
Understanding	  scalability	  and	  performance	  
requirements	  of	  I/O	  intensive	  applica:ons	  

on	  future	  mul:core	  servers	  

Shoaib	  Akram,	  Manolis	  Marazakis,	  and	  Angelos	  Bilas	  
	  

Presenta:on:	  Polyvios	  Pra:kakis	  
	  	  
Founda:on	  for	  Research	  and	  Technology	  –	  Hellas	  (FORTH)	  
Ins:tute	  of	  Computer	  Science	  (ICS)	  

07-‐aug-‐2012	   mascots'12	   1	  



Demand	  for	  Data	  Grows	  Fast	  
•  …Faster	  than	  storage	  capacity	  
– Digital	  Universe	  2010,	  2011	  [IDC/EMC]	  
–  Storage	  capacity	  grows	  faster	  than	  Moore’s	  law	  

•  Need	  to	  store	  and	  can	  store	  a	  lot	  of	  data	  
•  Can	  we	  access	  and	  process	  data	  at	  the	  same	  
rate?	  

07-‐aug-‐2012	   mascots'12	   2	  



Today	  Low	  “I/O	  Density”	  

•  Typical	  server	  configura:on	  
–  4-‐8	  cores	  
–  8-‐32	  GBytes	  	  
–  2-‐4	  disks	  
–  2	  cores	  to	  keep	  up	  with	  1	  disk-‐performance	  

•  Emerging	  needs:	  process	  large	  amounts	  of	  data	  
–  Bring	  data	  to	  memory,	  process	  (data	  centric)	  
–  Compared	  to	  compute	  from	  main	  memory	  
–  Keeping	  up	  with	  data	  growth	  requires	  increasing	  I/O	  
density	  

•  So	  far	  slow	  disks	  limita:on	  to	  increasing	  I/O	  density	  

07-‐aug-‐2012	   mascots'12	   3	  



Towards	  Higher	  “I/O	  Density”	  

•  New	  device	  technologies	  (SSDs)	  allow	  higher	  
access	  rate	  with	  fewer	  devices	  and	  beeer	  
latency	  (IOPS)	  

•  This	  allows	  and	  requires	  increasing	  #cores	  per	  
server	  

•  Broadly,	  what	  is	  the	  role	  of	  storage	  I/O?	  

07-‐aug-‐2012	   mascots'12	   4	  



Goals	  

•  This	  presenta:on	  centered	  around	  3	  
ques:ons	  
1.  Does	  I/O	  scale	  with	  cores?	  
2.  How	  much	  I/O	  in	  ten	  years?	  
3.  How	  energy	  (in)efficient	  is	  applica:on	  I/O?	  

•  Contribute	  to	  methodology	  	  
– How	  can	  we	  characterize	  I/O	  across	  applica:ons?	  
– We	  measure	  using	  real	  applica:ons,	  workloads	  
– We	  project	  to	  large	  numbers	  of	  cores	  

07-‐aug-‐2012	   mascots'12	   5	  



Outline	  

ü Mo:va:on	  and	  Goals	  
•  Metrics	  &	  Methodology	  
•  Applica:ons	  &	  Plamorms	  
•  Does	  I/O	  scale?	  	  
•  How	  much	  I/O?	  
•  How	  much	  Energy?	  
•  Conclusions	  

3/1/16	   MASCOTS	  2012	   6	  



Methodology	  

•  Get	  a	  number	  of	  applica:ons	  
– Data-‐centric,	  I/O	  intensive	  

•  Figure	  out	  parameters	  and	  configura:ons	  
•  Run	  them	  on	  a	  real	  system	  
•  Examine	  how	  much	  I/O	  they	  require	  
•  Methodology	  is	  interes:ng	  by	  itself	  

07-‐aug-‐2012	   mascots'12	   7	  



cpio:	  Abstract	  I/O	  behavior	  
•  We	  use	  cycles	  per	  I/O	  (cpio)	  as	  a	  metric	  

–  Used	  in	  the	  past	  in	  certain	  cases	  
–  Recently	  used	  more	  in	  networking	  as	  cycles	  per	  packet	  

•  System-‐level	  metric	  
–  Not	  related	  to	  applica:on	  output	  
–  Includes	  both	  CPU	  and	  I/O	  

•  Compu:ng	  cpio	  
–  Calculate	  execu:on	  :me	  breakdown	  
–  Count	  number	  of	  I/Os	  –	  512	  bytes	  	  
–  cpio	  =	  (system	  +	  user)	  /	  #ios	  

•  Ignore	  idle	  and	  iowait	  :me	  
–  Energy	  propor:onality	  -‐>	  idle+iowait	  not	  a	  problem	  
–  Not	  straight-‐forward	  to	  dis:nguish	  idle	  form	  iowait	  

07-‐aug-‐2012	   mascots'12	   8	  



Use	  Experimental	  Approach	  

•  Server-‐type	  specs	  with	  aggressive	  I/O	  subsystem	  
–  24	  SSDs,	  4x	  LSI	  controllers,	  6	  SSDs	  per	  controller	  

•  Two	  configura:ons:	  More,	  less	  aggressive	  (CPU,	  I/O)	  

07-‐aug-‐2012	   mascots'12	   9	  

DISKS	   SSDS	  

2	  Intel	  Xeon	  E5620	  (Quad-‐core)	   2	  Intel	  Xeon	  E5405	  (Quad-‐core)	  

No	  Hyper-‐threading	   Hyper-‐threading	  	  

8	  GB	  RAM	   12	  GB	  RAM	  

1	  Storage	  Controller	  (8	  Disks)	   4	  Storage	  Controllers	  (24	  SSDs)	  

XFS	  on	  Hardware	  RAID	  0	   XFS	  on	  Sovware	  RAID	  0	  

1	  GB/s	  Storage	  Throughput	   6	  GB/s	  Storage	  Throughput	  

CentOS	  distribu:on;	  2.6.18	   CentOS	  distribu:on;	  2.6.32	  



Benchmarks	  and	  Applica:ons	  
•  Applica:ons	  from	  diverse	  domains	  

–  Benchmarks	  (zmIO,	  fsmark,	  IOR)	  
–  OLTP	  workloads	  (TPC-‐C,	  TPC-‐E)	  
–  NoSQL	  Data	  Stores	  (HBase,	  BDB)	  
–  HPC	  Domain	  (Ferret,	  BLAST)	  
–  Backend	  Applica:ons	  (Deduplica:on,Psearchy,Me:s)	  
–  Data	  Streaming	  (Borealis)	  

–  Business	  Intelligence	  (Tariff)	  
•  Applica:ons	  are	  tuned	  to	  perform	  large	  amounts	  of	  I/O	  

–  Applica:ons	  and	  run:me	  parameters	  available	  at	  [www.iolanes.eu]	  	  

3/1/16	   MASCOTS	  2012	   10	  



Two	  Broad	  Categories	  

•  Sweep	  
– Do	  a	  pass	  over	  the	  data	  to	  calculate	  metadata	  
– E.g.	  indexing,	  deduplica:on,	  streaming	  

•  Metadata	  
– Quickly	  calculate	  metadata	  
– Operate	  mostly	  from	  metadata	  and	  only	  access	  
necessary	  data	  

– OLTPL,	  OLAP,	  key-‐value	  stores,	  image	  processing	  

07-‐aug-‐2012	   mascots'12	   11	  



Measured	  cpio	  –	  Range	  

07-‐aug-‐2012	   12	  mascots'12	  

(a) DISKS (b) SSDS

Fig. 1. Breakdown of execution time (Y-axis) in terms of user, system, idle, and iowait time on DISKS and SSDS.

up to 0.68. Further, from one to 16 hardware threads, � drops
to below 0.5 for HBase, BDB, TPC-C and I-HFDL. This
drop is because as more cores are added, either iowait and/or
idle time increases. Thus, as applications strive to perform
more I/O operations with increasing number of cores, syn-
chronization overhead becomes one of the primary bottlenecks
to scalability. For the more compute-intensive workloads, and
in particular, Dedup, Metis, Tariff, and BR-1024, � does not
drop significantly.

B. Are hyper-threads effective?

Now, we show the effectiveness of hyper-threading for
data-centric applications. Schone et al., recently showed the
slightly negative impact of hyper-threading on application per-
formance [17]. However, they experimented with all cores and
hyper-threading enabled. With all hardware threads enabled, it
is difficult to analyze if any particular feature of the system
is the bottleneck. Therefore, we evaluate hyper-threading with
different number of hardware threads. Figure 6 shows cpio
for different number of cores both with and without hyper-
threading enable (normalized to cpio with four cores). We note
that, for most applications, there is no significant increase in
cpio using four cores with hyper-threading (4C+HT) instead
of eight cores (8C). In particular, most applications observe
only a 20% increase in cpio when hardware threads are used
instead of full cores.

Figure 6 also shows that, for half of the workloads, cpio
increases significantly with 16 hardware threads. Given our
earlier observation that cores and hardware threads follow a
similar scalability trend, we believe that, what we observed
for 16 hardware threads, will be the case for 16 cores. Our
results indicate that the increase in cpio is contributed both by
the user and system component. Thus, we infer that the I/O
stack in current systems do not scale with multiple cores.

C. How much memory bandwidth?

An important question for data-centric applications is how
much memory bandwidth is sufficient for scalability to many
cores. We answer this question by analyzing the sensitivity
of applications to memory bandwidth. Scientific applications
are known to be less sensitive to memory bandwidth because
computing complex addresses generated by these applications
hides the memory latency [18]. Since it is difficult to estimate

(a) DISKS

1
10

100
1,000

10,000
100,000

1,000,000
10,000,000

zm
IO

fs
m
ar
k

I-H
FD

L

I-H
TD

L

IO
R

HB
as
e

BR
-6
4

TP
C-
E

TP
C-
C

I-H
TD

S

I-H
FD

S

BD
B

BR
-1
02

4

BL
AS

T

Ta
rr
if

De
du

pL

De
du

pS

BR
-1
28

M
et
is

Fe
rr
et

(b) SSDS

Fig. 2. cpio (Y-axis) on DISKS and SSDS. The Y-axis uses a logarithmic
scale.

(a) Cores (b) Hardware Threads

Fig. 3. Increase in cpio (Y-axis) normalized to the cpio with one core (a)
and with one hardware thread (b).

what future technologies might be capable of providing, we
project memory bandwidth demand in future that is sufficient
for scaling current performance standards to many cores. First,
the maximum bandwidth on SSDS is 21 GB/s. This implies a
bandwidth of 1.3125 GB/s per core. We measure the increase
in cpio with a decrease in memory bandwidth. For this, we
wrote a microbenchmark modeled after STREAM [19] called
mstress that stresses the memory subsystem. We run multiple
instances of mstress along with an application from Table I.
We note the aggregate memory bandwidth consumed by the
mstress instances. Figure 7 shows the percentage increase in
cpio of the application when part of the memory bandwidth
is taken by mstress. Note that most applications suffer a 20%
increase in cpio but then require from 6% up to 65% less

•  Range	  from	  1K	  to	  2M	  cycles	  per	  I/O	  
•  cpio	  not	  appropriate	  in	  absolute	  terms	  to	  say	  “good”	  or	  “bad”	  

•  Memory	  caching	  plays	  an	  important	  role	  
•  Captures	  behavior	  assuming	  same	  amount	  of	  work	  to	  devices	  
•  Can	  be	  as	  tricky	  as	  speedup	  



I/O	  Characteriza:on	  
•  Breakdown	  of	  execu:on	  :me	  (user,system,idle,iowait)	  

3/1/16	   MASCOTS	  2012	   13	  

Average	  system	  
:me:	  3%	  

Average	  system	  
:me:	  26%	  

DISKS	  

SSDS	  



cpio	  Sensi:vity	  to	  Devices	  

•  cpio	  largely	  independent	  of	  configura:on	  
•  Spinning	  effects	  in	  IOR,	  HBase	  and	  TPC-‐E	  

07-‐aug-‐2012	   mascots'12	   14	  

time.
Key-value data stores over traditional databases is another

approach to building NoSQL stores. BDB is a library that
provides support for building data stores based on key-value
pairs. Our evaluation methodology for BDB is similar to that
for HBase. Since BDB is an embedded data store, the YCSB
clients and the BDB code share the same process address
space. We reserve 6GB of physical memory for the JVM.
We configure YCSB to use 3GB for the YCSB clients and
3GB for BDB. BDB is dominated by user time but there is
considerable system time.

Online transaction processing (OLTP) is an important class
of workloads for data-centres. We use TPC-C and TPC-E as
OLTP workloads. TPC-C models an order-entry environment
of a wholesale supplier while TPC-E models transactions that
take place in a stock brokerage firm. We run both TPC-C
and TPC-E using MySQL and specify runtime parameters that
result in high concurrency. We use an open-source version of
TPC-C called Hammerora [14]. We run the hammerora clients
and the MySQL database server on the same machine. We
observe that hammerora clients consume very little percentage
of the entire CPU utilization in our experiments. We run TPC-
C with 6GB RAM which results in realistic amount of I/O for
our chosen database. We observe that using MySQL database
server results in high idle time for both TPC-C and TPC-E.

Content similarity search is used in data-centres that host
e.g. social networking services [11]. We use Ferret from
the PARSEC benchmark suite. Ferret is compute intensive
and performs sustained but small amount of I/O. We fit the
database of image signatures against which queries are run in
memory. Ferret is dominated by user time.

Comparative genomics leverages the tremendous amount
of genomic data made possible by advances in sequencing
technology. We use BLAST [15] for Nucleotide-Nucleotide
sequence similarity search. We run multiple instances of
BLAST each executing a different set of queries on a separate
database. We use random query sequences of 5KB, which
is a common case in proteome/genome homology searches.
BLAST is I/O intensive and the execution time is dominated
by user time.

Profiling of call detail records (CDRs) by telecommunica-
tion service providers is performed for analyzing the feasibility
of various usage plans. We use TariffAdvisor (Tariff) that does
offline profiling of CDRs using machine learning models. The
input to Tariff is a set of files that each contains different
plans offered by the operator to the users. Tariff analyzes the
records covering a period of time and outputs the plans that are
financially productive. Tariff uses PostgreSQL as the database
management system. Tariff is an I/O intensive application and
its runtime is dominated by user time.

V. EXPERIMENTAL PLATFORM

Figure 1 shows the breakdown of execution time on a disk-
based and an ssd-based storage subsystem. The important
features of the two machines are shown in Table II. The
applications on the X-axis are ordered in terms of increasing

TABLE II
SUMMARY OF EXPERIMENTAL PLATFORM PARAMETERS.

DISKS SSDS
2 Intel Xeon E5620 (Quad-core) 2 Intel Xeon E5405 (Quad-core)
No hyper-threading 2 Hardware Thread per Core
8 GB RAM; 1 Storage Controller 12 GB RAM; 4 Storage Controllers
XFS on Hardware RAID 0 (8 Disks) XFS on Software RAID 0 (24 SSDs)
Storage Throughput=1 GB/s Storage Throughput=6 GB/s
CentOS distribution; 2.6.18 kernel CentOS distribution; 2.6.32 kernel

0

5

10

15

20

25

zm
IO

fs
m
ar
k

I.H
FD

L

I.H
TD

L

HB
as
e

BR
.6
4

I.H
TD

S

I.H
FD

S

TP
C.
E

Th
ou

sa
nd

s)

cpioA(SSDS)

cpioA(DISKS)

0

50

100

150

200

250

IO
R

BD
B

BR
.1
02

4

Ta
rif
f

De
du

pL

De
du

pS

BR
.1
28

M
et
is

Th
ou

sa
nd

s)

cpioA(SSDS)

cpioA(DISKS)

Fig. 2. cpio on DISKS and SSDS.

iowait time, as a percentage of total execution time. Note that
in terms of I/O behavior, the applications cover a broad range
and the average iowait time reduces when using SSDs.

We note that the average idle time for DISKS is 30%
compared to only 7% for SSDS. This is because, threads
wait longer for I/Os to complete, and thus the entire system
is slow. This observation is of particular interest to data-
centric infrastructures as in today.s server machines, the idle
and iowait periods consume up to 70% of the peak power.
This implies that disk-based storage subsystems not only have
slower response time but are also inefficient in processing I/Os
in terms of energy. We also note that on average, the system
time on DISKS is only 2% of total execution time compared
with 26% on SSDS. Thus, the idle period that applications
observe on DISKS is converted to system time on SSDS for
the workloads we evaluate.

Figure 2 shows the cpio of all applications for both se-
tups. We observe that for many applications, cpio is largely
independent of the underlying storage technology and system
configuration. Figure 2 does not show the cpio of Ferret and
TPC-C since they would require a much higher value on the
Y-axis. The cpio of Ferret is approximately 2 million cycles on
both setups. TPC-C shows very different behavior on DISKS
(12000 cycles per I/O) and SSDS (2 million cycles per I/O).

Note that given two applications, the one with a higher
execution time can appear to be more cpio-efficient by doing
large amounts of I/O. As an example, note that BDB, which
is a light-weight data store, has an order of magnitude higher
cpio compared to HBase, which has a complex software stack.
This is because HBase does a large amount of small I/O
operations. In reality, its execution time for the same YCSB
test is much higher compared to BDB. Thus, cpio should be
used carefully when comparing the efficiency of two software
stacks that generate different I/O volume during execution.



Outline	  

ü Mo:va:on	  and	  Goals	  
ü Applica:ons	  and	  Metrics	  
ü Test	  System	  Configura:ons	  
•  Does	  I/O	  Scale?	  
•  How	  much	  I/O?	  
•  How	  much	  Energy?	  
•  Conclusions	  

07-‐aug-‐2012	   mascots'12	   15	  



Does	  I/O	  Scale?	  

3/1/16	   MASCOTS	  2012	   16	  

(a) DISKS (b) SSDS

Fig. 1. Breakdown of execution time in terms of user, system, idle, and iowait time on DISKS and SSDS.

VI. MEASURED RESULTS

A. Does application I/O scale?
Perfect scalability for I/O intensive applications implies

that, with doubling of cores, IOPS should proportionally
double. Thus, cpio stays constant and application performance
doubles. However, we show in Figure 3 that cpio increases
for most applications from one to four cores and for all
applications from one to eight cores. In the same figure, we
show scalability of cpio with hardware threads instead of
cores. In Figure 3(b), we use one and two cores per socket on
SSDS and enable hyper-threading to experiment with four and
eight hardware threads. We note that the scalability trend is the
same with increasing hardware threads as seen with increasing
cores.

Next we show how well applications are able to use cycles
made available by more cores for processing additional I/Os.
Figure 5 shows how µ changes from one to multiple cores.
From one to eight cores, µ drops for most applications, and up
to 0.68 from one. Further, from one to 16 hardware threads, µ
drops to below 0.5 for HBase, BDB, TPC-C and I-HFDL. This
drop is because as more cores are added, either iowait and/or
idle time increases. Thus, as applications strive to perform
more I/O operations with increasing number of cores, synchro-
nization overhead becomes one of the primary bottlenecks to
scalability. For other workloads, in particular Dedup, Metis,
Tariff, and BR-1024, µ does not drop significantly.

B. Are hyper-threads effective?
In this subsection we show the effectiveness of hyper-

threading for data-centric applications. Schone et al., recently
showed the (slightly) negative impact of hyper-threading on
performance [16]. However, they experimented with all cores
and hyper-threading enabled. With all cores utilized, it is
difficult to analyze if any particular feature is the bottleneck.
Therefore, we evaluate hyper-threading with different number
of cores. Figure 6 shows cpio for different number of cores
both with and without hyper-threading enable (normalized to
cpio with four cores). We note that, for most applications, there
is no significant increase in cpio using four cores with hyper-
threading (4C+HT) instead of eight cores (8C). In particular,
most applications observe only a 20% increase in cpio when
hardware threads are used instead of full cores thus achieving
performance within 80% of performance with full core.

0

1

2

3

4

5

M
et
is

BR
.1
02

4

I.H
FD

L

TP
C.
E

TP
C.
C

Fe
rr
et

D
ed

up
L

IO
R

H
Ba

se

BD
B

Ta
rif
f

fs
m
ar
k

4 8

(a) Cores

0

1

2

3

4

5

M
et
is

BR
.1
02

4

I.H
FD

L

TP
C.
E

TP
C.
C

Fe
rr
et

D
ed

up
L

IO
R

H
Ba

se

BD
B

Ta
rif
f

fs
m
ar
k

4 8

(b) Hardware Threads

Fig. 3. Increase in cpio (Y-axis) normalized to the cpio with one core (a)
and with one hardware thread (b).

Fig. 4. Increase in cpio (Y-axis) from 1 to many cores normalized to cpio
with one core.

This figure also shows that, for half of the workloads, cpio
increases significantly with 16 hardware threads. Given our
earlier observation that cores and hardware threads follow a
similar scalability trend, we believe that, what we observed for
16 hardware threads, will be the case for 16 cores. Our results
indicate that the increase in cpio is contributed both by the
user and system component. Thus, we infer that the I/O stack
in current systems do not scale because of resource contention
for shared resources, for instance, a single page cache shared
across all software threads.

C. How much memory bandwidth?

An important question for data-centric applications is how
much memory bandwidth is sufficient for scalability to many
cores. We answer this question by analyzing the sensitivity
of applications to memory bandwidth. Scientific applications
are known to be less sensitive to memory bandwidth, because
computing complex addresses generated by these applications
hides the memory latency [17]. Since it is difficult to estimate
what future technologies might be capable of providing, we
project memory bandwidth demand in future that is sufficient

•  cpio	  does	  not	  scale	  with	  cores	  
•  Overhead/work	  for	  a	  single	  I/O	  increases	  –	  ideally	  

constant	  
•  hw	  threads	  =	  cores	  (80%	  of	  perf	  at	  much	  less	  area)	  



Applica:on	  Scaling	  

3/1/16	   MASCOTS	  2012	   17	  

•  Hard	  to	  saturate	  cores	  with	  a	  single	  applica:on	  	  
•  Much	  bigger	  problem	  in	  the	  future	  

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 2 4 6 8 10 12 14 16

�!

Number!of!Cores!

Metis
Bor1024
HFDL

TPC;E
TPC;C
Ferret

DedupL
IOR

HBase

BDB
Tarrif
fsmark

Fig. 5. Drop in CPU utilization (µ) from 1 to 16 cores.

Fig. 6. Effectiveness of hyper-threading for data-centric applications.

for scaling current performance standards to many cores. First,
the maximum bandwidth on SSDS is 21 GB/s. This implies a
bandwidth of 1.3125 GB/s per core. We measure the increase
in cpio by a decrease in memory bandwidth. For this, we
wrote a microbenchmark modeled after STREAM [18] called
mstress that stresses the memory subsystem. We run multiple
instances of mstress along with an application from Table I.
We note the aggregate memory bandwidth consumed by the
mstress instances. Figure 7 shows the percentage increase in
cpio of the application when part of the memory bandwidth
is taken by mstress. Note that most applications suffer a 20%
increase in cpio but then require from 6% up to 65% less
memory bandwidth.

D. What will be the impact of DRAM-type persistent storage?

An emerging challenge in the storage domain is to examine
how things might evolve when storage class memories [5] start
to appear in real systems. Although there are various types of
memories proposed in this category, we make a first order ap-
proximation and take the simplistic approach that these mem-
ories will appear comparable to DRAM. However, we assume
that applications will still perform I/O via the traditional I/O
path, since this would be a first step in the evolution towards
using storage class memories and in addition, complex data-
centric applications such as transactional databases will require
fundamental changes to avoid the traditional I/O path when
going to persistent memory. For this study, we wrote a kernel
module (kram) that simulates a block device. kram completes
I/O operations in-place without using any re-scheduling of
I/Os. The size of kram is 54 GB and the physical memory in
these experiments is 12 GB. The experiments are performed
on DISKS and datasets are adjusted to fit in the available
memory.

Fig. 7. Memory bandwidth per core today and after tolerating an increase
in cpio.

Fig. 8. Impact of DRAM-based storage on application behavior.

Figure 8 shows the breakdown of execution time for selected
applications with high iowait and idle times on SSDS. First,
we see that iowait time disappears for all applications. This
is expected since I/Os now complete upon issue without the
issuing thread leaving the executing core. We note that, for
certain applications, there is still idle time either due to severe
imbalances or other form of synchronization. Our observa-
tions on idle time with DRAM-storage strongly indicate that
application scaling on many-core systems will not be simple
even for data-centric applications that in principle exhibit large
amounts of concurrency.

VII. PROJECTED RESULTS

In this section, we use cpio to project I/O-related require-
ments consumption to the 2020 time-frame. In our results,
wherever we show averages for all applications, we do not
include zmIO, fsmark, and Ferret.

A. How many cycles per I/O?

Figure 4 shows the projected increase in cpio for 1024,
2048 and 4096 cores using the measured values today. Note
that, workloads such as I-HFDL, which observe only a small
overhead in cpio with eight cores will end up spending
100 times more cycles per I/O with 4096 cores. This is an
important observation given that future systems and servers
that will process data are expected to have a large number of
cores in a single enclosure.

B. How much storage bandwidth?

We calculate millions of IOPS (MIOPS) using Equation 2
and use it to examine how much I/O we will need to provide



Outline	  

ü Mo:va:on	  and	  Goals	  
ü Applica:ons	  and	  Metrics	  
ü Test	  System	  Configura:ons	  
ü I/O	  Scalability	  Trends	  	  
•  How	  much	  IO?	  
•  How	  much	  Energy?	  
•  Conclusions	  

3/1/16	   MASCOTS	  2012	   18	  



We	  Project	  via	  cpio	  

•  How	  do	  we	  calculate	  I/O	  requirements	  with	  
increasing	  #cores?	  

•  Once	  we	  know	  cpio	  
•  Available	  cycles	  =	  #cores*freq	  	  
•  Divide	  cycles	  with	  cpio	  
– We	  get	  IOPS	  requirement	  for	  given	  #cores	  
– Mul:ply	  with	  I/O	  size	  to	  get	  required	  I/O	  xput	  for	  
#cores	  

•  Which	  cpio	  do	  we	  use?	  

07-‐aug-‐2012	   mascots'12	   19	  



Various	  Projec:on	  Scenarios	  

•  cpio	  
– Measured	  with	  16	  cores	  (op:mis:c)	  
– Measured	  with	  1	  core	  (desired)	  
– Linear	  projec:on	  to	  N	  cores	  (pessimis:c)	  

•  CPU	  U:liza:on	  	  
– 30%-‐40%	  range	  

•  Low	  u:liza:on	  common	  today	  
– 80%-‐100%	  (full)	  u:liza:on	  

•  Desirable	  for	  beeer	  efficiency	  

07-‐aug-‐2012	   mascots'12	   20	  



How	  much	  I/O?	  

u0liza0on&cpio	   Average	   TPC-‐E	   HBase	   PSearchy	  

Low&Projected	   7.5	   9	   12	   12	  

High&Projected	   59	   14	   107	   65	  

Low&Today	   476	   535	   563	   2207	  

High&Today	   818	   743	   1405	   4509	  

Low&Desired	   969	   1743	   644	   2540	  

High&Desired	   1810	   2469	   1652	   5941	  

3/1/16	   MASCOTS	  2012	   21	  

Millions	  of	  IOPS	  for	  4096	  Cores	  



I/O	  Bandwidth	  

•  Once	  we	  know	  cpio	  
•  #ios	  =	  (#cores*freq)	  /	  cpio	  
•  required	  I/O	  bw	  =	  #ios	  *	  iosize	  
•  Per	  core	  
– 100K	  –	  500K	  IOPS	  
– 1	  GBit/s	  

07-‐aug-‐2012	   mascots'12	   22	  



How	  much	  I/O	  as	  #Cores	  Increases?	  

•  GB/s	  on	  Y-‐axis	  
•  Low	  u:liza:on	  (lev)	  and	  High	  u:liza:on	  (right)	  

3/1/16	   MASCOTS	  2012	   23	  

0	  

50	  

100	  

150	  

200	  

250	  

300	  

350	  

400	  

450	  

Backend	   Data	  Stores	   OLTP	   Average	  
0	  

2	  

4	  

6	  

8	  

10	  

12	  

14	  

Backend	   Data	  Stores	   OLTP	   Average	  

128	  Cores	   4096	  Cores	  



I/O	  Requirements:	  Quick	  Summary	  
•  Requirements	  per	  core	  
–  100K	  IOPS	  
–  1	  GBit/s	  I/O	  bandwidth	  
–  1	  GBytes/s	  memory	  bandwidth	  

•  At	  128	  cores	  
–  10M	  IOPS	  
–  10	  GBytes/s	  I/O	  bandwidth	  
–  100	  GBytes/s	  memory	  bandwidth	  

•  Difficult	  to	  saturate	  systems	  with	  single	  applica:on	  
•  More	  work	  per	  I/O	  as	  #	  cores	  increases	  
07-‐aug-‐2012	   mascots'12	   24	  



Energy	  Requirements	  
•  cpio	  easy	  to	  convert	  to	  energy	  
•  BkWH	  to	  sweep	  over	  35	  ZeeaBytes	  of	  data	  
•  Calculate	  number	  of	  cores	  and	  translate	  to	  energy	  

–  0.5W/core	  at	  4K	  cores/server	  (2.5KW/server)	  
–  Idle	  power	  0%	  -‐>	  perfect	  energy	  propor:onality	  

3/1/16	   MASCOTS	  2012	   25	  

•  Between	  0.1	  –	  0.3	  BkWH	  for	  a	  single	  pass	  
–  A	  city	  of	  200K,	  energy	  for	  a	  year	  	  

•  Close	  to	  energy	  star	  projec:ons	  
–  But	  we	  are	  using	  applica:ons	  whereas	  they	  use	  market	  growth	  

	  

Power	  
Assump0ons	  

Projected	  cpio	   Today’s	  cpio	   Desired	  cpio	  

0.5	  Waes	  per	  core	  
(2.5	  KW)	  

29	   0.27	   0.175	  

1.25	  KW	   17.5	   0.16	   0.107	  

2006	  Level	  
(0.675	  KW)	  

9.5	   0.09	   0.057	  



Conclusions	  
•  A	  methodology	  for	  characterizing	  I/O	  
•  Scalability	  of	  I/O	  stack	  with	  cores	  
– More	  overhead	  per	  I/O	  as	  number	  of	  cores	  increase	  
– Conten:on	  and	  interference	  in	  the	  system	  stack	  
– A	  single	  server	  is	  not	  saturated	  

•  I/O	  requirements	  
– At	  128	  cores	  (10M	  IOPS)	  

•  Opportunity	  to	  save	  energy	  by	  beeer	  scalability	  

3/1/16	   MASCOTS	  2012	   26	  



Thank	  you	  for	  your	  aeen:on!	  
Ques:ons?	  

Polyvios	  Pra0kakis	  for	  Shoaib	  Akram	  
{polyvios,shbakram}@ics.forth.gr	  

	  
Founda:on	  for	  Research	  and	  Technology	  –	  Hellas	  (FORTH)	  

Ins:tute	  of	  Computer	  Science	  (ICS)	  

07-‐aug-‐2012	   mascots'12	   27	  



Hyper-‐threading	  

•  Effec:vely	  h/w	  threads	  =	  cores	  (for	  these	  apps)	  
•  80%	  of	  perf	  at	  much	  less	  area	  

07-‐aug-‐2012	   mascots'12	   28	  

(a) DISKS (b) SSDS

Fig. 1. Breakdown of execution time in terms of user, system, idle, and iowait time on DISKS and SSDS.

VI. MEASURED RESULTS

A. Does application I/O scale?
Perfect scalability for I/O intensive applications implies

that, with doubling of cores, IOPS should proportionally
double. Thus, cpio stays constant and application performance
doubles. However, we show in Figure 3 that cpio increases
for most applications from one to four cores and for all
applications from one to eight cores. In the same figure, we
show scalability of cpio with hardware threads instead of
cores. In Figure 3(b), we use one and two cores per socket on
SSDS and enable hyper-threading to experiment with four and
eight hardware threads. We note that the scalability trend is the
same with increasing hardware threads as seen with increasing
cores.

Next we show how well applications are able to use cycles
made available by more cores for processing additional I/Os.
Figure 5 shows how µ changes from one to multiple cores.
From one to eight cores, µ drops for most applications, and up
to 0.68 from one. Further, from one to 16 hardware threads, µ
drops to below 0.5 for HBase, BDB, TPC-C and I-HFDL. This
drop is because as more cores are added, either iowait and/or
idle time increases. Thus, as applications strive to perform
more I/O operations with increasing number of cores, synchro-
nization overhead becomes one of the primary bottlenecks to
scalability. For other workloads, in particular Dedup, Metis,
Tariff, and BR-1024, µ does not drop significantly.

B. Are hyper-threads effective?
In this subsection we show the effectiveness of hyper-

threading for data-centric applications. Schone et al., recently
showed the (slightly) negative impact of hyper-threading on
performance [16]. However, they experimented with all cores
and hyper-threading enabled. With all cores utilized, it is
difficult to analyze if any particular feature is the bottleneck.
Therefore, we evaluate hyper-threading with different number
of cores. Figure 6 shows cpio for different number of cores
both with and without hyper-threading enable (normalized to
cpio with four cores). We note that, for most applications, there
is no significant increase in cpio using four cores with hyper-
threading (4C+HT) instead of eight cores (8C). In particular,
most applications observe only a 20% increase in cpio when
hardware threads are used instead of full cores thus achieving
performance within 80% of performance with full core.

0

1

2

3

4

5

M
et
is

B
R
.1
02

4

I.
H
FD

L

TP
C
.E

TP
C
.C

Fe
rr
et

D
ed

up
L

IO
R

H
B
as
e

B
D
B

Ta
ri
ff

fs
m
ar
k

4 8

(a) Cores

0

1

2

3

4

5

M
et
is

B
R
.1
02

4

I.
H
FD

L

TP
C
.E

TP
C
.C

Fe
rr
et

D
ed

up
L

IO
R

H
B
as
e

B
D
B

Ta
ri
ff

fs
m
ar
k

4 8

(b) Hardware Threads

Fig. 3. Increase in cpio (Y-axis) normalized to the cpio with one core (a)
and with one hardware thread (b).

Fig. 4. Increase in cpio (Y-axis) from 1 to many cores normalized to cpio
with one core.

This figure also shows that, for half of the workloads, cpio
increases significantly with 16 hardware threads. Given our
earlier observation that cores and hardware threads follow a
similar scalability trend, we believe that, what we observed for
16 hardware threads, will be the case for 16 cores. Our results
indicate that the increase in cpio is contributed both by the
user and system component. Thus, we infer that the I/O stack
in current systems do not scale because of resource contention
for shared resources, for instance, a single page cache shared
across all software threads.

C. How much memory bandwidth?

An important question for data-centric applications is how
much memory bandwidth is sufficient for scalability to many
cores. We answer this question by analyzing the sensitivity
of applications to memory bandwidth. Scientific applications
are known to be less sensitive to memory bandwidth, because
computing complex addresses generated by these applications
hides the memory latency [17]. Since it is difficult to estimate
what future technologies might be capable of providing, we
project memory bandwidth demand in future that is sufficient



Memory	  Bandwidth	  

07-‐aug-‐2012	   mascots'12	   29	  

•  Today	  systems	  overprovisioned	  for	  memory	  	  
•  Base:	  1.3	  GBy/s/core	  
•  At	  0.8	  GBy/s/core	  only	  25%	  increase	  in	  cpio	  

•  Going	  forward:	  1	  Gbytes/s/core	  memory	  bandwidth	  

Fig. 4. Increase in cpio (Y-axis) from 1 to many cores normalized to cpio
with one core.

Fig. 5. Drop in CPU utilization (�) from 1 to 16 cores.

memory bandwidth.

D. What will be the impact of DRAM-type persistent storage?

An emerging challenge in the storage domain is to examine
how things might evolve when storage class memories [5] start
to appear in real systems. Although there are various types of
memories proposed in this category, we make a first order
approximation and take the simplistic approach that these
memories will appear comparable to DRAM. However, we
assume that applications will still perform I/O via the tradi-
tional I/O path since this would be a first step in the evolution
towards using storage class memories. In addition, complex
data-centric applications such as transactional databases will
require fundamental changes to avoid the traditional I/O path
when going to persistent memory. For this study, we wrote a
kernel module (kram) that simulates a block device in physical
memory. kram completes I/O operations in-place without using
any re-scheduling of I/Os. The size of kram is 54 GB and
the physical memory in these experiments is 12 GB. The
experiments are performed on DISKS and datasets are adjusted
to fit in the available memory.

Figure 8 shows the breakdown of execution time for selected
applications that have high iowait and idle times on kram.
First, we see that iowait time disappears for all applications.
This is expected since I/Os now complete upon issue without
the issuing thread leaving the executing core. We note that, for
certain applications, there is still idle time either due to severe
imbalances or other form of synchronization. Our observa-
tions on idle time with DRAM-storage strongly indicate that
application scaling on many-core systems will not be simple
even for data-centric applications that in principle exhibit large
amount of concurrency.

Fig. 6. Effectiveness of hyper-threading for data-centric applications: cpio
(Y-axis) for various configuration normalized to 4C.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0

0.2

0.4

0.6

0.8

1

1.2

1.4

De
du

pL

I4H
TD

S

M
et
is

HB
as
e

fs
m
ar
k

BR
46
4

Fe
rr
et

BR
41
02

4

I4H
FD

L

IO
R

GB
/s
/C
or
e)

GB/s/CoreI(Sufficient) GB/s/CoreI(Today) %IincreaseIinIcpio

Fig. 7. Memory bandwidth requirements of data-centric applications:
GB/s/core today and after tolerating an increase in cpio.

VII. PROJECTED RESULTS

In this section, we use cpio to project I/O-related require-
ments to the 2020 time-frame. In our results, wherever we
show averages for all applications, we do not include zmIO,
fsmark, and Ferret.

A. How many cycles per I/O?
Figure 4 shows the projected increase in cpio for 1024,

2048 and 4096 cores using the measured values today. Note
that, workloads such as I-HFDL, which observe only a small
overhead in cpio with eight cores will end up spending
100 times more cycles per I/O with 4096 cores. This is an
important observation given that future systems and servers
that will process data are expected to have a large number of
cores in a single enclosure.

B. How much storage bandwidth?
We calculate millions of IOPS (MIOPS) using Equation 2

and use it to examine how much I/O we will need to provide
per server when running data-centric applications on many-
core processors. Note that in Equation 2, µ and cpio, as
a combination, leads to various scenarios, which we call
s(µ, cpio). In this work, we consider s(l, p), s(h, p), s(l, t),
s(h, t), s(h, d), s(l, d); where l and h stands for low and
high CPU utilization respectively whereas t, p and d stands
respectively for cpio measured today with 16 cores, projected
cpio from real measurements and desired cpio measured with
one core.

We use 100% for calculations with high CPU utilization.
For low CPU utilization, we take the measured utilization with
16 cores for s(l, t) and project it to many cores for s(l, p).


