides a single sub-optimal operating point. Our experimental evaluation with 15
Java workloads uses an emulated hybrid memory system on multi-socket NUMA
hardware to explore CGZ’s effectiveness. We bind the application to one socket and
emulate DRAM as the local NUMA node memory and PCM as the remote NUMA
node memory. Compared to KG-W, the state-of-the-art in terms of improving PCM
lifetime for hybrid memories, CGZ reduces the execution time overhead by 8% on
average and up to 30%. CGZ also eliminates 30% more PCM writes on average than
KG-W, when optimized for extending PCM’s lifetime. It consumes 68% less DRAM
capacity, when optimized for the smallest DRAM capacity.

Counter-intuitively perhaps, the static profile-driven CGZ solution outperforms
KG-W’s dynamic approach. The reason is twofold. (1) Allocation site is a good
predictor for write-intensity, i.e., most objects allocated from a single site are either
frequently written or read-mostly — we refer to this property as allocation site write
homogeneity. (2) A small number of allocation sites captures the bulk of writes to a
small fraction of the entire mature space heap volume. The high prediction accuracy
for write-intensive objects allocated from a limited number of allocation sites makes
CGZ outperform KG-W, which needs to dynamically learn object write-intensity and
may place highly written objects in PCM, which it cannot move to DRAM until the
next full-heap collection.

Overall, this chapter makes the following contributions:

• the design and implementation of profile-driven write-rationing garbage collec-
tion for hybrid memories;

• offline profiling, advice generation, and a compilation framework that gathers,
generates, and uses allocation advice to trade off PCM lifetime and DRAM
capacity;

• emulation results demonstrating reduced execution time overhead compared
to state-of-the-art write-rationing garbage collection while at the same time
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extending PCM lifetime and reducing DRAM capacity needs.

6.2 Related Work and Background

Chapter 2 provides background on our assumedmemory and storage hierarchy, Java
Virtual Machine (JVM), garbage collection, and the specific Immix garbage collector
on which we build. This section discusses related work on profile-based optimizations
for Java workloads.

Profile-driven DRAM memory management. Prior works use allocation site pro-
filing to optimize the performance and energy of DRAM-basedmemory systems. Jantz
et al. [63] use offline profiling to divide allocation sites into hot and cold sites. The
heap is partitioned into hot and cold regions, and the OSmaps virtual to physical pages
with the goal to reduce DRAM energy consumption without hurting performance. In
contrast, we focus on memory lifetimes in hybrid DRAM-PCM memories. Our work
is the first to show the allocation site homogeneity of writes, and a garbage collector
that acts upon allocation site advice to place highly written objects in DRAM. Recent
work also exploits allocation site profiling to place program data in upcoming memory
systems with high-bandwidth DRAM placed next to traditional DRAM [41]. Their
work is limited by C++ semantics. In contrast to our work, they do not use a real-world
hardware prototype to evaluate their data placement strategies and hence, among other
limitations, are unable to report the total execution time of their applications.

Profile-driven pretenuring. Prior work profiles allocation sites to predict object
lifetimes and allocate long-lived objects directly in a mature space (pretenuring),
eliminating nursery promotion costs. We follow the same approach of ahead-of-time
profiling and then applying advice in production runs as in Blackburn et al. [19, 15], but
based on writes instead of lifetime. Dynamic lifetime profiling has the advantages that
it does not require a profile and can react to program phases, but the disadvantages of
dynamic monitoring costs and warm up time [68]. In our work, advice predicts write-
intensity and the collector allocates objects in DRAM or PCM, both at allocation
(large objects) and promotion (small objects) time. We find allocation site better
predicts write-intensity than lifetime and believe combining both predictions, and
some dynamic monitoring, are interesting avenues for future work.

Other profile-driven optimizations. Krintz et al. [74] profile Java applications
offline to discover compiler optimizations that speed up a method’s execution. They
annotate the bytecode to communicate these optimizations to the compiler which
reduces compilation overhead during run-time. In subsequent work, Krintz [73]
combines offline and online profiling to reduce compilation overhead even further.
Profiling has been used to improve memory management in Java workloads. Buytaert
et al. [23] collect information offline about when to trigger garbage collection to
maximize collection yield. They also use offline analysis to decide, during execution
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Figure 6.1: Write homogeneity for allocation site. 40-60% of the heap volume is
allocated from a perfectly homogeneous allocation site; 80-90% of the heap volume is
allocated from allocation sites that are at least 90% homogeneous.

time, between triggering nursery or full-heap collections. Chen et al. [28] leverage
profile information to proactively reorganize the heap to improve data locality.

6.3 Allocation Site as a Write Predictor

This section examines how well allocation site predicts writes to objects and the
distribution of writes in heap memory. We use 15 Java workloads, including modern
transaction and graph processing workloads with huge memory footprints. Prior work
establishes allocation site as an accurate predictor of object lifetime [8, 19, 15, 29, 68].
Our prior work shows that nursery objects incur many writes and thus, to avoid writes
to NVM, should be put in DRAM [2]. We show here that allocation site is also a good
predictor of the write-intensity of old objects and that these writes are concentrated to
a small volume of objects.

Allocation site homogeneity. To assess the predictive power of allocation site for
object write-intensity, we measure the homogeneity of writes on the basis of allocation
site. We use the information-theoretic notion of entropy to capture write homogeneity.
An entropy of 0 means perfect homogeneity, i.e., 100% of objects are highly written
or read-mostly. A homogeneity of 1 means no homogeneity, i.e., 50% of objects are
highly written and 50% are read-mostly. To compute entropy, we classify objects
as highly written if they are written once after allocation in the mature space, and
read-mostly otherwise. Figure 6.1 shows average homogeneity curves for the DaCapo,
Pjbb and GraphChi benchmark suites. The percentage of heap volume is reported
as a function of allocation site homogeneity. The bottom and top horizontal axes
report entropy and the fraction of objects that are homogeneous in write-intensity,
respectively. The homogeneity of allocation sites is very high: 40% to 60% of the
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Figure 6.2: Distribution of mature writes and heap volume by allocation site for Pjbb
and Page Rank. A few sites capture a majority of mature object writes and occupy a
small fraction of the heap.

heap volume is perfectly homogeneous, and 80% to 90% is from sites with very high
(at least 90%) homogeneity.

The observation that allocation site is a good predictor of write-intensity motivates
a profile-driven approach, i.e., classifying allocation sites through profiling provides a
prediction for object write-intensity. However, allocation site write-homogeneity is not
enough for a well-performing write-rationing garbage collector. They also are most
efficient if the heap volume of write-intensive objects is small, so that we can allocate
the least possible volume in DRAM to leverage PCM’s capacity to the fullest.

Write distribution. Figure 6.2 shows the cumulative distribution of writes to objects
in themature space and its heap volume as a percentage of the total mature allocation on
a per allocation site basis for two representative benchmarks: Pjbb (most homogeneous)
andGraphChi’sPage Rank (least). We observe that a couple dozen sites out of a couple
thousand capture the vast majority of mature writes and constitute only a small fraction
of the total heap volume. Similar results hold for all other benchmarks. These two
key observations reveal the opportunity that we exploit in Crystal Gazer: profiling
accurately identifies sites that allocate a small volume of highly written objects.

6.4 Crystal Gazer

This section describes Crystal Gazer, profile-driven write-rationing garbage col-
lection for hybrid memories. CGZ uses offline profiling to analyze object write-
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Figure 6.3: Overview of Crystal Gazer. Offline analysis identifies allocation sites of
highly written objects (e.g., object b) which are annotated in the bytecode. During
production, the collector will allocate an object in DRAM if predicted highly written
versus PCM if predicted read-mostly, upon a nursery collection.

intensity, from which we generate advice to be used in a subsequent production
run. CGZ eliminates the high cost of dynamic monitoring and unnecessary copying
compared to KG-W, the previous best write-rationing garbage collector. CGZ achieves
a combination of better performance, reduced DRAM usage, and fewer writes to PCM
than KG-W.

6.4.1 Overview

Figure 6.3 shows the Crystal Gazer work flow. We first profile the application to
collect a trace of writes to each object and their allocation sites. We group objects by
allocation site and use various heuristics to label allocation sites asDRAM (i.e., objects
allocated from this site are predicted frequently written) or PCM (i.e., objects allocated
from this site are predicted read-mostly). Advice files record allocation sites labeled
DRAM. All other sites are implicitly labeled as PCM. Thus, an unprofiled site may be
labeled either DRAMor PCM; we default to PCM in this work. For expediency, we use
bytecode rewriting to insert a new_dram bytecode based on the profile. The standard
portable mechanism is to annotate bytecodes [74], since Java compilers simply ignore
unsupported annotations. During a production run, our modified compiler generates
a special allocation sequence to process the new_dram bytecode that, in addition to
reserving the space, labels objects as DRAM or PCM. Crystal Gazer then promotes
objects fromDRAM-labeled sites to amatureDRAMspace and other objects (expected
to be read-mostly) to a mature PCM space.

6.4.2 Profiling

Our prior work shows that nursery objects plus a small fraction (2%) of all mature
objects capture 90% of all application writes [2]. The KG-W write-rationing garbage
collector incurs significant overhead to discover the highly written 2% of mature
objects. Our offline profiling eliminates this overhead by identifying allocation sites
that produce highly written objects in previous executions. Profiling produces a write-
intensity trace that records for each object: (1) a unique identifier, (2) the number of
writes, (3) its size in bytes, and (4) the allocation site. See Figure 6.4(a) for an example.
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The last column lists the object’s allocation site as a <method-name:bytecode-index>
pair. Because most objects die young, we only profile mature objects which also
reduces the size of the write-intensity trace.

To identify objects, we use mature space addresses. We configure the heap size
to use the entire 32-bit virtual address space in Jikes RVM. This setting eliminates
full-heap collections for DaCapo benchmarks and SPECjbb. As a result, each object
has a unique address in the trace. The GraphChi benchmarks allocate more memory
and thus require full-heap collections. In this case, we compute the write-intensity
trace per full-heap collection. We process individual traces and combine them to
gather allocation advice for the entire application. An alternative option would be to
consolidate object statistics on the fly upon full-heap collections.

We use the same nursery size during profiling as we use during a production run.
If the production nursery size is unknown, a small (thus conservative) nursery will
capture a large fraction of mature objects and their allocation sites in the write-intensity
trace. Using small nurseries during profiling produces write-intensity characteristics
for more objects, but increases the size of the write-intensity trace.

We use write barriers to count the number of writes to each object. Reference write
barriers are required for all generational collectors to collect the nursery independently,
to record old to young pointers. We also enable write barriers to primitives during
profiling. Profiling ignores zero-initializing writes. Write barriers capture all writes
regardless of whether the object or any of its fields are physically in a processor cache
or main memory. Our profiling is thus architecture-independent, as is the allocation
advice we produce for Crystal Gazer.

During profiling, we label objects with their allocation site at allocation time. We
associate each allocation site with a unique identifier which the compiler creates when
it first encounters each new bytecode during profiling, following prior work [60]. The
compiler generates an allocation sequence that stores this identifier in the header of each
object. At the end of program execution, we record the allocation site along with each
object’s address and other attributes in the write-intensity trace. To correlate allocation
sites between executions of an application, the trace records the class, method, and
bytecode index of the allocation site.

Collecting a write-intensity trace incurs a 2.4× slowdown over native execution
on average according to our measurements. The trace’s size ranges between 200KB
and 120MB after compression for our benchmarks. We did not optimize this overhead
further since it is incurred infrequently in non-production runs.

6.4.3 Allocation Site Classification

Next, we analyze the write-intensity trace to generate allocation advice, classifying
allocation sites as DRAM versus PCM. We use two criteria for classification. (1) The
fraction of total objects allocated from a site that are write-intensive. (2) Thresholds
that define write-intensive objects. For the first criterion, we use a write homogeneity
threshold. If the fraction of write-intensive objects allocated from a site is above
the write homogeneity threshold (θh), we classify the site as DRAM. Otherwise, we
classify the site asPCM. A small homogeneity threshold works best to limit the number
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of writes to PCM but puts more pressure on DRAM capacity. A high homogeneity
threshold reduces DRAM capacity usage at the expense of more PCM writes. For the
second criterion that classifies an object as write-intensive, we consider two heuristics.

Write-Frequency (FREQ) uses the frequency of writes to identify write-intensive
objects. If an object gets more than a write-frequency threshold θ f of writes, the
object is considered write-intensive.

Write-Density (DENS) uses the ratio of writes to object size (in bytes) to identify
write-intensive objects. Objects with a write-density above a write-density threshold
θd are considered write-intensive. DENS gives higher weight to small objects that
collect a relatively large number of writes. DENS prioritizes small objects for DRAM
allocation and large objects for PCM allocation, thereby better exploiting PCM’s
capacity compared to FREQ.

Example. Figure 6.4(a) shows an example write-intensity trace consisting of 6
objects from two allocation sites: from method A and B. We analyze the trace using
the FREQ and DENS heuristics, and identify which of the two sites are classified as
DRAM in Figure 6.4(b). We assume a homogeneity threshold of 5%. We increase θ f
from 1 to 100, and θd from 0.1 to 10 to observe their impact on site classification.
Setting θ f to 1 classifies both A and B as DRAM. Raising θ f to 100 excludes A from
DRAM classification because it does not have 5% of objects with more than 100 writes.
However, B will still be labeled as DRAM. If we want to preserve DRAM capacity by
excluding B, we need even larger values for θ f . On the other hand, if we consider
DENS, which uses less DRAM capacity, both A and B are classified as DRAM with a
θd of 0.1. When we increase θd to one, only A is classified asDRAM. With this setting,
objects allocated from B do not get sufficient writes per byte to be classified as DRAM.
Finally, when θd is set to 10, both A and B are excluded from DRAM labeling. This
example illustrates that large write-density thresholds favor exploiting PCM capacity.

6.4.4 Bytecode Generation

The previous step generates allocation site advice as a file of <site-string, advice>
pairs. The advice file only includes the allocation sites labeled DRAM. Unlabeled
allocation sites default to PCM. Future systems could consider labeling unprofiled sites
as DRAM or dynamically profiling just these objects. Since a minority of allocation
sites are labeled DRAM, the size of the advice file is minimized.

We use bytecode rewriting to communicate allocation site labels to the managed
runtime. The bytecode rewriter first identifies the allocation site, and then queries the
advice file to check whether the site is present. If it is not, the rewriter leaves the new
bytecode unchanged. If it is, the rewriter overwrites the new bytecode with the newly
introduced new_dram bytecode. The runtime, when interpreting or compiling the new
bytecode, uses the default allocator, called ALLOC_DEFAULT. The runtime will then
copy all objects allocated by such sites to PCM if they survive a nursery collection. For
the new_dram bytecode, the runtime uses the newly added ALLOC_DRAM allocator.
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(a) Crystal Gazer’s heap with no survivor space (CGZ)
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(b) Crystal Gazer’s heap with survivor space (CGZ-S)
Figure 6.5: Heap organizationswithout andwith a survivor space. Objects are allocated
in a DRAM nursery and survivor spaces before being promoted to the mature spaces
in DRAM and PCM depending on the object’s predicted write behavior.

This allocator sets a bit in the object header which notifies the garbage collector to
copy these objects to DRAM if they survive a nursery collection.

6.4.5 Heap Organization

This section describes our heap organizations and how Crystal Gazer copies and
allocates highly written objects in DRAM and read-mostly objects in PCM. We
consider two heap organizations, see Figure 6.5. They are patterned after Kingsguard
heap configurations (for KG-N and KG-W, respectively) to compare apples-to-apples
with them. Crystal Gazer collectors follow Kingsguard by always placing new objects
in a DRAM nursery, because nursery objects are highly mutated. Some large objects,
discussed below, are allocated directly in the mature space. We partition the mature
and large object spaces into DRAM and PCM regions. We first describe our system
using the heap organization in Figure 6.5(a), and then motivate and describe the heap
organization in Figure 6.5(b).

Fresh allocation is a two-step process: (1) reserving space and (2) initializing the
object header, called post-allocation. Objects less than 8KB are always allocated in
the nursery. For nursery objects, post-allocation sets a bit in the object’s header if
its allocation site is labeled DRAM, as shown in Figure 6.6. We steal a bit not in
use from the object header in Jikes RVM and call it the DRAM_BIT. Objects with the
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DRAM_BIT set are predicted to be highly written. During a nursery collection, the
garbage collector checks the DRAM_BIT of each object. If the bit is set, it promotes
the object to the mature space in DRAM. Otherwise, it promotes the object, predicted
to be read-mostly, to the PCM mature space.

1 @Inline
2 public Address postAlloc(ObjectReference ref, int allocator) {
3 if (allocator == Gen.ALLOC_DRAM) {
4 byte old = readHeaderByte(ref);
5 writeHeaderByte(ref, (byte) (old | DRAM_BIT));
6 }
7 }

Figure 6.6: Our post allocation sequence sets a special bit in the header of objects
that are predicted highly written.

In the default GenImmix, objects larger than 8KB are allocated directly into a
large object space. For these objects, Crystal Gazer’s (1) ALLOC_DEFAULT allocates
the object directly in the LOS PCM space, and (2) ALLOC_DRAM places the object
directly in the LOS DRAM space, as depicted in Figure 6.4(a). Crystal Gazer by
default uses both KG-W’s metadata optimization and large object optimization (LOO).
See Section 6.2. With LOO, the allocator places large objects that are less than half
of the remaining nursery size in the nursery to give them a chance to die, because
surprisingly some do die quickly. In this case, the object’s DRAM_BIT is set based on
the advice, and then consulted during the next minor garbage collection to promote the
object to the large object space (LOS) in DRAM or PCM.

Copying nursery survivors directly to the mature space results in tenured garbage
because some objects die quickly in the mature space. Figure 6.5(b) shows an
alternative heap organization with an intermediate space called the survivor space
between the nursery and the mature spaces. The HotSpot generational collectors use
an eden space for nursery survivors that serves a similar purpose [38]. The KG-W
collector differs because it uses its observer space to monitor writes to these objects as
well. In Crystal Gazer, the survivor space’s only purpose is to give objects longer time
to die and thus limit the amount of tenured garbage. In Crystal Gazer configurations
with the survivor space, which we call CGZ-S, nursery survivors are first copied to
the survivor space and objects predicted to be highly written carry their DRAM_BIT
with them to this space. Next, upon a survivor space collection, the garbage collector
checks the DRAM_BIT and copies objects to the mature spaces in DRAM and PCM,
accordingly.

6.5 Emulation on NUMA Hardware

There exists no commercially available platform with a hybrid DRAM-PCM
memory system. Chapter 5 uses simulation to evaluate the Kingsguard collectors.
We first used simulation to evaluate Kingsguard collectors to make it easy to compare
to existing OS solution and to reason the energy efficiency of hybrid memory system.
Because simulation is time-consuming, it limits the software configurations we can
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FreeList-Lo	

PCM-START	 PCM-END	 DRAM-END	

FreeList-Hi	

size					=	4	MB	
free					=	true/false	
owner	=	space	id	

DRAM	Spaces		PCM Spaces  
PCM	 DRAM	

Figure 6.7: The organization of our heap in hybrid memory. Memory composition is
exposed to the language runtime. Two free lists keep track of available virtual pages
in DRAM and PCM.

evaluate, and precludes critical workloads. In this chapter, we use a hybrid memory
emulator to evaluate Crystal Gazer which has the advantage of being fast and flexible.

This section describes the design and implementation of our hybrid memory
emulator for managed languages. We discuss the hardware we require to emulate
hybrid memory. We present our heap layout in hybrid memory and how we allocate
the virtual heap regions in DRAM and PCM. We then provide details for mapping
virtual to physical DRAM and PCM memory, and thread scheduling.

6.5.1 Hardware

We use a commodity NUMA platformwith two sockets to emulate hybrid memory.
We populate both the sockets with DRAM chips. Threads run on one socket, referred
to as the local DRAM socket. No threads execute on the other remote PCM socket.
Figure 6.8 shows our NUMA hardware platform. Allocation on Socket #0 (S0) is local
to the threads and we use it to allocate DRAM memory. Memory accesses on Socket
#1 (S1) are remote and emulate PCM.

6.5.2 Heap Layout and Management

The widely used Java runtime environments today manage heap memory using a
multi-level hierarchy of blocks and spaces. A space is a coarse-grained partition of
the heap. Typically, objects that reside in the same space share a common property.
For instance, in generational heaps, the nursery space is used to allocate all the newly
created objects. During a (minor) garbage collection, all objects that survive a nursery
collection are copied to the mature space. A space is further logically divided into
blocks or chunks. The size of the block is a multiple of the page size and it is
the minimum unit of virtual memory handed out to a space. A free-list records the
location and size of free blocks, and the space to which each block is mapped. The
heap manager is responsible for requesting that the operating system maps blocks to
physical memory (pages).
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Figure 6.8: Our platform for hybrid memory emulation. The application and write rate
monitor (WM) run on Socket #0. The memory on Socket #0 is DRAM and Socket #1
is PCM.

Figure 6.7 provides a high-level view of our heap layout in a hybrid DRAM-PCM
system. We use the 32-bit Jikes RVM, but our approach generalizes to other JVMs.
In a 32-bit environment, the Linux OS owns the upper 1 GB of the 4 GB virtual
memory available to a process. In addition, system libraries use some amount of
virtual memory for the malloc heap. We use the middle 2 GB for the managed heap.
We divide virtual heap memory into two portions: (1) a DRAM-backed portion, and
(2) a PCM-backed portion. We use a free-list to manage the blocks that belong to
each portion: FreeList-Hi and FreeList-Lo. In our heap layout, PCM_START marks the
beginning of the user heap, and PCM_END is the end of the PCM-backed portion of
the heap, and the beginning of the DRAM-backed portion.

Each space requests that the allocator associated with FreeList-Lo or FreeList-Hi
reserve virtual memory. Jikes RVM usesmmap() for reserving virtual memory if none
is available as indicated by the free lists. The allocator finds a free chunk and returns
the address to the requesting space. The space then makes sure the chunk is mapped
in physical memory. In our approach, once a chunk is mapped in physical memory, we
do not remove its mapping in the OS page tables even if the chunk is no longer in use
by the requesting space. The chunk is recycled by the allocator when another space
requests a free chunk. We modify the chunk allocator to map memory in DRAM or
PCM.

We use the default size for each chunk in Jikes RVM, i.e., 4 MB. Each entry in the
free-list contains meta-information about the chunk: (1) the size, (2) the status (free or
in use), and (3) the current owner.

The runtime reserves the address range of the nursery space at boot-time. Similar
to the baseline design, we place the nursery at one end of virtual memory. This con-
figuration enables the standard fast boundary write-barrier for generational collection.
Other contiguous spaces (such as the observer space in KG-W) are placed next to the
nursery. Mature spaces use a request mechanism to acquire chunks at runtime. These
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KG-N	 KG-W	 CGZ	 CGZ-S	
S0	 S1	 S0	 S1	 S0	 S1	 S0	 S1	

Nursery	 ✔	 ✗	 ✔	 ✗	 ✔	 ✗	 ✔	 ✗	
Observer	 ✗	 ✗	 ✔	 ✗	 ✔	 ✗	 ✔	 ✗	
Mature	 ✗	 ✔	 ✔	 ✔	 ✔	 ✔	 ✔	 ✔	
Large	 ✗	 ✔	 ✔	 ✔	 ✔	 ✔	 ✔	 ✔	
Metadata	 ✗	 ✔	 ✔	 ✔	 ✗	 ✔	 ✔	 ✔	

Table 6.1: Spaces in Kingsguard and Crystal Gazer collectors and their mapping to
Socket S0 (DRAM) or Socket S1 (PCM). KG-N does not use an observer space. KG-W
uses a mature, large, and metadata space in both DRAM and PCM.

spaces share the pool of available chunks with other spaces. A space is specified as
DRAM or PCM using a flag in the constructor of each space.

We allocate memory using the Linux OS calls for specifying a memory allocation
on the local or remote memory socket on a NUMA machine. We use the local socket
as the DRAM socket and the remote socket as the PCM socket. To bind a virtual
memory range to a particular socket, we callmbind()with the socket number after each
call to mmap(). We use a NUMA-specific version of the C memory allocator to call
these routines. We modify the Java Virtual Machine to call the C routines for DRAM
and PCM allocation.

The alternative approach to manage DRAM and PCM spaces is to use a monolithic
heap with a single free-list. The efficiency of such an approach is low because it
requires unmapping freed chunks from physical memory. If not, a DRAM space could
end up using a logical chunk that is physically mapped in PCM. The flexibility of
leaving the free chunks mapped in physical memory is a result of our design with two
free lists.

6.5.3 Space to Socket Mapping

Table 6.1 shows the space to socket mapping for three of the collectors we evaluate
in this work on our emulation platform. KG-W and its variants use extra spaces in
DRAM that are mapped to Socket #0 (S0). The observer space in KG-W is placed in
DRAM and is used to monitor object writes. KG-W has a mature, large, and metadata
space in both DRAM (S0) and PCM (S1). KG-W-MDO does not include the metadata
optimization (see Section 6.2). Therefore, it does not use an extra metadata space in
DRAM.

The boot space contains the boot image runner that boots Jikes RVM and loads its
image files. Except for a system with only PCM, we always place the boot image in
DRAM because we observe a large number of writes to it.

112



6.6 - Experimental Methodology

6.5.4 Thread to Socket mapping

For the Kingsguard configurations, we always bind threads, including application
and JVM service threads, to Socket #0 (see Figure 6.8). When emulating a system
with only PCM, we bind threads to Socket #1 for accurately reporting write rates. We
do not pin threads to specific cores and use the default OS scheduler.

We measure write rates on our emulation platform using a write rate monitor (WM
in Figure 6.8) that also runs on Socket #0. We experimentally find out that scheduling
WM on Socket #0 leads to more deterministic write measurements.

6.6 Experimental Methodology

This section discusses experimental methodology including the experimental plat-
form, workloads, and the different write-rationing garbage collector configurations that
we evaluate.

Hardware Platform. We use a two socket Intel Sandy Bridge E5-2650L processor.
Each socket has 8 physical cores and two hyperthreads per core. The platform features
132GB of main memory, evenly distributed between the two sockets. We use all
DRAM channels on both sockets. All cores share the 20MB LLC on each processor.
Themaximum bandwidth to memory is 51.2GB/s, more than themaximum bandwidth
consumed by any of our workloads. The two sockets are connected via a QPI link that
supports up to 8GT/s. We use Ubuntu 12.04.2 with a 3.16.0 kernel. We use Intel’s
pcm-memory utility from the Performance Counter Monitor framework for measuring
write rates.

Measurement Methodology. We use best practices from prior work for evaluating
Java applications [51, 61], including replay compilation to eliminate non-determinism
due to the optimizing compiler. Replay compilation requires two iterations of a
Java application in a single experiment. During the first iteration, the VM compiles
each method to a pre-determined optimization level recorded in a prior profiling
run. We also generate the appropriate allocation sequence (ALLOC_DEFAULT versus
ALLOC_DRAM) depending on the site’s classification. The second iteration does not
recompile methods leading to steady-state behavior. We take our measurements during
the second iteration. This run is deterministic and primarily measures the application
performance, instead of the adaptive compiler or JVM start-up behavior. We perform
each experiment four times and report the arithmetic mean.

Our emulation platform does not accurately represent end-to-end performance of
a hybrid memory system because the access latency to remote memory is much less
than to PCM. It does, however, accurately captures the execution time overhead of
the Crystal Gazer modifications to the Java managed runtime on real hardware. Most
importantly for optimizing lifetime, it accurately represents the number of PCMwrites
as measured by accesses to remote memory. Furthermore, it accurately represents the
use of DRAM capacity with local memory usage. Accessing remote memory incurs
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a slight performance degradation compared to local memory, which we find to affect
performance by approximately 1% on average and up to 6% for Pjbb.1

Java Applications. We use 15 Java applications from three diverse sources: 11
from DaCapo [14], pseudojbb2005 (Pjbb) [16], and 3 applications from the GraphChi
framework for processing graphs [78]. The GraphChi applications include page rank
(PR), connected components (CC) and ALS matrix factorization (ALS). Compared to
prior work [2], we drop jython as it does not execute stably with our Jikes configu-
ration. We use an updated version of lusearch, called lu.Fix, that eliminates useless
allocation [129]. To match our hardware platform, we run the multithreaded DaCapo
applications, Pjbb and GraphChi applications with four application threads. We use
the default data sets for profiling with the DaCapo benchmarks; we use 8 warehouses
and 10K transactions for Pjbb; for GraphChi’s PR and CC, we process 1M edges
using the LiveJournal online social network [85], and for ALS, we process 1M ratings
from the training set of the Netflix Challenge. Our datasets for production runs differ
from profiling runs. For production runs, we use the large data set for DaCapo; 4
warehouses and 50K transactions for Pjbb; and a different set of randomly chosen 1M
edges and ratings for GraphChi.

Workload Formation. Multiprogrammed workloads better reflect real-world server
workloads because: (1) a single application does not always scale with more cores,
and (2) servers typically execute multiple programs to amortize costs. Our multi-
programmed workloads consist of four instances of the same application. To avoid
non-determinism due to sharing in the OS caches in multiprogrammed workloads,
we use independent copies of the same dataset for the different instances. All four
application instances in our multiprogrammed workloads synchronize at a barrier and
start the second iteration at the same time. We take the execution time of the longest
running instance as the total execution time to run the workload.

Nursery andHeapSizes. Nursery size affects performance, response time, and space
efficiency [6, 12, 121, 132]. We use a nursery of 4MB for DaCapo and Pjbb. Because
a 32MB nursery improves performance over 4MB for the GraphChi applications, we
use a 32MB nursery for them. We use a modest heap size that is twice the minimum
heap size, reflecting typical production heap sizes and prior work [1, 18, 108, 132, 94].
For all the benchmarks, Table 6.2 lists the heap sizes, the total allocation in MB,
nursery and survivor space survival rates, and other statistics (discussed later).

Garbage Collectors and Configurations. We compare Crystal Gazer against the
state-of-the-art Kingsguard KG-N and KG-W collectors. Because KG-N is the most
basic design and straightforward to implement for a hybrid memory system, we
normalize to KG-N as our baseline. Prior work demonstrated KG-N’s efficiency
and huge write reductions compared to a PCM-only system [2]. Similar to prior work,
we place the stack, and two smaller heap spaces, boot and meta-data, in DRAM.We set
1This overhead was measured by comparing the performance of Crystal Gazer with the entire heap in
remote memory versus local memory on our emulation platform.
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the observer space in KG-W, and the survivor space in CGZ-S to twice the size of the
nursery. We use two garbage collection threads which is best for Immix [40]. We use
a homogeneity threshold of 1% as the default, which we find to be a good compromise
between PCM lifetime and DRAM capacity. We present four CGZ configurations:
CGZ-F1, CGZ-S-F1, CGZ-D1, and CGZ-S-D1 that vary the optimization goal and
include/exclude the survivor space. The CGZ configurations with ‘S’ include the
survivor space, the others do not. We use θ f = 1 for the FREQ heuristic (denoted
‘F1’) which minimizes the number of PCM writes, and θd = 1 for the DENS heuristic
(denoted ‘D1’), which minimizes the amount of DRAM capacity.

6.7 Results

We compare Crystal Gazer configurations to the Kingsguard collectors discussed
in Chapter 5 along three primary metrics: (1) writes to PCM, (2) DRAM capacity, and
(3) performance.

6.7.1 PCMWrites

Figure 6.9 reports the number of PCM writes normalized to KG-N. This baseline
reduces writes compared to a PCM-only main memory system by 75% (not shown),
which results in improved, but still impractical PCM write rates (which are shown in
Figure 6.16). KG-W reduces the number of PCM writes compared to KG-N by 45%
on average. The GraphChi applications, on average, write to PCM more often than
other application groups, even with KG-W. This is because they allocate more large
objects directly in PCM than other application groups.

CGZ-S-F1 is themost effective configuration in reducing PCMwrites. It eliminates
65% and 30%more PCMwrites compared to KG-N and KG-W, respectively. CGZ-D1
reduces the number of PCMwrites compared to KG-N for the DaCapo benchmarks (by
23%) and Pjbb (by 31%), but not the GraphChi workloads because CGZ-D1 prioritizes
small objects, while putting more large objects in PCM. CGZ-F1 does slightly worse
than KG-W on average, reducing the number of PCM writes by 35%. CGZ-F1 leads
to an increase in PCM writes over KG-W for many DaCapo applications as a result
of the lack of a survivor space in front of the mature space as in KG-W. However,
CGZ-F1 is more effective than KG-W at eliminating PCM writes for the GraphChi
applications because it leverages ahead-of-time information about the write behavior
of large objects. Adding a survivor space greatly reduces the number of PCM writes.
CGZ-S-D1 reduces the number of PCM writes by 54%. Finally, CGZ-S-F1 eliminates
the largest number of PCM writes. Although both CGZ-S-F1 and CGZ-S-D1 reduces
PCM writes significantly compared to KG-N, CGZ-S-D1 saves more DRAM capacity
than CGZ-S-F1 at the expense of PCM writes.

We conclude that Crystal Gazer eliminates a large number of PCMwrites compared
to KG-N, on par with or significantly surpassing KG-W. These large reductions are a
result of ahead-of-time profiling of application for write-intensive allocation sites.
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Figure 6.9: Number of PCM writes normalized to KG-N. CGZ reduces the number of
PCM writes, especially with a survivor space.
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Figure 6.10: Fraction of heap allocated in DRAM. CGZ reduces DRAM capacity
needs compared to KG-W, especially without a survivor space.

6.7.2 DRAM Capacity

DRAM will likely be a scarce resource in hybrid DRAM-PCM systems, which
motivates minimizing the use of DRAM. Because KG-N stores only newly allocated
nursery objects in DRAM, it consumes the least amount of DRAM among the
collectors: only 4 MB for DaCapo and Pjbb, and 32 MB for GraphChi. All the
other collectors trade reduced writes to PCM for DRAM capacity. Figure 6.10 shows
the percentage of the heap that the CGZ and KG-W collectors allocate in DRAM.
We take a snapshot of the heap at every collection cycle and compute the average
heap volume (in MB) in DRAM and PCM. KG-W and CGZ-S-F1 allocate the largest
fraction of the heap in DRAM: 35% and 41%, respectively. CGZ-S-F1 pays this price
to reduce the number of PCM writes the most, as discussed in the previous section.
CGZ-S-D1 reduces the use of DRAM, but incurs the space cost of the DRAM survivor
space, placing 28% of the heap in DRAM. Finally, CGZ-D1 consumes the least amount
of DRAM, 12% on average (a reduction of 23% compared to KG-W), but incurs more
PCM writes. In terms of MB of DRAM consumed, CGZ-D1 only requires 40 MB
compared to 132 MB for KG-W on average for our workloads, a reduction of 68%.
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Figure 6.11: Pareto-optimal configurations for CGZ-S compared to KG-W in terms of
PCM writes versus DRAM capacity. CGZ provides the flexibility of trading off PCM
writes for DRAM capacity and vice versa.

6.7.3 Trading Off PCMWrites and DRAM Capacity

Combining the results in Figure 6.9 and 6.10 illustrates how the different CGZ
collector configurations trade off fewer PCMwrites (Figure 6.9, left to right decreases)
for increases in DRAM usage (Figure 6.10, left to right increases). The DENS
heuristic reduces allocation in DRAM at the cost of an increased number of PCM
writes. The FREQ heuristic on the other hand, increases DRAM allocation while
reducing the number of PCM writes. Figure 6.11 visualizes this tradeoff by reporting
normalized PCM writes (to KG-N) versus DRAM capacity for a number of Pareto-
optimal configurations for CGZ-S by setting different thresholds for the different
heuristics on a per-application basis. The key take-away point from these results
is that Crystal Gazer offers a set of Pareto-optimal tradeoffs between PCM writes
and DRAM capacity, and that KG-W is sub-optimal compared to CGZ-S, i.e., KG-W
incurs more PCM writes for the same DRAM capacity and/or requires more DRAM
capacity for the same number of PCM writes. Furthermore, KG-W offers no tradeoffs
in DRAM capacity versus PCM writes, only offering a single operating point.

We can further configure CGZ collector thresholds to control the PCM write
and DRAM capacity tradeoff. To minimize writes to PCM (the right-most points in
Figure 6.11), we set θh to 1% and θ f to 1 for FREQ. For minimum DRAM usage (the
left-most points in Figure 6.11), we set θh to 1% for DaCapo and 25% for Pjbb and
GraphChi, and use DENS with θd set to 1 for all applications. We observe that setting
θ f between 5K and 50K also results in Pareto-optimal configurations. In general,
increasing θh and θ f minimizes DRAM usage but increases PCM writes. The best θd
ranges between 0.1 and 1.

6.7.4 Allocation Site Analysis

To better understand write-intensive objects, we classify them with the F1 heuristic
into four categories based on the location of the allocation site: (1) gnu libraries,
(2) Java class libraries, (3) Jikes RVM class files, and (4) application-specific code.
Figure 6.12 shows that application code allocates 58% of write-intensive objects; the
Java class libraries allocate 28% of them; Jikes class files 12%, and gnu libraries
only 2%. We observe a similar breakdown for D1. Since application-specific code
allocates most write-intensive objects, this further motivates profiling applications for
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Figure 6.12: Breaking down the DRAM-labeled allocation sites into four categories:
gnu libraries, Java libraries, Jikes RVM class files, and application code. The
application-specific class files allocate the majority of write-intensive objects.
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Figure 6.13: Understanding the reduction in PCM writes on a per allocation site basis
for Pjbb. Keeping the objects allocated from sites in the application-specific class files,
Order and Warehouse, leads to the greatest reduction in PCM writes.

write-intensive objects.

Next, we show the reduction in PCMwrites by selectively labeling certain allocation
sites as DRAM for Pjbb. The goal is to understand which allocation sites result in
the largest reductions in PCM writes. Figure 6.13 breaks down the contributions of
various allocation sites to PCM write reductions. We report the reduction in PCM
writes with CGZ-S-F1 compared to a baseline that uses no advice, i.e., no allocation
site is labeled as DRAM. We observe that allocation sites in the application-specific
class files are the greatest source of PCM writes, and labeling them as DRAM saves
the most writes to PCM. Specifically, gnu libraries, Java class libraries, and Jikes class
files, together reduce writes to PCM by up to a maximum of 5%. On the other hand,
the two application-specific class files, Order and Warehouse, each reduce 13% of
writes to PCM relative to using no advice at all with CGZ-S-F1.

The results for Pjbb in this section, showing that application-specific class files
are the greatest source of PCM writes, are also representative of other benchmarks we
evaluate in this work.
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Figure 6.14: Execution time normalized to KG-N. CGZ incurs negligible execution
time overhead compared to KG-N.

6.7.5 Performance

All hybrid memory systems will incur overhead due to the higher latencies to PCM
versus DRAM, which our emulation infrastructure does not accurately capture, but
was explored in simulation previously [2]. This section quantifies the performance
overheads in Crystal Gazer compared to previously proposed Kingsguard write-
rationing garbage collectors.

Figure 6.14 reports execution time normalized to KG-N. KG-W incurs an average
execution time overhead of 9% over KG-N (and up to 35%). The main reason for this
overhead is the extra code KG-W executes in the write barrier to monitor object writes,
whereas KG-N has no monitoring. KG-N simply promotes all objects to PCM.

CGZ eliminates all of the overhead of KG-W for most applications. The best CGZ
configurations (CGZ-F1 and CGZ-D1) improve performance over KG-W by 8% on
average. hsqldb is notably better than KG-W with 20% reduction in execution time
for CGZ-F1. CGZ also reduces the execution time of eclipse compared to KG-N
by 3%. However, some applications do incur a slight performance degradation as
shown in Figure 6.14. The reasons include: (1) setting the DRAM_BIT for objects
predicted as highly written, and (2) checking whether the DRAM_BIT is set during
nursery collection. This degradation is particularly prominent for two of the GraphChi
applications: PR and CC. We observe only slight performance differences between the
F1 and D1 configurations which are the result of a different number of objects being
placed in DRAM versus PCM.

CGZ-S also eliminates themonitoring overheads in KG-W, but has higher overhead
for some applications (e.g., hsqldb) than CGZ because of the additional survivor
space collections. On the other hand, CGZ-S places more objects in DRAM than
CGZ. The overhead is limited to less than 2% on average compared to CGZ, putting
CGZ-S on par with KG-N. One benchmark, namely bloat, performs better with a
survivor space compared to CGZ. Survivors space collections when running bloat
preclude full-heap collections by giving objects more time to die in the survivor space.
This reduces the total garbage collection time in bloat which translates to an overall
performance improvement. Overall, profile-driven garbage collection brings down the
high execution time overhead of KG-W to a level similar to KG-N.
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(b) DRAM Capacity
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(c) PCMWrites
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(d) DRAM Capacity
Figure 6.15: Showing the impact on PCM writes and DRAM capacity from changing
the write-frequency threshold (a and b) and write-density threshold (c and d).
Increasing the write-frequency and write-density thresholds increases PCM writes
but reduces DRAM space usage.

6.7.6 Sensitivity Analyses

Figures 6.15 (a) and (b) show PCMwrites and DRAM capacity as we vary θ f from
1 to 50K. PCM writes normalized to KG-N increase as we increase θ f . We observe
an increase in PCM writes up to a θ f of 5K for all three application groups. From 5K
to 50K, PCM writes stabilize. Conversely, the percentage of heap in DRAM shows a
decrease up to 5K. Beyond that, increasing θ f does not impact DRAM capacity much.

Figures 6.15 (c) and (d) show PCM writes and DRAM capacity as we vary θd
from 0.1 to 10. Increasing θd beyond 1 has limited impact on PCM writes normalized
to KG-N on average for DaCapo and GraphChi applications. Individual applications
from the two suites sometimes show different trends. Conversely for Pjbb, PCMwrites
increase linearly as we increase θd from 0.1 to 10. The impact on the percentage
of heap in DRAM is less prominent for Pjbb. This is because a small percentage of
objects are responsible for most writes to the mature heap.
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6.7.7 Memory and Demographic Analysis

Table 6.2 reports object demographics and shows the average andmaximumDRAM
usage in MB for KG-W and different CGZ-S configurations for all of the benchmarks
considered in this study. The total allocation of our applications varies, between 56 MB
and 14 GB of memory (column 1). The GraphChi applications in particular allocate
more than DaCapo and Pjbb. The average nursery survival rate of our applications is
17% and a maximum of 66% (column 3). We show the survival rate of objects in the
survivor space in CGZ-S in column 4. A number of applications, such as xalan and
bloat, benefit greatly from a survivor space, as it gives many objects a chance to die in
DRAM. For instance, only 8% of objects in xalan are promoted to the mature space;
which means an even smaller percentage of objects are written to PCM.

The remaining columns show the average and maximum DRAM space occupancy
in MB for KG-W (column 5 and 6) and six CGZ-S configurations (column 7 through
18). Specifically, we show theDRAMspace occupancy for different θ f and θd . We also
show the percentage of heap in DRAM across the three benchmark suites and overall
for all applications. To calculate the percentage heap in DRAM, we first measure the
average DRAM and PCM space occupancy in MB. The sum of the two spaces (MB)
is the total heap used by the application. The percentage of total heap in DRAM is
shown in Table 6.2 as Heap %.

We observe that CGZ-S-D10 maximizes the use of PCM for many applications.
Conversely, CGZ-S-F1 maximizes the use of DRAM to eliminate the largest number
of writes to PCM. In particular for GraphChi applications, CGZ-S-F1 places more
than 200 MB per application instance in DRAM. Thus, by prioritizing small objects,
the density heuristic minimizes DRAM usage for modern graph analytic workloads,
with large heaps and high allocation rates.

6.7.8 PCM Lifetime and Write Rates

This section analyzes the PCM write rate results and their implications for PCM
lifetime. As Chapter 5 showed, eliminating PCMwrites improves PCM lifetime. PCM
lifetime in years depends on its write rate and cell endurance. Prototype PCM has a
cell endurance between 10 M and 100 M writes per cell [81, 7]. All of our results
assume hardware wear-leveling is enabled. As writes to PCM reduce, so does the write
rate, but the write rate is also inversely proportional to execution time. Optimizing
only for write rate would thus lead to incorrect conclusions. As an example, turning
off compiler optimizations to make the program execute slower would decrease write
rate. Because execution time depends on a number of factors including on-chip cache
sizes, number of threads, cores, and garbage collection algorithm, it is not meaningful
to directly compare normalized write rates.

Figure 6.16 shows the absolute PCM write rates in MB/s that we observe on
our emulation platform. Since PCM hardware is still evolving, the write rates on
future PCM hardware may differ from our measurements. Recent work uses a real
PCM prototype to evaluate hybrid memory at Facebook [42]. Their work shows that
hardware vendors limit the number of times the entire PCM memory (or drive) can
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Figure 6.16: PCM write rates in MB/s for all of our benchmarks using various write-
rationing garbage collectors. Profile-driven write-rationing garbage collection makes
PCM a practical DRAM replacement by significantly reducing its write rates.

be written per day. The specific metric is called drive writes per day (DWPD). The
most recently reported DWPD for a 375 GB NVM drive is 30 [42, 52]. This DWPD
results in a recommended write rate of 140 MB/s (blue horizontal line in Figure 6.16).
We observe in Figure 6.16 that all write-rationing collectors significantly reduce the
write rates and many are brought below the recommended rate to make PCM practical
as main memory. In particular, CGZ-S-F1 limits the PCM write rates of all but 3
workloads to below the recommended rate, while improving the performance over
KG-W at the same time.

We observe that many workloads write at a rate that is still not practical for PCM.
For instance, two of the graph applications have write rates above 140 MB/s, even with
CGZ-S-F1. Furthermore, future servers with more cores will likely run many more
applications in parallel, which will result in even higher write rates. This necessitates
more research in software approaches to bring write rates down even further. Some
reduction will come from innovations at the device and architecture level, or from
using hybrid memories where some writes could be guided to DRAM. Due to the
nature of PCM material, software has a greater role to play in making PCM practical
as (part of) main memory.

6.8 Summary and Interpretation

This chapter demonstrates that profile-drivenwrite-rationing garbage collection can
improve PCM’s lifetime in hybrid memories while limiting consumption of DRAM
capacity. Crystal Gazer overcomes the shortcomings of the prior state-of-the-art write-
rationing garbage collector, KG-W, which dynamically monitors writes to nursery
survivors to decide whether to promote to mature DRAM or mature PCM. Crystal
Gazer improves the accuracy and reduces the cost of write-rationing garbage collection
by predicting object write-intensity based on offline allocation site profiling. It copies
nursery survivors to mature DRAM if predicted highly written or to mature PCM if
predicted read-mostly. Using a survivor space in-between the nursery andmature space
further reduces the number of writes to PCM at the cost of increasing DRAM capacity
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consumption. Because allocation site prediction of write-intensity is highly accurate,
our static technique out-performs the dynamic techniques used by the Kingsguard
KG-W collector. We demonstrate that Crystal Gazer, by changing the heuristics and
thresholds, provides Pareto-optimal operating points in terms of PCM lifetime and
DRAM capacity. Our experimental results use emulation on real hardware and show
that Crystal Gazer significantly improves performance compared to the state-of-the-art,
KG-W, while reducing the number of PCM writes when optimized for PCM lifetime,
and requiring less DRAM capacity when optimized for the smallest DRAM capacity.

This work targets PCM write endurance. Another disadvantage of the PCM
technology is its high access latency. In this work, we are concerned with the reduction
in PCM writes and overheads of Crystal Gazer, and also improving upon Kingsguard.
Therefore, PCMaccess latency does not affect the conclusions of thiswork. Regardless,
we made an effort to accurately model PCM access latency on our emulation platform.
Our solution to introduce interference in the remote socket to slow down remote (PCM)
memory accesses lead to non-determinism in the execution time results, and thus we
removed it for the final experiments. Instead of using a simulator to model PCM
latency, we believe emulation is a more valuable way to do the evaluation of hybrid
memories. Emulation includes real system effects (advanced caching, prefetching,
memory bandwidth resource contention, etc.) that no simulator can accurately model
and lets us explore many more software configurations and bigger workloads in the
same resource budget.

In our evaluation, we use different input datasets for training and production
experiments. The benchmarks from the DaCapo suite have default and large input
datasets. For Pjbb and GraphChi, we experiment with a range of newly created datasets
for production runs. We show results with one dataset. Results always depend on the
specific dataset and application, and the profiling correctly predicting the allocation
sites’ write-intensity even if the input changes.

Crystal Gazer could be extended to better tolerate PCM’s high access latencies.
One future work could be to not only guide highly written objects away from PCM, but
also to find highly accessed objects and place them in DRAM to reduce their access
latency. In this way, we could use garbage collection to fight both of the drawbacks of
PCM, resulting in a high-performance hybrid memory system with a long lifetime.

Our profiling in this work is architecture independent, i.e., in the profiling step
we do not track whether the write operation hits or misses in the cache. Therefore,
our classification of allocation sites as DRAM is conservative. A DRAM-labeled site
that allocates objects which have high cache locality needlessly wastes DRAM space
as writes to these objects hit in the cache. Unfortunately, current hardware precludes
correlating allocation sites to cache misses, making it difficult to incorporate cache
effects in the profiling step. Nevertheless, our PCM writes and execution time results
with Crystal Gazer increase our confidence in the accuracy of our current profiling
approach.

Our Crystal Gazer collectors by default promote objects that outlive a nursery
or a survivor collection to PCM. If advice is not available, or highly written objects
are promoted to PCM due to misclassification of allocation sites, our Crystal Gazer
collectors lack a dynamic approach to move objects away from PCM. When advice
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is not available, KG-W is the best approach. Future work should also consider
dynamic call site write-prediction, similar to dynamic call site lifetime-prediction [68].
Production systems will require some dynamic monitoring of PCM objects or memory,
perhaps by the OS, to recover from changes in behavior, bad predictions, and malicious
write attacks.

Profile-driven write-rationing garbage collection makes PCM a practical DRAM
replacement by aggressively reducing writes to it in a hybrid memory setting. It
requires minimal OS support and enables the use of PCM for commodity applications
without changes to the programming language or model.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

Contemporary semiconductor scaling trends are the prime force behind emerging
hardware heterogeneity. Dennard scaling that enabled greater transistor counts at
constant power density has stopped. Energy efficiency is now a first-order concern in
processor design and operation. On the main memory side, manufacturing complexity
has encouraged hybrid memories that combine DRAM and PCM to deliver high
performance and capacity. Software must take advantage of emerging hardware
heterogeneity to optimize critical metrics such as performance and energy efficiency.

On the software side, programmers prefer managed languages because of their
productivity advantages. Managed runtimes facilitate the execution of managed
applications by providing services such as garbage collection. Managed runtime
environments contain rich semantic information about application behaviors. This
thesis asks the question, question,“how can we exploit the semantic information in
a managed language runtime to improve the utility of heterogeneous processors and
memories."

We believe managed runtimes can help exploit heterogeneous processors and
emerging hybridmemory better than existing hardware andOS approaches. This thesis
discusses two ways in which using semantic information in the managed runtime im-
proves the performance and energy efficiency of heterogeneous multicore processors.
Furthermore, this thesis presents two write-rationing garbage collectors that better
manage hybrid memories consisting of DRAM and PCM than prior approaches.

This thesis presentsGC-criticality-aware scheduling that uses semantic information
from themanaged runtime to optimally schedule application and concurrentGC threads
on heterogeneous multicores. We first show that GC-criticality exists in popular Java
applications. Specifically, on a heterogeneous multicore processor, GC can become
critical if always left to run on the lower power cores with the intent to save energy.
When GC becomes critical, it stops the application to free unused memory. This
stop-the-world pause hurts both performance and energy efficiency. We further show
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that, contrary to intuition, GC benefits from running on the big (out-of-order) cores of
a heterogeneous multicore. Thus, when GC becomes critical, it is vital to execute it on
the big cores. Our proposed GC-criticality-aware scheduling informs the OS scheduler
to boost the priority of GC threads for the big cores by sending a criticality signal.
The OS alone is not able to predict GC-criticality. Our algorithm is performance and
energy-neutral for GC-uncritical Java applications, and significantly speeds up GC-
critical applications: by 16% on average, while being 20% more energy-efficient for a
heterogeneous multicore with three big cores and one small core.

Multicore processors with homogeneous cores similar in their architectural ca-
pabilities have a different form of heterogeneity. Each core has DVFS that enables
changing a core’s voltage and frequency to save energy. An accurate performance
predictor guides a DVFS energy manager to choose the best DVFS setting based on a
user-specified slowdown threshold. Prior DVFS predictors are only accurate for single-
threaded native application written in C and C++. Multithreadedmanaged applications
such as Java introduce two additional challenges for performance prediction. First,
synchronization inmultithreaded applications leads to inter-thread dependences. Thus,
changing the frequency of one core (thread) impacts the execution of dependent threads.
Managed applications also issue a burst of store operations due to memory manage-
ment. Prior predictors ignore store operations assuming they are not on the critical
path. This thesis proposes DEP+BURST, an accurate DVFS performance predictor
for managed multithreaded applications. DEP+BURST intercepts the synchronization
activity in applications and then uses analytical modeling to reconstruct the execution
at different frequency settings as the application executes at a specific frequency. It
uses a new hardware performance counter to track the time the core stalls due to
waiting for store operations to resolve. This counter allows DEP+BURST to model the
performance impact of store bursts accurately. Our predictor lowers the performance
estimation error from 27% for a state-of-the-art predictor to 6% on average, for a set
of multithreaded Java applications when the frequency is scaled from 1 to 4 GHz.
We then develop a new energy manager to optimize total system energy, achieving an
average reduction of 15.6% for a set of Java benchmarks.

Non-volatile memory (NVM) technologies offer more scalability than DRAM.
The most promising NVM is phase-change memory (PCM). PCM is byte-addressable
and offers abundant main memory capacity. Its main disadvantages are high access
latency and limited write endurance. Hybrid memory combines DRAM and NVM
to provide the best of both DRAM and PCM. Hardware wear-leveling mitigates PCM
wear-out by spreading writes out across the entire PCM capacity. Prior OS solutions
move coarse-grained pages in DRAM to limit PCM writes and improve its lifetime.
Unfortunately, prior approaches are reactive and their DRAM usage is excessive. This
thesis shows that popular Java applications can wear PCM out in 4 years or less.

This thesis proposes two write-rationing garbage collectors for hybrid memories
that aim to mitigate PCM wear-out and improve its lifetime. Write-rationing garbage
collectors keep frequently written objects in DRAM to mitigate PCM wear-out. They
keep read-mostly objects in PCM to exploit its capacity. This thesis first proposes
two Kingsguard collectors. They exploit the observation that most writes in Java
applications occur to young (nursery) objects and a small fraction of mature objects.
Kingsguard-nursery (KG-N) places the nursery in DRAM. It copies the surviving
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nursery objects in PCM. KG-N increases PCM lifetime by 5× over PCM-Only.
Kingsguard-writers (KG-W) copies nursery survivors to an observer space in DRAM.
It monitors all the mature objects for writes and keeps frequently written objects
in DRAM. KG-W reduces PCM writes over KG-N by 2× which translates to a 2×
improvement in PCM lifetime in hybrid memories. Dynamic monitoring incurs a 9%
performance overhead on average for 15 Java applications.

This thesis finally proposes profile-driven write-rationing garbage collection to
eliminate the performance overhead of dynamic monitoring in KG-W. More specifi-
cally, this thesis proposes Crystal Gazer (CGZ) that uses offline profiling to identify
frequently written objects in Java applications. Our research shows that writes in Java
applications are predictable on a per allocation-site basis. We profile individual object
writes and their allocation sites. We use heuristics to classify sites as highly written
(DRAM) or read-mostly (PCM). Crystal Gazer uses the profile during execution time
to guide object placement in DRAM and PCM. It first allocates objects in a DRAM
nursery. It labels objects at allocation time as coming from a highly written or read-
mostly site. During a nursery collection, it copies objects to DRAM or PCM based
upon the predicted write-intensity label. Leveraging profile information eliminates the
performance overhead of dynamic monitoring. CGZ also eliminates 30% more PCM
writes compared to KG-W when optimized for extending PCM lifetime.

This thesis shows using semantic information in the managed runtime can exploit
heterogeneous hardware better. The hardware and the OS in isolation can not
always form the best policies to exploit heterogeneity. This thesis shows how to
determine and communicate the criticality of garbage collection in managed runtimes
happening concurrently with the application. Accurate performance predictors for
multithreaded applications requires communicating synchronization activity from the
runtime environment to the DVFS management framework. Finally, write-rationing
garbage collection opens up a promising avenue for managing hybrid DRAM-PCM
memories more efficiently than prior hardware and OS approaches.

7.2 Future Work

This section discusses various avenues for future work, both on the side of
exploiting heterogeneous processors for managed applications, and exploiting garbage
collection to manage hybrid DRAM-PCM memories.

7.2.1 Scheduling for Heterogeneous Multicores

This thesis explores how best to schedule managed applications that use concurrent
GC on heterogeneous multicores. We show the benefits of GC-criticality-aware
scheduling. Multiprogrammed workloads consisting of multiple applications are in-
creasingly common, especially with the popularity of cloud computing. An avenue for
future work is scheduling multiprogrammed managed applications on heterogeneous
multicores. GC-criticality-aware scheduling for multiprogrammed workloads should
take into account the priority of individual applications.
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In this thesis, we consider Java applications from the DaCapo benchmark suite.
Several recent big-data platforms are also written in a managed language. Examples
include Apache Spark and Apache Hadoop. These platforms use large heaps and stress
the garbage collector more than DaCapo applications. Future work should consider
scheduling these big-data applications on heterogeneous multicores. Server processors
today use homogeneous multicores; however, each core still has DVFS. Future work
should consider DVFS to boost the priority of GC threads.

Today’s software stacks are increasingly multi-layer in nature. Consider a managed
application that executes on top of a virtualized host (e.g., VMware Workstation) and
the host runs a Linux OS. Future work should consider how best to schedule such
versatile runtime environments on top of heterogeneous multicores.

7.2.2 Performance Prediction

This thesis explores DVFS performance prediction for multithreaded managed
applications with the aim to save energy. We use a stop-the-world GC in our
evaluations. Predicting the performance impact with concurrent GC is more chal-
lenging and an avenue for future work. Concurrent GC runs asynchronously with
the application. Changing the frequency of concurrent GC may (or may not) make
it critical. When GC becomes critical, it slows down the application. Future work
should investigate predicting the criticality of concurrent GC due to changes in DVFS.
More generally, asynchronous patterns in modern software are increasingly common
and make performance prediction more challenging. Future work should research
performance prediction for a broad set of programming patterns and environments.

This thesis focuses on accurate DVFS performance prediction. Predicting the
performance impact of changing the core type on a heterogeneous multicore for
multithreaded managed applications is even more challenging. An interesting avenue
for future work is fast and accurate analytical models for online prediction of changing
core types on a heterogeneous multicore.

7.2.3 Write-Rationing Garbage Collection

This thesis proposes two write-rationing garbage collectors that aim to mitigate
PCM wear-out and improve its lifetime. The collector configurations that optimize
PCM lifetime perform two copies of long-lived objects, from the nursery to a DRAM
space for nursery survivors, and from that survivor space to either DRAMor PCM. This
extra copying has two disadvantages: (1) it hurts performance, and (2) it necessitates
updating PCM object references to copied objects leading to PCM writes. Prior work
proposes allocation site based prediction of object lifetimes for Javaworkloads [19, 15].
Object lifetime prediction used with pretenuring can eliminate the extra copying of
long-lived objects. The mutator can directly allocate objects from allocation sites
that produce long-lived objects in the mature DRAM or PCM. The resulting system
is likely to use the DRAM and PCM spaces more efficiently. Another promising
avenue to eliminate the extra copying in CGZ-S is to explore non-moving variants
of Immix [18]. These non-moving Immix collectors trade the locality of contiguous
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allocation for increased heap occupancy and fragmentation. This tradeoff is likely a
good one for PCM lifetimes and merits further exploration but may increase DRAM
requirements.

The default Immix collector defragments blocks based on a threshold that indicates
fragmentation is preventing the collector from using some fraction of the memory in
partially filled blocks in the mature space. Immix defragmentation combines marking
with copying based on occupancy statistics of the partially filled blocks, seeking to
move the fewest numbers of objects and to create the maximum number of completely
free blocks. It thus trades increased numbers of writes to reducememory consumption.
PCMprefers exactly the opposite tradeoff –PCM iswrite-limited coupledwith plentiful
capacity. For the heap sizes this thesis explores, Immix defragmentation was never
triggered. However in the limit, the collector should monitor and limit extreme
fragmentation. This exploration of non-moving collectors and defragmentation is
interesting avenue for future work.

The Kingsguard collector that reduces PCM writes the most, namely Kingsguard-
writers, dynamically monitors mature object writes. Dynamically monitoring writes
incurs a performance penalty. The Crystal Gazer collectors use offline profiling of
allocation sites to deliver good performance and eliminate PCM writes, similar or
more than Kingsguard-writers. Crystal Gazer has the drawback that for unprofiled
applications, it defaults to copying nursery survivors to PCM. Future work should
dynamically profile allocation sites to get the best of both approaches. More specif-
ically, this new approach divides the execution of the application into a sampling
phase and normal execution. The collector monitors mature objects writes only during
the sampling phase. The compiler stores identifiers for allocation sites in the object
headers. Together, this helps the collector to classify allocation sites as highly written
or read-mostly during the sampling phase of execution. During the normal execution,
the collector copies highly written objects to DRAM and the rest to PCM.

Emerging graph applications allocate nursery objects at high rates. Our proposed
write-rationing garbage collectors isolate nursery writes in DRAM in a hybrid memory
system. Future work should investigate approaches to mitigate the impact of high
allocation rates on PCM’s lifetime assuming a PCM-only system. Such approaches are
necessary tomake PCM a true DRAM replacement. On the application side, we should
investigate techniques to reduce nursery allocation rates. The OS can map virtual
memory with the aim to wear-level nursery writes across the entire PCM capacity.
Other avenues of future work for PCM-only systems include cache partitioning to
mitigate wear-out and approaches that improve cache locality to reduce PCM writes.
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