A Sleep-based
Communica-
tion
Mechanism to
Save
Processor
Utilization in
Distributed
Streaming
Systems

Shoaib
Akram,
Angelos Bilas

Outline
Introduction

Our Work

Experimental
Platform

Results

A Broader
Picture of Our
Work

Conclusions

A Sleep-based Communication Mechanism to
Save Processor Utilization in Distributed
Streaming Systems

Shoaib Akram Angelos Bilas

Foundation for Research and Technology - Hellas (FORTH)
Institute of Computer Science (ICS)

May 1, 2011

A Sleep-based
Communica-
tion
Mechanism to
Save .
Processor o Introduction
Utilization in
Distributed
Streaming

Syst
@ Our Work

Shoaib
Akram,
Angelos Bilas

© Experimental Platform

Outline

Introduction

Our Work e Resu ItS

Experimental
Platform

Results @ A Broader Picture of Our Work

A Broader
Picture of Our
Work

Conclusions @ COnClUSionS

A Sleep-based
Communica-
tion - - -
Mecharism o Efficiency in Back-end Processing
Processor
Utilization in
Distributed
Streaming
Systems

Shoaib
Akram,
Angelos Bilas e Efficiency in back-end processing is important.

e Scalability is important but software stacks of indiviual
troduction nodes are becoming complex :
e Runtime bloat (Nick Mitchell).
e Complex messaging protocols.
e Layers of software, libraries etc.

e This leads to over-provisioning of resources for back-end
processing.

A Sleep-based
Communica-
tion
Mechanism to
Save
Processor
Utilization in
Distributed
Streaming
Systems

Shoaib
Akram,
Angelos Bilas

Introduction

Distributed Streaming Systems

Recently gaining attention due to large amounts of data to
be processed /filtered.

Static queries and moving data.

Similar operators like traditional data bases.

Reasons for adopting a distributed model :
e Geographically distributed sources of data.
e Speed-up of application queries.

Borealis (academic consortium) and SystemS (IBM) are
common examples.

A Sleep-based
Communica-
tion
Mechanism to
Save
Processor
Utilization in
Distributed
Streaming
Systems

Shoaib

Akram,
Angelos Bilas

Introduction

Key Requirements of Distributed
Streaming Systems

Scalability to many nodes.
Provisioning for heavy inter-node communication.
Rich library of stream operators.

Communication protocol and operators should be
decoupled.

A Sleep-based
Communica-
tion
Mechanism to
Save
Processor
Utilization in
Distributed
Streaming

Systems

Shoaib

Akram,
Angelos Bilas

Introduction

The Architecture of Borealis -

Event Structure

e Event-driven architetcure.

e The notion of streams and tuples.

Tuples Number of ize of %ouroeof Stream
Tuples uple uples Info
Tuplel Tuple2 Tuple3 Tuple4
&ime Field1 Field2 Field3
amp

A Sleep-based
Communica-
tion . .
e The Architecture of Borealis -
Processor

Utiligtion in Threads and Data Structures
Distribute:
Strtealr)nitngd
Systems

Shoaib
Akram,
Angelos Bilas

e Four threads that work asynchronously:

receive thread
process thread
prepare thread
send thread

Introduction

e Data structures for inter-thread communication.

A Sleep-based
Communica-
tion
Mechanism to
Save
Processor
Utilization in
Distributed
Streaming

Systems

Shoaib

Akram,
Angelos Bilas

Our Work

Communication Subsystems in
Distributed Middleware Systems

o Send/Receive operations are implemented using:

e Interrupts - High overhead at high network speeds and
large message rates.

e Polling - Wastes CPU cycles at low network rates.
e Send/Receive API provided by Linux Sockets :

e Blocking sockets (interrupts).

e Non-blocking sockets (polling).

e Monitoring multiple sockets (blocking call to select).

e Problems with monitoring multiple sockets with select.

A Sleep-based
Communica-
tion

Mechanism to Sleeping - An Alternative

Save
Processor

Utilization in ApproaCh

Distributed
Streaming
Systems

Shoaib
Akram,
Angelos Bilas

e Sleep for a specific amount of time if no communication is
expected.

S e Regulation of sleeping time :
o Kernel issues.
Multiple applications.
Parameters of a single application changes.

Granularity of sleeping time may change with a different
kernel.

A Sleep-based
Communica-
tion
Mechanism to
Save
Processor
Utilization in
Distributed
Streaming
Systems

Shoaib
Akram,
Angelos Bilas

Our Work

Our Approach:
Distribution /Accumulation of
Work

Typical configuration of a data streaming system is a
pipeline of senders/receivers.
Send and receive threads work asynchronously.
Goal of send thread :

e Node downstream has enough work to perform.
Goal of receive thread :

e Unpack the events and give work to process thread.
e Layers above the communication protocol have enough
work to do.

A Sleep-based
Communica-
tion
Mechanism to
Save
Processor
Utilization in
Distributed
Streaming
Systems

Shoaib
Akram,
Angelos Bilas

Our Work

Working in Waves

Both send and receive threads maintain messaging queues.

The receive thread informs the send thread of the
availability of free slots in the queue by sending a message
(credit message).

After processing a few buffers, the receive thread sends a
credit message to the send thread.

The credit message allows the send thread to send data in
buffers that the receive thread has already made available.

If there the send thread can not find a credit message, it
sleeps.

A Sleep-based
Communica-
tion
Mechanism to
Save
Processor
Utilization in
Distributed
Streaming
Systems

Shoaib
Akram,
Angelos Bilas

Our Work

Working in Waves

e The receive thread unpacks the events, hand the events to
the event handler and then checks for an event in the next
slot in the queue.

e |f the receive thread can not find data in the buffer, it
sleeps.

e While it is sleeping, the send thread fills up the queue with
new events.

A Sleep-based
Communica-
tion . -
Mechanism to Working in Waves: Summary
ave
Processor
Utilization in
Distributed
Streaming
Systems

Sleeping criteria for send thread :
Shoaib

o o Criteria: Sleep for a fixed amount of time if no credits
Angelos Bilas available
e Rationale: Receiver is busy unpacking messages and will
send credits at some point.

Our Work e Sleeping criteria for receive thread :

e Criteria: Sleep for a fixed amount of time if no new
message is available.
e Rationale:
o All the available messages were unpacked and distributed
to layer above.
e Processing is much heavier than unpacking.
e Collect work while consuming no extra CPU cycles.

A Sleep-based
Communica-
tion
Mechanism to
Save
Processor
Utilization in
Distributed
Streaming
Systems

Shoaib
Akram,
Angelos Bilas

Experimental
Platform

Machine Parameters and
Benchmark for Evaluation

Four server-type systems running Linux CentOS release
5.4.

Two Intel Xeon Quad-core (2-way hyper threaded).
14 Gbytes DRAM.

10 Gbits/s Ethernet NIC from Myrinet.

10 Gbits/s Ethernet HP ProCurve 3400c| switch.

A custom-benchmark that filters the incoming data (filter
condition is always true to load network).

First node generates the tuples, the next two process the
tuples.

The last node receives the tuples and consumes them
internally.

A Sleep-based
Communica-
tion
Mechanism to
Save
Processor
Utilization in
Distributed
Streaming
Systems

Shoaib
Akram,
Angelos Bilas

Experimental
Platform

Some Parameters of Borealis

No. of instances of borealis (8).

Batching factor (varying).

Tuple size (varying).

Size of send-side queue (10).

Size of receive-side queue (100).

Frequency of exchanging credits (every 10 buffers).

Sleeping time is 10 ms.

A Sleep-based
Communica-
tion
Mechanism to
Save
Processor
Utilization in
Distributed
Streaming
Systems

Shoaib
Akram,
Angelos Bilas

Experimental
Platform

Myrinet MX - A User-level
Networking API

Provides a user-level networking API.
Baseline throughput is higher :

e Removes one copy on send side.
e Removes two copies on the receive path.
e Reduces the number of interrupts on the receive side.

Fine-grained control for managing buffers.

Ease of implementation of flow-control mechanisms.

A Sleep-based
Communica-
tion
Mechanism to
Save
Processor
Utilization in
Distributed
Streaming
Systems

Shoaib
Akram,
Angelos Bilas

Experimental
Platform

Our Configurations of Borealis for
Evaluation

tcp : Baseline version of borealis with TCP/IP.

mx-poll : Borealis with Myrinet MX protocol and polling
operations for testing buffers.

mx-int : Borealis with Myrinet MX protocol and polling
opeations for testing buffers.

mx-sleep : Borealis with Myrinet MX protocol and using
sleep system call.

A Sleep-based
Communica-
tion

Mechariemito Baseline Throughput of Borealis
Utireaton n with TCP and MyrinetMX
Streaming
Systems
Shoaib 500
Akram, 8 600 g 400 —mop
Angelos Bilas B 400 g 30 —e— mx-poll
% g. 200 —&— mx-int
£ 200 £ 100 —+— mx-sleep
0 0
8 B é § £ §
event size (bvtes) event size (bvtes)
(a) 128 bytes (b) 512 bytes

Results

e mx-int improves throughput of borealis compared to tcp
(22%).
e mx-poll has lower throughput compared to mx-int.

e mx-adp gives better throughput compared to tcp
(23-63%).

A Sleep-based
Communica-
tion
Mechanism to
Save
Processor
Utilization in
Distributed
Streaming
Systems

Shoaib
Akram,
Angelos Bilas

Results

ktuples/sec

% utilization

Throughput and CPU Utilization -
All Configurations

16K —~

600 500
600 400
' §
400 8 8 30
g S 200
20 R im
0 OfF—F—T— 71— 11 OF———T—
§ ¥ ¥ ¥ ¥ % g 5 & ¥ 5 8 SR T
event size (bvtes) event size (bvtes) event size (bvtes)
(c) 128 bytes (d) 256 bytes (e) 512 bytes
80 5 80 5 80
60 § 60 § 60
40 s 40 e
20 L 20 L 20
Or——T—T1 7 71 1 Or——T—T1 7 71 1 L S e e e
® ¥ ¥ ¥ ¥ x € ¥ ¥ ¥ ¥ x N ¥ ¥ ¥ ¥ x
§ 5 & ¥ 5 8 8 3 & s 3 2 3 & s 3

event size (bvtes)

(f) 128 bytes

event size (bvtes)

(g) 256 bytes

event size (bvtes)

(h) 512 bytes

A Sleep-based
Communica-

tion . .
e General Trends in Writing
Uttt i Middleware Systems
Distributed

Streaming

Systems

Shoaib
Akram,
Angelos Bilas

Modules are written by different developers.

Accounting for heterogenous architectures.

Accounting for slow networks.

e Over-provisioning for memory.

A Broader
Picture of Our
Work

A Sleep-based
Communica-

tion . .
e General Trends in Writing
Uttt i Middleware Systems
Distributed

Streaming

Systems

Shoaib
A,,;k.;z"g;i,as e Buffer management across threads/modules :
o (buffer_ptr,size).
e Copying a buffer and passing it.

e Serialization-Deserialization - Heterogenity and Portability

e Communication among heterogenous nodes.

e Packing data-structures spread in different parts of
A Broader memory.
ychure of Our e Overhead of copies.

Use separate send operation to send each field of
data-structure.

A Sleep-based
Communica-
tion

e General Trends in Writing
Uttt i Middleware Systems
Distributed
Streaming
SIS e Message Queuing for Asynchronous Operation :
i::’:,f e Threads might block on slow networks.
Angelos Bilas o Buffering provides asynchronous operation.
e Not necessary on fast networks.
e Send the event from the prepare thread and block (in
case).
e Flow Control :
e Memory is usually over-provisioned.
e Virtual memory is backed up by swap space on disk.
piroader e Proper flow-control involves accounting memory under

Work utilization (by different threads).
e Proper inter-thread flow-control saves memory resources
for other tasks in the system.
o Different structures could possibly allow flow-control
(which one to choose).

A Sleep-based
Communica-
tion . .
Mecharism to Observations from the Borealis
Utoarion n Communication Flow
Distributed
Streaming
Systems receive thread

processthread

Shoaib
Akram,
Angelos Bilas

preparethread

send thread
A Broader

Picture of Our
Work

7

serialized event
(string)

A Sleep-based
Communica-
tion

Mechanism to COnCluS|OnS
Save
Processor
Utilization in
Distributed
Streaming
Systems
Shoaib e Sleep-based communication policies can save CPU cycles
ram,
Angelos Bilas for other tasks.

e Main problem is to find a criteria to sleep.

e Portability is a concern.

e Save CPU cycles for a given application :

o Less power.

e Give CPU cycles to some other application :
piroader e Improves (overall) energy efficiency of a system.
Work .

. e Too much focus on scaling?

A Sleep-based
Communica-
tion

Mecharism to Conclusions
Processor
Utilization in
Distributed
Streaming
Systems
Shoaib e Sleep-based communication policies can save CPU cycles
ram,
Angelos Bilas for other tasks.
e Main problem is to find a criteria to sleep.
e Portability is a concern.
e Save CPU cycles for a given application :
o Less power.
e Give CPU cycles to some other application :
e Improves (overall) energy efficiency of a system.
e Too much focus on scaling?

Conclusions

	Outline
	Introduction
	Our Work
	Experimental Platform
	Results
	A Broader Picture of Our Work
	Conclusions

