DynaHeap: Dynamic Division of DRAM between Heterogeneous Managed Heaps

Tacovos G. Kolokasis* Shoaib Akram* Foivos S. Zakkak Polyvios Pratikakis*
FORTH-ICS, Greece (student) ANU, Australia Red Hat, Inc. FORTH-ICS, Greece
Angelos Bilas*

FORTH-ICS, Greece

1 Motivation

As data grows fast, managed big data frameworks like
Spark [21], Giraph [12], and Flink [6], need to process larger
datasets than server memory. However, the DRAM avail-
able within each single server scales slower than the data
growth rate due to physical scaling limitations [11]. For
this purpose, existing solutions extend the managed heap of
big data applications over block-addressable fast storage de-
vices (e.g., NVMe SSDs) [3, 4, 7, 8, 14], byte-addressable
non-volatile memories NVM) [1,2,9, 15, 18-20], or remote
memory [10, 16, 17]. While these alternatives offer higher
capacity than DRAM, they have higher latency and lower
throughput, constituting a slower memory tier. Existing sys-
tems use three main strategies for organizing the managed
heap over the fast and slow memory tiers: (1) uniform man-
aged heap with caching, (2) partitioned managed heap without
caching, and (3) partitioned managed heap with caching.

Systems in the first category [10, 16, 17], shown in Fig-
ure |(a), allocate the managed heap over the slow tier and use
the fast tier as a cache. The OS hides memory tiers’ hetero-
geneity and transparently fetches objects from the slow to the
fast tier. This transparency eliminates the need for the JVM
to maintain extra data structures to track objects’ locations
within the memory hierarchy and to adjust object references
during promotions or demotions between the tiers. However,
this approach leads to high GC cost because the garbage col-
lector scans objects in the slow tier, resulting in excessive
swapping.

Systems in the second category [1,2,9, 15,18, 19] partition
the memory address space into fast and slow tiers, reducing
swapping. They allocate the young generation and a portion
of the old generation of the managed heap on the fast tier and
the remaining on the slow tier (Figure 1(b)). Instead of page
swapping, they explicitly move objects between the fast and
the slow tiers, which requires updating their references. This
reference adjustment becomes prohibitively expensive for
frequent object relocation as the garbage collector must scan
objects in the slow tier to update their references. Even using
lazy reference adjustment with load reference barriers [18],
application performance decreases [5, 13] due to the extra

*Foundation for Research and Technology - Hellas (FORTH), Institute of
Computer Science (ICS), Greece

TDepartment of Computer Science, University of Crete, Greece

f Australian National University, Australia

\4—» No reference adjustment < - - Require reference adjustment \

Fast memory tier Fast memory tier

5sl'¢)

*
'

Fast memory tier
Cache } First heap
v
Slow memory tier Slow memory tier Slow memory tier

Managed heap [old gen. } [Second heap J
0000 (0]

(a) Uniform managed (b) Partitioned managed (c) Partitioned managed
heap with caching. heap without caching. heap with caching

Figure 1: Organization of the managed heap over the fast and
the slow memory tiers.

overhead on every load.

Systems in the last category [3,4,7,8, 14] overcome ref-
erence adjustment overheads and avoid scanning the slow
tier. They allocate a primary managed heap (H1) over the fast
tier and a second managed heap (H2) over the slow tier (Fig-
ure 1(c)), reserving a portion of the fast tier as a cache for H2.
The garbage collector maintains only cross-heap references
while it avoids scanning objects in the slow tier, reducing GC
time. However, these approaches divide the fast tier between
HI and the cache for H2 statically at JVM launch, leading to
two main problems.

Problem #1: Requiring hand-tuning configuration.
Finding which portion of the fast tier must be reserved
as cache to yield good performance, requires iterative
adjustments and experimentation. Users may need to search
for a suitable configuration whenever they change dataset size
or application. These experimentations are time-consuming
and impractical in real-life deployments where applications
and datasets change frequently.

Problem #2: Changing application behavior. Applica-
tions have dramatically different memory requirements at
different periods. H1 should use enough space in the fast tier
to avoid memory pressure and frequent GC cycles. However,
increasing the cache for H2 results in faster access to ob-
jects on the slow tier. Thus, the static division of the fast tier
between H1 and the cache for H2 cannot adapt to dynamic
changing application behavior.

To support the point that DRAM should be divided dy-
namically, we perform a study using a state-of-the-art system,
TeraHeap [7]. TeraHeap has a primary managed heap (HI)
on DRAM and a second high-capacity managed heap (H2)

N
o

10wait (%)
=
o
10wait (%)
N
o

N
o

=
o
o
L
i
o
o

H1 Usage (%)
w
o

H1 Usage (%)
w
o

o
!
o

0 2000 4000 0 5000 10000 15000 20000
Time (s) Time (s)

(a) SVM-Spark (b) CDLP-Giraph
Figure 2: Applications have dramatically different memory
requirements at different periods.

memory-mapped over an NVMe SSD. It partitions DRAM
statically between H1 and the page cache for H2, at the ini-
tialization of the JVM. Figure 2(a) shows the occupancy of
H1 and iowait time for an SVM workload on Spark. From
0-2500s, SVM loads the dataset into memory and performs
the algorithm’s first iteration. In this phase, the application
generates a large number of objects, resulting in filling the
old generation very frequently. The high peaks in iowait time
between 0-2500 s are due to the transfers of objects to H2 dur-
ing GC. After 2500 s, the algorithms perform iterations over
the cached objects we moved to H2. Between 25004600,
HI1 utilization is low because SVM creates few objects; of
these, 90% die in the young generation, and the remaining
10% is promoted to the old generation. However, during that
time, the application demands a large page cache to reduce
the 1/0O traffic to the device. On the other hand, as shown
in Figure 2(b), CDLP running on Giraph has eight distinct
periods where memory requirements vary for HI and page
cache.

2 DynaHeap Design Overview

We propose DynaHeap, a system that dynamically divides a
fixed of DRAM budget between the primary heap (H1) and
cache for the second heap (H2). DynaHeap treats applications
as black boxes and defines distinct rules for memory tuning
between H1 and the cache for H2. It determines whether to
increase H1 or the cache for H2 at runtime by tracking GC
and I/O time. Our design introduces three essential functions:

Tracking I/0 and GC overheads. DynaHeap dynamically
observes program behavior at fixed granularity intervals and
repartitions DRAM between H1 and the cache for H2, to
minimize the sum of overheads: GC time for H1 and I/O time
for H2. It uses metrics already available by the corresponding
subsystems; these are accessible at negligible overhead. We
read the counters for GC and iowait time reported by the JVM
and OS, respectively.

We divide time into intervals of duration 7. Although there
is no explicit value for 7', T should correspond to a granu-

larity that is required for adjusting DRAM between H1 and
the cache for H2. Using a very large value for T, such as
tens of seconds, results in a noticeable delay in making deci-
sions. For this purpose, we use 7" corresponding to the interval
between each young (minor) GC cycle. Minor GC in gener-
ational garbage collectors happens when the JVM cannot
allocate space for a new object. The allocation rate in big data
frameworks is high, resulting in frequent minor GC cycles, on
average every 5—10s. However, taking actions at a too fine-
grain granularity might lead to suboptimal decisions due to
noise. Thus, DynaHeap takes decisions for DRAM repartition
based on the metrics of the N last intervals.

DynaHeap calculates for each past interval the cost of the
GC and I/O time. It starts by allocating almost all DRAM to
HI1. When GC is higher than I/O time, DynaHeap reduces GC
cost by (1) moving objects to H2 or (2) growing the size of
HI. In the first case, wherein a significant portion of objects
within H1 are marked for relocation to H2 by the application,
DynaHeap moves a subset of these objects to H2. Otherwise,
DynaHeap tries to increase the capacity of H1 to postpone the
next GC cycle. On the other hand, when I/O time is higher
than GC time, then DynaHeap shrinks H1 to increase the size
of the cache.

Calculating GC overhead. Although DynaHeap takes de-
cisions in each interval 7', full GC does not happen in every
interval. To compare GC cost with the I/O in each interval,
DynaHeap amortizes the full GC cost over subsequent inter-
vals, until the next GC cycle. This amortization uses metrics
such as GC pause time, reclaimed space, object allocation rate,
and time between full GC cycles, to apportion GC overheads
to each inteval. In short, DynaHeap estimates how many in-
tervals will it take until the next GC cycle, and amortizes the
last GC pause time over them. This amortized GC cost is then
compared to current I/O time within each interval.

Tracking unused memory. Adjusting the fast tier memory
between H1 and the cache for H2 may take a different amount
of time for each of the two uses. That is, reducing the size of
H1 to increase the cache for H2 will eventually reduce I/O
overheads for H2 access. However, it may result in high mem-
ory pressure and frequent GC cycles before that happens. For
this purpose, DynaHeap monitors how much of the available
memory (after shrinking H1) is being used for the cache of
H2. In case the caching system has not taken advange of all
the available memory yet, DynaHeap avoids extra shrinking
of H1.

3 Conclusions

We implement DynaHeap on top of TeraHeap in OpenJDKS8
and OpenJDK17. We evaluate DynaHeap compared to Tera-
Heap using two well-broad analytic frameworks, Spark and
Giraph. Overall, DynaHeap performance is between 24% bet-
ter and 2% worse than a hand-tuned baseline of TeraHeap.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

Shoaib Akram, Jennifer B. Sartor, Kathryn S. McKinley,
and Lieven Eeckhout. Write-rationing garbage collec-
tion for hybrid memories. In Proceedings of the 39th
ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’ 18, pages 6277,
New York, NY, USA, 2018. Association for Computing
Machinery.

Shoaib Akram, Jennifer B. Sartor, Kathryn S. McKin-
ley, and Lieven Eeckhout. Crystal gazer: Profile-driven
write-rationing garbage collection for hybrid memories.
SIGMETRICS Perform. Eval. Rev.,47(1):21-22, Decem-
ber 2019.

Michael D. Bond and Kathryn S. McKinley. Tolerating
memory leaks. In Proceedings of the 23rd ACM SIG-
PLAN Conference on Object-Oriented Programming
Systems Languages and Applications, OOPSLA ’08,
pages 109-126, New York, NY, USA, 2008. Associa-
tion for Computing Machinery.

Kim T. Briggs, Baoguo Zhou, and Gerhard W. Dueck.
Cold object identification in the java virtual machine.
Software: Practice and Experience, 47(1):79-95, 2017.

Zixian Cai, Stephen M. Blackburn, Michael D. Bond,
and Martin Maas. Distilling the real cost of production
garbage collectors. In 2022 IEEE International Sympo-
sium on Performance Analysis of Systems and Software
(ISPASS), ISPASS °22, pages 46-57. IEEE Computer
Society Press, 2022.

Paris Carbone, Asterios Katsifodimos, Stephan Ewen,
Volker Markl, Seif Haridi, and Kostas Tzoumas. Apache
flink: Stream and batch processing in a single engine.
The Bulletin of the Technical Committee on Data Engi-
neering, 38(4), 2015.

Tacovos G. Kolokasis, Giannos Evdorou, Shoaib Akram,
Christos Kozanitis, Anastasios Papagiannis, Foivos S.
Zakkak, Polyvios Pratikakis, and Angelos Bilas. Tera-
heap: Reducing memory pressure in managed big data
frameworks. In Proceedings of the 28th ACM Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Volume
3, ASPLOS 2023, page 694-709, New York, NY, USA,
2023. Association for Computing Machinery.

Iacovos G. Kolokasis, Anastasios Papagiannis, Polyvios
Pratikakis, Angelos Bilas, and Foivos Zakkak. Say good-
bye to off-heap caches! on-heap caches using memory-
mapped i/o. In Proceedings of the 12th USENIX Con-
ference on Hot Topics in Storage and File Systems, Hot-
Storage *20, USA, 2020. USENIX Association.

[9]

(10]

(11]

(12]

[13]

[14]

[15]

[16]

Zhe Li and Mingyu Wu. Transparent and lightweight
object placement for managed workloads atop hybrid
memories. In Proceedings of the 18th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Exe-
cution Environments, VEE °22, pages 72—-80, New York,
NY, USA, 2022. Association for Computing Machinery.

Haoran Ma, Shi Liu, Chenxi Wang, Yifan Qiao,
Michael D. Bond, Stephen M. Blackburn, Miryung
Kim, and Guoqing Harry Xu. Mako: A low-
pause, high-throughput evacuating collector for memory-
disaggregated datacenters. In Proceedings of the 43rd
ACM SIGPLAN International Conference on Program-
ming Language Design and Implementation, PLDI °22,
pages 92—-107, New York, NY, USA, 2022. Association
for Computing Machinery.

SeongJae Park, Madhuparna Bhowmik, and Alexandru
Uta. Daos: Data access-aware operating system. In
Proceedings of the 31st International Symposium on
High-Performance Parallel and Distributed Computing,
HPDC 22, pages 4-15, New York, NY, USA, 2022. As-
sociation for Computing Machinery.

Sherif Sakr, Faisal Moeen Orakzai, Ibrahim Abdelaziz,
and Zuhair Khayyat. Large-Scale Graph Processing
Using Apache Giraph. Springer Publishing Company,
Incorporated, 1st edition, 2017.

Kunal Sareen and Stephen Michael Blackburn. Bet-
ter understanding the costs and benefits of automatic
memory management. In Proceedings of the 19th In-
ternational Conference on Managed Programming Lan-
guages and Runtimes, MPLR ’22, page 29-44, New
York, NY, USA, 2022. Association for Computing Ma-
chinery.

Yan Tang, Qi Gao, and Feng Qin. {LeakSurvivor}:
Towards safely tolerating memory leaks for { Garbage-
Collected} languages. In 2008 USENIX Annual Techni-
cal Conference (USENIX ATC 08), USENIX ATC "08,
pages 307-320, USA, 2008. USENIX Association.

Chenxi Wang, Huimin Cui, Ting Cao, John Zigman,
Haris Volos, Onur Mutlu, Fang Lv, Xiaobing Feng, and
Guoqing Harry Xu. Panthera: Holistic memory man-
agement for big data processing over hybrid memories.
In Proceedings of the 40th ACM SIGPLAN Conference
on Programming Language Design and Implementation,
PLDI 2019, page 347-362. Association for Computing
Machinery, June 2019.

Chenxi Wang, Haoran Ma, Shi Liu, Yuanqi Li, Zhenyuan
Ruan, Khanh Nguyen, Michael D. Bond, Ravi Ne-
travali, Miryung Kim, and Guoqing Harry Xu. Semeru:
A memory-disaggregated managed runtime. In /4th
USENIX Symposium on Operating Systems Design and

[17]

[18]

[19]

[20]

[21]

Implementation, OSDI °20, pages 261-280, USA, 2020.
USENIX Association.

Chenxi Wang, Haoran Ma, Shi Liu, Yifan Qiao,
Jonathan Eyolfson, Christian Navasca, Shan Lu, and
Guoqing Harry Xu. MemLiner: Lining up tracing and
application for a Far-Memory-Friendly runtime. In /6th
USENIX Symposium on Operating Systems Design and
Implementation, OSDI 22, pages 35-53, USA, 2022.
USENIX Association.

Albert Mingkun Yang, Erik Osterlund, Jesper Wilhelms-
son, Hanna Nyblom, and Tobias Wrigstad. Thingc: Com-
plete isolation with marginal overhead. In Proceedings
of the 2020 ACM SIGPLAN International Symposium
on Memory Management, ISMM °20, pages 74—86, New
York, NY, USA, 2020. Association for Computing Ma-
chinery.

Yanfei Yang, Mingyu Wu, Haibo Chen, and Binyu Zang.
Bridging the performance gap for copy-based garbage
collectors atop non-volatile memory. In Proceedings of
the Sixteenth European Conference on Computer Sys-
tems, EuroSys *21, page 343-358. Association for Com-
puting Machinery, April 2021.

Litong You, Tianxiao Gu, Shengan Zheng, Jianmei Guo,
Sanhong Li, Yuting Chen, and Linpeng Huang. Jpdheap:
A jvm heap design for pm-dram memories. In 2021
58th ACM/IEEE Design Automation Conference (DAC),
pages 31-36, 2021.

Matei Zaharia, Mosharaf Chowdhury, Michael J.
Franklin, Scott Shenker, and Ion Stoica. Spark: Cluster
computing with working sets. In Proceedings of the 2nd
USENIX Conference on Hot Topics in Cloud Computing,
HotCloud *10, USA, 2010. USENIX Association.

	Motivation
	DynaHeap Design Overview
	Conclusions

