
Understanding	
  scalability	
  and	
  performance	
  
requirements	
  of	
  I/O	
  intensive	
  applica:ons	
  

on	
  future	
  mul:core	
  servers	
  

Shoaib	
  Akram,	
  Manolis	
  Marazakis,	
  and	
  Angelos	
  Bilas	
  
	
  

Presenta:on:	
  Polyvios	
  Pra:kakis	
  
	
  	
  
Founda:on	
  for	
  Research	
  and	
  Technology	
  –	
  Hellas	
  (FORTH)	
  
Ins:tute	
  of	
  Computer	
  Science	
  (ICS)	
  

07-­‐aug-­‐2012	
   mascots'12	
   1	
  



Demand	
  for	
  Data	
  Grows	
  Fast	
  
•  …Faster	
  than	
  storage	
  capacity	
  
– Digital	
  Universe	
  2010,	
  2011	
  [IDC/EMC]	
  
–  Storage	
  capacity	
  grows	
  faster	
  than	
  Moore’s	
  law	
  

•  Need	
  to	
  store	
  and	
  can	
  store	
  a	
  lot	
  of	
  data	
  
•  Can	
  we	
  access	
  and	
  process	
  data	
  at	
  the	
  same	
  
rate?	
  

07-­‐aug-­‐2012	
   mascots'12	
   2	
  



Today	
  Low	
  “I/O	
  Density”	
  

•  Typical	
  server	
  configura:on	
  
–  4-­‐8	
  cores	
  
–  8-­‐32	
  GBytes	
  	
  
–  2-­‐4	
  disks	
  
–  2	
  cores	
  to	
  keep	
  up	
  with	
  1	
  disk-­‐performance	
  

•  Emerging	
  needs:	
  process	
  large	
  amounts	
  of	
  data	
  
–  Bring	
  data	
  to	
  memory,	
  process	
  (data	
  centric)	
  
–  Compared	
  to	
  compute	
  from	
  main	
  memory	
  
–  Keeping	
  up	
  with	
  data	
  growth	
  requires	
  increasing	
  I/O	
  
density	
  

•  So	
  far	
  slow	
  disks	
  limita:on	
  to	
  increasing	
  I/O	
  density	
  

07-­‐aug-­‐2012	
   mascots'12	
   3	
  



Towards	
  Higher	
  “I/O	
  Density”	
  

•  New	
  device	
  technologies	
  (SSDs)	
  allow	
  higher	
  
access	
  rate	
  with	
  fewer	
  devices	
  and	
  beeer	
  
latency	
  (IOPS)	
  

•  This	
  allows	
  and	
  requires	
  increasing	
  #cores	
  per	
  
server	
  

•  Broadly,	
  what	
  is	
  the	
  role	
  of	
  storage	
  I/O?	
  

07-­‐aug-­‐2012	
   mascots'12	
   4	
  



Goals	
  

•  This	
  presenta:on	
  centered	
  around	
  3	
  
ques:ons	
  
1.  Does	
  I/O	
  scale	
  with	
  cores?	
  
2.  How	
  much	
  I/O	
  in	
  ten	
  years?	
  
3.  How	
  energy	
  (in)efficient	
  is	
  applica:on	
  I/O?	
  

•  Contribute	
  to	
  methodology	
  	
  
– How	
  can	
  we	
  characterize	
  I/O	
  across	
  applica:ons?	
  
– We	
  measure	
  using	
  real	
  applica:ons,	
  workloads	
  
– We	
  project	
  to	
  large	
  numbers	
  of	
  cores	
  

07-­‐aug-­‐2012	
   mascots'12	
   5	
  



Outline	
  

ü Mo:va:on	
  and	
  Goals	
  
•  Metrics	
  &	
  Methodology	
  
•  Applica:ons	
  &	
  Plamorms	
  
•  Does	
  I/O	
  scale?	
  	
  
•  How	
  much	
  I/O?	
  
•  How	
  much	
  Energy?	
  
•  Conclusions	
  

3/1/16	
   MASCOTS	
  2012	
   6	
  



Methodology	
  

•  Get	
  a	
  number	
  of	
  applica:ons	
  
– Data-­‐centric,	
  I/O	
  intensive	
  

•  Figure	
  out	
  parameters	
  and	
  configura:ons	
  
•  Run	
  them	
  on	
  a	
  real	
  system	
  
•  Examine	
  how	
  much	
  I/O	
  they	
  require	
  
•  Methodology	
  is	
  interes:ng	
  by	
  itself	
  

07-­‐aug-­‐2012	
   mascots'12	
   7	
  



cpio:	
  Abstract	
  I/O	
  behavior	
  
•  We	
  use	
  cycles	
  per	
  I/O	
  (cpio)	
  as	
  a	
  metric	
  

–  Used	
  in	
  the	
  past	
  in	
  certain	
  cases	
  
–  Recently	
  used	
  more	
  in	
  networking	
  as	
  cycles	
  per	
  packet	
  

•  System-­‐level	
  metric	
  
–  Not	
  related	
  to	
  applica:on	
  output	
  
–  Includes	
  both	
  CPU	
  and	
  I/O	
  

•  Compu:ng	
  cpio	
  
–  Calculate	
  execu:on	
  :me	
  breakdown	
  
–  Count	
  number	
  of	
  I/Os	
  –	
  512	
  bytes	
  	
  
–  cpio	
  =	
  (system	
  +	
  user)	
  /	
  #ios	
  

•  Ignore	
  idle	
  and	
  iowait	
  :me	
  
–  Energy	
  propor:onality	
  -­‐>	
  idle+iowait	
  not	
  a	
  problem	
  
–  Not	
  straight-­‐forward	
  to	
  dis:nguish	
  idle	
  form	
  iowait	
  

07-­‐aug-­‐2012	
   mascots'12	
   8	
  



Use	
  Experimental	
  Approach	
  

•  Server-­‐type	
  specs	
  with	
  aggressive	
  I/O	
  subsystem	
  
–  24	
  SSDs,	
  4x	
  LSI	
  controllers,	
  6	
  SSDs	
  per	
  controller	
  

•  Two	
  configura:ons:	
  More,	
  less	
  aggressive	
  (CPU,	
  I/O)	
  

07-­‐aug-­‐2012	
   mascots'12	
   9	
  

DISKS	
   SSDS	
  

2	
  Intel	
  Xeon	
  E5620	
  (Quad-­‐core)	
   2	
  Intel	
  Xeon	
  E5405	
  (Quad-­‐core)	
  

No	
  Hyper-­‐threading	
   Hyper-­‐threading	
  	
  

8	
  GB	
  RAM	
   12	
  GB	
  RAM	
  

1	
  Storage	
  Controller	
  (8	
  Disks)	
   4	
  Storage	
  Controllers	
  (24	
  SSDs)	
  

XFS	
  on	
  Hardware	
  RAID	
  0	
   XFS	
  on	
  Sovware	
  RAID	
  0	
  

1	
  GB/s	
  Storage	
  Throughput	
   6	
  GB/s	
  Storage	
  Throughput	
  

CentOS	
  distribu:on;	
  2.6.18	
   CentOS	
  distribu:on;	
  2.6.32	
  



Benchmarks	
  and	
  Applica:ons	
  
•  Applica:ons	
  from	
  diverse	
  domains	
  

–  Benchmarks	
  (zmIO,	
  fsmark,	
  IOR)	
  
–  OLTP	
  workloads	
  (TPC-­‐C,	
  TPC-­‐E)	
  
–  NoSQL	
  Data	
  Stores	
  (HBase,	
  BDB)	
  
–  HPC	
  Domain	
  (Ferret,	
  BLAST)	
  
–  Backend	
  Applica:ons	
  (Deduplica:on,Psearchy,Me:s)	
  
–  Data	
  Streaming	
  (Borealis)	
  

–  Business	
  Intelligence	
  (Tariff)	
  
•  Applica:ons	
  are	
  tuned	
  to	
  perform	
  large	
  amounts	
  of	
  I/O	
  

–  Applica:ons	
  and	
  run:me	
  parameters	
  available	
  at	
  [www.iolanes.eu]	
  	
  

3/1/16	
   MASCOTS	
  2012	
   10	
  



Two	
  Broad	
  Categories	
  

•  Sweep	
  
– Do	
  a	
  pass	
  over	
  the	
  data	
  to	
  calculate	
  metadata	
  
– E.g.	
  indexing,	
  deduplica:on,	
  streaming	
  

•  Metadata	
  
– Quickly	
  calculate	
  metadata	
  
– Operate	
  mostly	
  from	
  metadata	
  and	
  only	
  access	
  
necessary	
  data	
  

– OLTPL,	
  OLAP,	
  key-­‐value	
  stores,	
  image	
  processing	
  

07-­‐aug-­‐2012	
   mascots'12	
   11	
  



Measured	
  cpio	
  –	
  Range	
  

07-­‐aug-­‐2012	
   12	
  mascots'12	
  

(a) DISKS (b) SSDS

Fig. 1. Breakdown of execution time (Y-axis) in terms of user, system, idle, and iowait time on DISKS and SSDS.

up to 0.68. Further, from one to 16 hardware threads, � drops
to below 0.5 for HBase, BDB, TPC-C and I-HFDL. This
drop is because as more cores are added, either iowait and/or
idle time increases. Thus, as applications strive to perform
more I/O operations with increasing number of cores, syn-
chronization overhead becomes one of the primary bottlenecks
to scalability. For the more compute-intensive workloads, and
in particular, Dedup, Metis, Tariff, and BR-1024, � does not
drop significantly.

B. Are hyper-threads effective?

Now, we show the effectiveness of hyper-threading for
data-centric applications. Schone et al., recently showed the
slightly negative impact of hyper-threading on application per-
formance [17]. However, they experimented with all cores and
hyper-threading enabled. With all hardware threads enabled, it
is difficult to analyze if any particular feature of the system
is the bottleneck. Therefore, we evaluate hyper-threading with
different number of hardware threads. Figure 6 shows cpio
for different number of cores both with and without hyper-
threading enable (normalized to cpio with four cores). We note
that, for most applications, there is no significant increase in
cpio using four cores with hyper-threading (4C+HT) instead
of eight cores (8C). In particular, most applications observe
only a 20% increase in cpio when hardware threads are used
instead of full cores.

Figure 6 also shows that, for half of the workloads, cpio
increases significantly with 16 hardware threads. Given our
earlier observation that cores and hardware threads follow a
similar scalability trend, we believe that, what we observed
for 16 hardware threads, will be the case for 16 cores. Our
results indicate that the increase in cpio is contributed both by
the user and system component. Thus, we infer that the I/O
stack in current systems do not scale with multiple cores.

C. How much memory bandwidth?

An important question for data-centric applications is how
much memory bandwidth is sufficient for scalability to many
cores. We answer this question by analyzing the sensitivity
of applications to memory bandwidth. Scientific applications
are known to be less sensitive to memory bandwidth because
computing complex addresses generated by these applications
hides the memory latency [18]. Since it is difficult to estimate

(a) DISKS

1
10

100
1,000

10,000
100,000

1,000,000
10,000,000

zm
IO

fs
m
ar
k

I-H
FD

L

I-H
TD

L

IO
R

HB
as
e

BR
-6
4

TP
C-
E

TP
C-
C

I-H
TD

S

I-H
FD

S

BD
B

BR
-1
02

4

BL
AS

T

Ta
rr
if

De
du

pL

De
du

pS

BR
-1
28

M
et
is

Fe
rr
et

(b) SSDS

Fig. 2. cpio (Y-axis) on DISKS and SSDS. The Y-axis uses a logarithmic
scale.

(a) Cores (b) Hardware Threads

Fig. 3. Increase in cpio (Y-axis) normalized to the cpio with one core (a)
and with one hardware thread (b).

what future technologies might be capable of providing, we
project memory bandwidth demand in future that is sufficient
for scaling current performance standards to many cores. First,
the maximum bandwidth on SSDS is 21 GB/s. This implies a
bandwidth of 1.3125 GB/s per core. We measure the increase
in cpio with a decrease in memory bandwidth. For this, we
wrote a microbenchmark modeled after STREAM [19] called
mstress that stresses the memory subsystem. We run multiple
instances of mstress along with an application from Table I.
We note the aggregate memory bandwidth consumed by the
mstress instances. Figure 7 shows the percentage increase in
cpio of the application when part of the memory bandwidth
is taken by mstress. Note that most applications suffer a 20%
increase in cpio but then require from 6% up to 65% less

•  Range	
  from	
  1K	
  to	
  2M	
  cycles	
  per	
  I/O	
  
•  cpio	
  not	
  appropriate	
  in	
  absolute	
  terms	
  to	
  say	
  “good”	
  or	
  “bad”	
  

•  Memory	
  caching	
  plays	
  an	
  important	
  role	
  
•  Captures	
  behavior	
  assuming	
  same	
  amount	
  of	
  work	
  to	
  devices	
  
•  Can	
  be	
  as	
  tricky	
  as	
  speedup	
  



I/O	
  Characteriza:on	
  
•  Breakdown	
  of	
  execu:on	
  :me	
  (user,system,idle,iowait)	
  

3/1/16	
   MASCOTS	
  2012	
   13	
  

Average	
  system	
  
:me:	
  3%	
  

Average	
  system	
  
:me:	
  26%	
  

DISKS	
  

SSDS	
  



cpio	
  Sensi:vity	
  to	
  Devices	
  

•  cpio	
  largely	
  independent	
  of	
  configura:on	
  
•  Spinning	
  effects	
  in	
  IOR,	
  HBase	
  and	
  TPC-­‐E	
  

07-­‐aug-­‐2012	
   mascots'12	
   14	
  

time.
Key-value data stores over traditional databases is another

approach to building NoSQL stores. BDB is a library that
provides support for building data stores based on key-value
pairs. Our evaluation methodology for BDB is similar to that
for HBase. Since BDB is an embedded data store, the YCSB
clients and the BDB code share the same process address
space. We reserve 6GB of physical memory for the JVM.
We configure YCSB to use 3GB for the YCSB clients and
3GB for BDB. BDB is dominated by user time but there is
considerable system time.

Online transaction processing (OLTP) is an important class
of workloads for data-centres. We use TPC-C and TPC-E as
OLTP workloads. TPC-C models an order-entry environment
of a wholesale supplier while TPC-E models transactions that
take place in a stock brokerage firm. We run both TPC-C
and TPC-E using MySQL and specify runtime parameters that
result in high concurrency. We use an open-source version of
TPC-C called Hammerora [14]. We run the hammerora clients
and the MySQL database server on the same machine. We
observe that hammerora clients consume very little percentage
of the entire CPU utilization in our experiments. We run TPC-
C with 6GB RAM which results in realistic amount of I/O for
our chosen database. We observe that using MySQL database
server results in high idle time for both TPC-C and TPC-E.

Content similarity search is used in data-centres that host
e.g. social networking services [11]. We use Ferret from
the PARSEC benchmark suite. Ferret is compute intensive
and performs sustained but small amount of I/O. We fit the
database of image signatures against which queries are run in
memory. Ferret is dominated by user time.

Comparative genomics leverages the tremendous amount
of genomic data made possible by advances in sequencing
technology. We use BLAST [15] for Nucleotide-Nucleotide
sequence similarity search. We run multiple instances of
BLAST each executing a different set of queries on a separate
database. We use random query sequences of 5KB, which
is a common case in proteome/genome homology searches.
BLAST is I/O intensive and the execution time is dominated
by user time.

Profiling of call detail records (CDRs) by telecommunica-
tion service providers is performed for analyzing the feasibility
of various usage plans. We use TariffAdvisor (Tariff) that does
offline profiling of CDRs using machine learning models. The
input to Tariff is a set of files that each contains different
plans offered by the operator to the users. Tariff analyzes the
records covering a period of time and outputs the plans that are
financially productive. Tariff uses PostgreSQL as the database
management system. Tariff is an I/O intensive application and
its runtime is dominated by user time.

V. EXPERIMENTAL PLATFORM

Figure 1 shows the breakdown of execution time on a disk-
based and an ssd-based storage subsystem. The important
features of the two machines are shown in Table II. The
applications on the X-axis are ordered in terms of increasing

TABLE II
SUMMARY OF EXPERIMENTAL PLATFORM PARAMETERS.

DISKS SSDS
2 Intel Xeon E5620 (Quad-core) 2 Intel Xeon E5405 (Quad-core)
No hyper-threading 2 Hardware Thread per Core
8 GB RAM; 1 Storage Controller 12 GB RAM; 4 Storage Controllers
XFS on Hardware RAID 0 (8 Disks) XFS on Software RAID 0 (24 SSDs)
Storage Throughput=1 GB/s Storage Throughput=6 GB/s
CentOS distribution; 2.6.18 kernel CentOS distribution; 2.6.32 kernel

0

5

10

15

20

25

zm
IO

fs
m
ar
k

I.H
FD

L

I.H
TD

L

HB
as
e

BR
.6
4

I.H
TD

S

I.H
FD

S

TP
C.
E

Th
ou

sa
nd

s)

cpioA(SSDS)

cpioA(DISKS)

0

50

100

150

200

250

IO
R

BD
B

BR
.1
02

4

Ta
rif
f

De
du

pL

De
du

pS

BR
.1
28

M
et
is

Th
ou

sa
nd

s)

cpioA(SSDS)

cpioA(DISKS)

Fig. 2. cpio on DISKS and SSDS.

iowait time, as a percentage of total execution time. Note that
in terms of I/O behavior, the applications cover a broad range
and the average iowait time reduces when using SSDs.

We note that the average idle time for DISKS is 30%
compared to only 7% for SSDS. This is because, threads
wait longer for I/Os to complete, and thus the entire system
is slow. This observation is of particular interest to data-
centric infrastructures as in today.s server machines, the idle
and iowait periods consume up to 70% of the peak power.
This implies that disk-based storage subsystems not only have
slower response time but are also inefficient in processing I/Os
in terms of energy. We also note that on average, the system
time on DISKS is only 2% of total execution time compared
with 26% on SSDS. Thus, the idle period that applications
observe on DISKS is converted to system time on SSDS for
the workloads we evaluate.

Figure 2 shows the cpio of all applications for both se-
tups. We observe that for many applications, cpio is largely
independent of the underlying storage technology and system
configuration. Figure 2 does not show the cpio of Ferret and
TPC-C since they would require a much higher value on the
Y-axis. The cpio of Ferret is approximately 2 million cycles on
both setups. TPC-C shows very different behavior on DISKS
(12000 cycles per I/O) and SSDS (2 million cycles per I/O).

Note that given two applications, the one with a higher
execution time can appear to be more cpio-efficient by doing
large amounts of I/O. As an example, note that BDB, which
is a light-weight data store, has an order of magnitude higher
cpio compared to HBase, which has a complex software stack.
This is because HBase does a large amount of small I/O
operations. In reality, its execution time for the same YCSB
test is much higher compared to BDB. Thus, cpio should be
used carefully when comparing the efficiency of two software
stacks that generate different I/O volume during execution.



Outline	
  

ü Mo:va:on	
  and	
  Goals	
  
ü Applica:ons	
  and	
  Metrics	
  
ü Test	
  System	
  Configura:ons	
  
•  Does	
  I/O	
  Scale?	
  
•  How	
  much	
  I/O?	
  
•  How	
  much	
  Energy?	
  
•  Conclusions	
  

07-­‐aug-­‐2012	
   mascots'12	
   15	
  



Does	
  I/O	
  Scale?	
  

3/1/16	
   MASCOTS	
  2012	
   16	
  

(a) DISKS (b) SSDS

Fig. 1. Breakdown of execution time in terms of user, system, idle, and iowait time on DISKS and SSDS.

VI. MEASURED RESULTS

A. Does application I/O scale?
Perfect scalability for I/O intensive applications implies

that, with doubling of cores, IOPS should proportionally
double. Thus, cpio stays constant and application performance
doubles. However, we show in Figure 3 that cpio increases
for most applications from one to four cores and for all
applications from one to eight cores. In the same figure, we
show scalability of cpio with hardware threads instead of
cores. In Figure 3(b), we use one and two cores per socket on
SSDS and enable hyper-threading to experiment with four and
eight hardware threads. We note that the scalability trend is the
same with increasing hardware threads as seen with increasing
cores.

Next we show how well applications are able to use cycles
made available by more cores for processing additional I/Os.
Figure 5 shows how µ changes from one to multiple cores.
From one to eight cores, µ drops for most applications, and up
to 0.68 from one. Further, from one to 16 hardware threads, µ
drops to below 0.5 for HBase, BDB, TPC-C and I-HFDL. This
drop is because as more cores are added, either iowait and/or
idle time increases. Thus, as applications strive to perform
more I/O operations with increasing number of cores, synchro-
nization overhead becomes one of the primary bottlenecks to
scalability. For other workloads, in particular Dedup, Metis,
Tariff, and BR-1024, µ does not drop significantly.

B. Are hyper-threads effective?
In this subsection we show the effectiveness of hyper-

threading for data-centric applications. Schone et al., recently
showed the (slightly) negative impact of hyper-threading on
performance [16]. However, they experimented with all cores
and hyper-threading enabled. With all cores utilized, it is
difficult to analyze if any particular feature is the bottleneck.
Therefore, we evaluate hyper-threading with different number
of cores. Figure 6 shows cpio for different number of cores
both with and without hyper-threading enable (normalized to
cpio with four cores). We note that, for most applications, there
is no significant increase in cpio using four cores with hyper-
threading (4C+HT) instead of eight cores (8C). In particular,
most applications observe only a 20% increase in cpio when
hardware threads are used instead of full cores thus achieving
performance within 80% of performance with full core.

0

1

2

3

4

5

M
et
is

BR
.1
02

4

I.H
FD

L

TP
C.
E

TP
C.
C

Fe
rr
et

D
ed

up
L

IO
R

H
Ba

se

BD
B

Ta
rif
f

fs
m
ar
k

4 8

(a) Cores

0

1

2

3

4

5

M
et
is

BR
.1
02

4

I.H
FD

L

TP
C.
E

TP
C.
C

Fe
rr
et

D
ed

up
L

IO
R

H
Ba

se

BD
B

Ta
rif
f

fs
m
ar
k

4 8

(b) Hardware Threads

Fig. 3. Increase in cpio (Y-axis) normalized to the cpio with one core (a)
and with one hardware thread (b).

Fig. 4. Increase in cpio (Y-axis) from 1 to many cores normalized to cpio
with one core.

This figure also shows that, for half of the workloads, cpio
increases significantly with 16 hardware threads. Given our
earlier observation that cores and hardware threads follow a
similar scalability trend, we believe that, what we observed for
16 hardware threads, will be the case for 16 cores. Our results
indicate that the increase in cpio is contributed both by the
user and system component. Thus, we infer that the I/O stack
in current systems do not scale because of resource contention
for shared resources, for instance, a single page cache shared
across all software threads.

C. How much memory bandwidth?

An important question for data-centric applications is how
much memory bandwidth is sufficient for scalability to many
cores. We answer this question by analyzing the sensitivity
of applications to memory bandwidth. Scientific applications
are known to be less sensitive to memory bandwidth, because
computing complex addresses generated by these applications
hides the memory latency [17]. Since it is difficult to estimate
what future technologies might be capable of providing, we
project memory bandwidth demand in future that is sufficient

•  cpio	
  does	
  not	
  scale	
  with	
  cores	
  
•  Overhead/work	
  for	
  a	
  single	
  I/O	
  increases	
  –	
  ideally	
  

constant	
  
•  hw	
  threads	
  =	
  cores	
  (80%	
  of	
  perf	
  at	
  much	
  less	
  area)	
  



Applica:on	
  Scaling	
  

3/1/16	
   MASCOTS	
  2012	
   17	
  

•  Hard	
  to	
  saturate	
  cores	
  with	
  a	
  single	
  applica:on	
  	
  
•  Much	
  bigger	
  problem	
  in	
  the	
  future	
  

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 2 4 6 8 10 12 14 16

�!

Number!of!Cores!

Metis
Bor1024
HFDL

TPC;E
TPC;C
Ferret

DedupL
IOR

HBase

BDB
Tarrif
fsmark

Fig. 5. Drop in CPU utilization (µ) from 1 to 16 cores.

Fig. 6. Effectiveness of hyper-threading for data-centric applications.

for scaling current performance standards to many cores. First,
the maximum bandwidth on SSDS is 21 GB/s. This implies a
bandwidth of 1.3125 GB/s per core. We measure the increase
in cpio by a decrease in memory bandwidth. For this, we
wrote a microbenchmark modeled after STREAM [18] called
mstress that stresses the memory subsystem. We run multiple
instances of mstress along with an application from Table I.
We note the aggregate memory bandwidth consumed by the
mstress instances. Figure 7 shows the percentage increase in
cpio of the application when part of the memory bandwidth
is taken by mstress. Note that most applications suffer a 20%
increase in cpio but then require from 6% up to 65% less
memory bandwidth.

D. What will be the impact of DRAM-type persistent storage?

An emerging challenge in the storage domain is to examine
how things might evolve when storage class memories [5] start
to appear in real systems. Although there are various types of
memories proposed in this category, we make a first order ap-
proximation and take the simplistic approach that these mem-
ories will appear comparable to DRAM. However, we assume
that applications will still perform I/O via the traditional I/O
path, since this would be a first step in the evolution towards
using storage class memories and in addition, complex data-
centric applications such as transactional databases will require
fundamental changes to avoid the traditional I/O path when
going to persistent memory. For this study, we wrote a kernel
module (kram) that simulates a block device. kram completes
I/O operations in-place without using any re-scheduling of
I/Os. The size of kram is 54 GB and the physical memory in
these experiments is 12 GB. The experiments are performed
on DISKS and datasets are adjusted to fit in the available
memory.

Fig. 7. Memory bandwidth per core today and after tolerating an increase
in cpio.

Fig. 8. Impact of DRAM-based storage on application behavior.

Figure 8 shows the breakdown of execution time for selected
applications with high iowait and idle times on SSDS. First,
we see that iowait time disappears for all applications. This
is expected since I/Os now complete upon issue without the
issuing thread leaving the executing core. We note that, for
certain applications, there is still idle time either due to severe
imbalances or other form of synchronization. Our observa-
tions on idle time with DRAM-storage strongly indicate that
application scaling on many-core systems will not be simple
even for data-centric applications that in principle exhibit large
amounts of concurrency.

VII. PROJECTED RESULTS

In this section, we use cpio to project I/O-related require-
ments consumption to the 2020 time-frame. In our results,
wherever we show averages for all applications, we do not
include zmIO, fsmark, and Ferret.

A. How many cycles per I/O?

Figure 4 shows the projected increase in cpio for 1024,
2048 and 4096 cores using the measured values today. Note
that, workloads such as I-HFDL, which observe only a small
overhead in cpio with eight cores will end up spending
100 times more cycles per I/O with 4096 cores. This is an
important observation given that future systems and servers
that will process data are expected to have a large number of
cores in a single enclosure.

B. How much storage bandwidth?

We calculate millions of IOPS (MIOPS) using Equation 2
and use it to examine how much I/O we will need to provide



Outline	
  

ü Mo:va:on	
  and	
  Goals	
  
ü Applica:ons	
  and	
  Metrics	
  
ü Test	
  System	
  Configura:ons	
  
ü I/O	
  Scalability	
  Trends	
  	
  
•  How	
  much	
  IO?	
  
•  How	
  much	
  Energy?	
  
•  Conclusions	
  

3/1/16	
   MASCOTS	
  2012	
   18	
  



We	
  Project	
  via	
  cpio	
  

•  How	
  do	
  we	
  calculate	
  I/O	
  requirements	
  with	
  
increasing	
  #cores?	
  

•  Once	
  we	
  know	
  cpio	
  
•  Available	
  cycles	
  =	
  #cores*freq	
  	
  
•  Divide	
  cycles	
  with	
  cpio	
  
– We	
  get	
  IOPS	
  requirement	
  for	
  given	
  #cores	
  
– Mul:ply	
  with	
  I/O	
  size	
  to	
  get	
  required	
  I/O	
  xput	
  for	
  
#cores	
  

•  Which	
  cpio	
  do	
  we	
  use?	
  

07-­‐aug-­‐2012	
   mascots'12	
   19	
  



Various	
  Projec:on	
  Scenarios	
  

•  cpio	
  
– Measured	
  with	
  16	
  cores	
  (op:mis:c)	
  
– Measured	
  with	
  1	
  core	
  (desired)	
  
– Linear	
  projec:on	
  to	
  N	
  cores	
  (pessimis:c)	
  

•  CPU	
  U:liza:on	
  	
  
– 30%-­‐40%	
  range	
  

•  Low	
  u:liza:on	
  common	
  today	
  
– 80%-­‐100%	
  (full)	
  u:liza:on	
  

•  Desirable	
  for	
  beeer	
  efficiency	
  

07-­‐aug-­‐2012	
   mascots'12	
   20	
  



How	
  much	
  I/O?	
  

u0liza0on&cpio	
   Average	
   TPC-­‐E	
   HBase	
   PSearchy	
  

Low&Projected	
   7.5	
   9	
   12	
   12	
  

High&Projected	
   59	
   14	
   107	
   65	
  

Low&Today	
   476	
   535	
   563	
   2207	
  

High&Today	
   818	
   743	
   1405	
   4509	
  

Low&Desired	
   969	
   1743	
   644	
   2540	
  

High&Desired	
   1810	
   2469	
   1652	
   5941	
  

3/1/16	
   MASCOTS	
  2012	
   21	
  

Millions	
  of	
  IOPS	
  for	
  4096	
  Cores	
  



I/O	
  Bandwidth	
  

•  Once	
  we	
  know	
  cpio	
  
•  #ios	
  =	
  (#cores*freq)	
  /	
  cpio	
  
•  required	
  I/O	
  bw	
  =	
  #ios	
  *	
  iosize	
  
•  Per	
  core	
  
– 100K	
  –	
  500K	
  IOPS	
  
– 1	
  GBit/s	
  

07-­‐aug-­‐2012	
   mascots'12	
   22	
  



How	
  much	
  I/O	
  as	
  #Cores	
  Increases?	
  

•  GB/s	
  on	
  Y-­‐axis	
  
•  Low	
  u:liza:on	
  (lev)	
  and	
  High	
  u:liza:on	
  (right)	
  

3/1/16	
   MASCOTS	
  2012	
   23	
  

0	
  

50	
  

100	
  

150	
  

200	
  

250	
  

300	
  

350	
  

400	
  

450	
  

Backend	
   Data	
  Stores	
   OLTP	
   Average	
  
0	
  

2	
  

4	
  

6	
  

8	
  

10	
  

12	
  

14	
  

Backend	
   Data	
  Stores	
   OLTP	
   Average	
  

128	
  Cores	
   4096	
  Cores	
  



I/O	
  Requirements:	
  Quick	
  Summary	
  
•  Requirements	
  per	
  core	
  
–  100K	
  IOPS	
  
–  1	
  GBit/s	
  I/O	
  bandwidth	
  
–  1	
  GBytes/s	
  memory	
  bandwidth	
  

•  At	
  128	
  cores	
  
–  10M	
  IOPS	
  
–  10	
  GBytes/s	
  I/O	
  bandwidth	
  
–  100	
  GBytes/s	
  memory	
  bandwidth	
  

•  Difficult	
  to	
  saturate	
  systems	
  with	
  single	
  applica:on	
  
•  More	
  work	
  per	
  I/O	
  as	
  #	
  cores	
  increases	
  
07-­‐aug-­‐2012	
   mascots'12	
   24	
  



Energy	
  Requirements	
  
•  cpio	
  easy	
  to	
  convert	
  to	
  energy	
  
•  BkWH	
  to	
  sweep	
  over	
  35	
  ZeeaBytes	
  of	
  data	
  
•  Calculate	
  number	
  of	
  cores	
  and	
  translate	
  to	
  energy	
  

–  0.5W/core	
  at	
  4K	
  cores/server	
  (2.5KW/server)	
  
–  Idle	
  power	
  0%	
  -­‐>	
  perfect	
  energy	
  propor:onality	
  

3/1/16	
   MASCOTS	
  2012	
   25	
  

•  Between	
  0.1	
  –	
  0.3	
  BkWH	
  for	
  a	
  single	
  pass	
  
–  A	
  city	
  of	
  200K,	
  energy	
  for	
  a	
  year	
  	
  

•  Close	
  to	
  energy	
  star	
  projec:ons	
  
–  But	
  we	
  are	
  using	
  applica:ons	
  whereas	
  they	
  use	
  market	
  growth	
  

	
  

Power	
  
Assump0ons	
  

Projected	
  cpio	
   Today’s	
  cpio	
   Desired	
  cpio	
  

0.5	
  Waes	
  per	
  core	
  
(2.5	
  KW)	
  

29	
   0.27	
   0.175	
  

1.25	
  KW	
   17.5	
   0.16	
   0.107	
  

2006	
  Level	
  
(0.675	
  KW)	
  

9.5	
   0.09	
   0.057	
  



Conclusions	
  
•  A	
  methodology	
  for	
  characterizing	
  I/O	
  
•  Scalability	
  of	
  I/O	
  stack	
  with	
  cores	
  
– More	
  overhead	
  per	
  I/O	
  as	
  number	
  of	
  cores	
  increase	
  
– Conten:on	
  and	
  interference	
  in	
  the	
  system	
  stack	
  
– A	
  single	
  server	
  is	
  not	
  saturated	
  

•  I/O	
  requirements	
  
– At	
  128	
  cores	
  (10M	
  IOPS)	
  

•  Opportunity	
  to	
  save	
  energy	
  by	
  beeer	
  scalability	
  

3/1/16	
   MASCOTS	
  2012	
   26	
  



Thank	
  you	
  for	
  your	
  aeen:on!	
  
Ques:ons?	
  

Polyvios	
  Pra0kakis	
  for	
  Shoaib	
  Akram	
  
{polyvios,shbakram}@ics.forth.gr	
  

	
  
Founda:on	
  for	
  Research	
  and	
  Technology	
  –	
  Hellas	
  (FORTH)	
  

Ins:tute	
  of	
  Computer	
  Science	
  (ICS)	
  

07-­‐aug-­‐2012	
   mascots'12	
   27	
  



Hyper-­‐threading	
  

•  Effec:vely	
  h/w	
  threads	
  =	
  cores	
  (for	
  these	
  apps)	
  
•  80%	
  of	
  perf	
  at	
  much	
  less	
  area	
  

07-­‐aug-­‐2012	
   mascots'12	
   28	
  

(a) DISKS (b) SSDS

Fig. 1. Breakdown of execution time in terms of user, system, idle, and iowait time on DISKS and SSDS.

VI. MEASURED RESULTS

A. Does application I/O scale?
Perfect scalability for I/O intensive applications implies

that, with doubling of cores, IOPS should proportionally
double. Thus, cpio stays constant and application performance
doubles. However, we show in Figure 3 that cpio increases
for most applications from one to four cores and for all
applications from one to eight cores. In the same figure, we
show scalability of cpio with hardware threads instead of
cores. In Figure 3(b), we use one and two cores per socket on
SSDS and enable hyper-threading to experiment with four and
eight hardware threads. We note that the scalability trend is the
same with increasing hardware threads as seen with increasing
cores.

Next we show how well applications are able to use cycles
made available by more cores for processing additional I/Os.
Figure 5 shows how µ changes from one to multiple cores.
From one to eight cores, µ drops for most applications, and up
to 0.68 from one. Further, from one to 16 hardware threads, µ
drops to below 0.5 for HBase, BDB, TPC-C and I-HFDL. This
drop is because as more cores are added, either iowait and/or
idle time increases. Thus, as applications strive to perform
more I/O operations with increasing number of cores, synchro-
nization overhead becomes one of the primary bottlenecks to
scalability. For other workloads, in particular Dedup, Metis,
Tariff, and BR-1024, µ does not drop significantly.

B. Are hyper-threads effective?
In this subsection we show the effectiveness of hyper-

threading for data-centric applications. Schone et al., recently
showed the (slightly) negative impact of hyper-threading on
performance [16]. However, they experimented with all cores
and hyper-threading enabled. With all cores utilized, it is
difficult to analyze if any particular feature is the bottleneck.
Therefore, we evaluate hyper-threading with different number
of cores. Figure 6 shows cpio for different number of cores
both with and without hyper-threading enable (normalized to
cpio with four cores). We note that, for most applications, there
is no significant increase in cpio using four cores with hyper-
threading (4C+HT) instead of eight cores (8C). In particular,
most applications observe only a 20% increase in cpio when
hardware threads are used instead of full cores thus achieving
performance within 80% of performance with full core.

0

1

2

3

4

5

M
et
is

B
R
.1
02

4

I.
H
FD

L

TP
C
.E

TP
C
.C

Fe
rr
et

D
ed

up
L

IO
R

H
B
as
e

B
D
B

Ta
ri
ff

fs
m
ar
k

4 8

(a) Cores

0

1

2

3

4

5

M
et
is

B
R
.1
02

4

I.
H
FD

L

TP
C
.E

TP
C
.C

Fe
rr
et

D
ed

up
L

IO
R

H
B
as
e

B
D
B

Ta
ri
ff

fs
m
ar
k

4 8

(b) Hardware Threads

Fig. 3. Increase in cpio (Y-axis) normalized to the cpio with one core (a)
and with one hardware thread (b).

Fig. 4. Increase in cpio (Y-axis) from 1 to many cores normalized to cpio
with one core.

This figure also shows that, for half of the workloads, cpio
increases significantly with 16 hardware threads. Given our
earlier observation that cores and hardware threads follow a
similar scalability trend, we believe that, what we observed for
16 hardware threads, will be the case for 16 cores. Our results
indicate that the increase in cpio is contributed both by the
user and system component. Thus, we infer that the I/O stack
in current systems do not scale because of resource contention
for shared resources, for instance, a single page cache shared
across all software threads.

C. How much memory bandwidth?

An important question for data-centric applications is how
much memory bandwidth is sufficient for scalability to many
cores. We answer this question by analyzing the sensitivity
of applications to memory bandwidth. Scientific applications
are known to be less sensitive to memory bandwidth, because
computing complex addresses generated by these applications
hides the memory latency [17]. Since it is difficult to estimate
what future technologies might be capable of providing, we
project memory bandwidth demand in future that is sufficient



Memory	
  Bandwidth	
  

07-­‐aug-­‐2012	
   mascots'12	
   29	
  

•  Today	
  systems	
  overprovisioned	
  for	
  memory	
  	
  
•  Base:	
  1.3	
  GBy/s/core	
  
•  At	
  0.8	
  GBy/s/core	
  only	
  25%	
  increase	
  in	
  cpio	
  

•  Going	
  forward:	
  1	
  Gbytes/s/core	
  memory	
  bandwidth	
  

Fig. 4. Increase in cpio (Y-axis) from 1 to many cores normalized to cpio
with one core.

Fig. 5. Drop in CPU utilization (�) from 1 to 16 cores.

memory bandwidth.

D. What will be the impact of DRAM-type persistent storage?

An emerging challenge in the storage domain is to examine
how things might evolve when storage class memories [5] start
to appear in real systems. Although there are various types of
memories proposed in this category, we make a first order
approximation and take the simplistic approach that these
memories will appear comparable to DRAM. However, we
assume that applications will still perform I/O via the tradi-
tional I/O path since this would be a first step in the evolution
towards using storage class memories. In addition, complex
data-centric applications such as transactional databases will
require fundamental changes to avoid the traditional I/O path
when going to persistent memory. For this study, we wrote a
kernel module (kram) that simulates a block device in physical
memory. kram completes I/O operations in-place without using
any re-scheduling of I/Os. The size of kram is 54 GB and
the physical memory in these experiments is 12 GB. The
experiments are performed on DISKS and datasets are adjusted
to fit in the available memory.

Figure 8 shows the breakdown of execution time for selected
applications that have high iowait and idle times on kram.
First, we see that iowait time disappears for all applications.
This is expected since I/Os now complete upon issue without
the issuing thread leaving the executing core. We note that, for
certain applications, there is still idle time either due to severe
imbalances or other form of synchronization. Our observa-
tions on idle time with DRAM-storage strongly indicate that
application scaling on many-core systems will not be simple
even for data-centric applications that in principle exhibit large
amount of concurrency.

Fig. 6. Effectiveness of hyper-threading for data-centric applications: cpio
(Y-axis) for various configuration normalized to 4C.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0

0.2

0.4

0.6

0.8

1

1.2

1.4

De
du

pL

I4H
TD

S

M
et
is

HB
as
e

fs
m
ar
k

BR
46
4

Fe
rr
et

BR
41
02

4

I4H
FD

L

IO
R

GB
/s
/C
or
e)

GB/s/CoreI(Sufficient) GB/s/CoreI(Today) %IincreaseIinIcpio

Fig. 7. Memory bandwidth requirements of data-centric applications:
GB/s/core today and after tolerating an increase in cpio.

VII. PROJECTED RESULTS

In this section, we use cpio to project I/O-related require-
ments to the 2020 time-frame. In our results, wherever we
show averages for all applications, we do not include zmIO,
fsmark, and Ferret.

A. How many cycles per I/O?
Figure 4 shows the projected increase in cpio for 1024,

2048 and 4096 cores using the measured values today. Note
that, workloads such as I-HFDL, which observe only a small
overhead in cpio with eight cores will end up spending
100 times more cycles per I/O with 4096 cores. This is an
important observation given that future systems and servers
that will process data are expected to have a large number of
cores in a single enclosure.

B. How much storage bandwidth?
We calculate millions of IOPS (MIOPS) using Equation 2

and use it to examine how much I/O we will need to provide
per server when running data-centric applications on many-
core processors. Note that in Equation 2, µ and cpio, as
a combination, leads to various scenarios, which we call
s(µ, cpio). In this work, we consider s(l, p), s(h, p), s(l, t),
s(h, t), s(h, d), s(l, d); where l and h stands for low and
high CPU utilization respectively whereas t, p and d stands
respectively for cpio measured today with 16 cores, projected
cpio from real measurements and desired cpio measured with
one core.

We use 100% for calculations with high CPU utilization.
For low CPU utilization, we take the measured utilization with
16 cores for s(l, t) and project it to many cores for s(l, p).


