*| Australian
~—=/ National
=~ University

SPIRIT: Scalable and Persistent In-Memory

Indices for Real-Time Search

Adnan Hasnat Shoaib Akram
Adnan.Hasnat@anu.edu.au shoaib.akram@anu.edu.au

Full-text search is ubiquitous

bGaym

= Servesalarge and impatient user base

= Goals:
= High query throughput
= Low average query latency (response time)
= [Low tail query latency

TACO 2025 2

Inverted indices power search

Document 1: Never arrive late
Document 2: Never say never

(Dictionary h (Postings)
Terms Offsets
arrive &
late [+
never I
say I
/L J

= Two important components
= Dictionary: for each word/term provides the offset into a postings
file
= Postings: |Ds of documents in which the term appears and other
meta-data
= |ntraditional search, indices are built offline and read-optimized for
fast query execution

TACO 2025 S

Real-time search

= “Real time” for search means indexing happens in real time

= Social networking services like Facebook and X must make new documents
instantly searchable

= |ngestion of new data must be fast
= |t must appear as part of search results upon ingestion
= Examples: ElasticSearch, Twitter EarlyBird - Both based on Lucene

High-level architecture

We split our entire tweet search index into three clusters:|a realtime cluster indexing all public tweets posted in about the last 7 days|a
protected cluster indexing all protected tweets for the same timeframe; and an archive cluster indexing all tweets ever posted, up to about

two days ago.

TACQO 2025 4

Real-time search is challenging

= Real-time search poses challenges

= Need to transform from write-optimized to read-optimized
organization quickly
= Concurrent writes(indexing)and reads (query evaluation)

= Want to serve as many queries as possible from memory to avoid
incurring significant latency penalty of accessing storage

= Problem: DRAM capacity cannot scale to high ingestion rates!
= Twitter users create 500 million tweets every day

TACQO 2025 5

Real-time search is challenging

= Traditional solutions(Apache Solr and ElasticSearch)retain DRAM latency
advantage by keeping segments in DRAM page cache after copy to storage

= This has problems:

= OSfilesystem overhead from accessing the segment commit point is incurred
even when the data being accessed is in memory

= Reformatting data for efficient block device usage adds overhead

= Alternative proposal: extend memory capacity using Nonvolatile Memory
= Direct memory access(DAX)feature avoids filesystem overhead
= Byte addressability = no reformatting
= Slower than DRAM by 2x, but much faster still than storage

TACO 2025 6

Our contribution: SPIRIT

= Anenterprise search engine with real-time query evaluation as a first principle
= Real-time: Newly ingested document/post/tweet is instantly visible

= Uses ahybrid heap for hosting inverted indices
= Volatile(DRAM)heap for fresh ingestion
= Non-volatile (Intel Optane Persistent Memory) heap for long-term preservation

= (Optane NVM serves two roles

= DRAM capacity expansion (dealing with limited memory)
= Persistent memory (bypassing the expensive 10/filesystem stack)

TACQO 2025 7

Crashresilience & instant restart

= EXxisting data-intensive frameworks maintain a large state in memory (0OS page
cache)with an fsync every few minutes

= |ogsare used forrecovery, but some background operations(e.g., merging) can
still corrupt the index

= fsyncis expensive and logs are (sometimes)on the critical path
= Restarting the service is expensive (0S page cache is empty on restart)

= Use NVMto enable better crash resilience (hindsight: consistency with NVM is
also hard and incurs a performance hit, see paper for details)

TACQO 2025 8

Design: High-Level overview

Query
Evaluators
Global descriptor Partition or segment
table in DRAM with 1: Compressed state XXXX -~
partition meta-data 2: Fresh state XXxXX

’
’

(no filesystem calls

3: Merged state /’WYY
like Lucene)

4: Partially merged state 7777

—_———m——————

4) 4 Ivndex partitions on\
Index partitions on NVM heap

volatile DRAM heap /\
\ Mmckl j \ mlock | j

Design in detail

TACO 2025 10

Post- Global descriptor table
setu p with per-segment meta-

data, D=DRAM, N=NVM

_

~

/

Ephemeral

_

Long-lived

Ephemeral

thread
pool

AN

Long-lived

Threads:

Ingester

DRAM

Flusher

Engraver

NVM

Merger

lngeSt Global descriptor table D_Seq] 53ttt bt bt 7
with per-segment meta- 20N
data, D=DRAM, N=NVM N\ [ihreas

pool

\\J
/segment_desd \

ptr_tablet,

*

ptr_words % T\

block_idx &
tablel g

terml

term?2

\ Write-optimized posting list ,

segment = postings + hash table \ /
K / —

Ephemeral Long-lived Ephemeral Long-lived

DRAM NVM

Threads:

Flush

Global descriptor table D_Seq] €~ = — o m
with per-segment meta- 7o
data, D=DRAM, N=NVM \ (thread

pool

\\J
/segment_desd \

ptr_tablet,

*
.

ptr_words * N\
/ \ block_idx
tablel g

.-- -->| read-optimized posting list |
terml

term2
Q- -->| read-optimized posting list |

segment = postings + hash table

_ AN L

Ephemeral Long-lived Ephemeral Long-lived

DRAM NVM

Flush queue

Threads:

Engrave

Global descriptor table DSeql | |] NoSegl [mmmmmmmmmmmm o
with per-segment meta- \ o (thread
data, D=DRAM, N=NVM \ pool
/segment-desc] \ / segment_descl
ptr_tab|e}“ CERRELLEEEEEE il ptr_m_table
ptr_words T\ ptr_words
/ \ block_idx & : posting_list
tablel g v
.——)I read-optimized posting list | Q >I mergeable posting list | next |
term1 term1
term2 term?2
.——)I read-optimized posting list | (@] >I mergeable posting list | next |

_ AN L

Ephemeral Long-lived Ephemeral Long-lived

DRAM NVM

Engrave queue

Threads:

Writes to NVM (Engraving)

= SPIRIT writes index partitions (segments)to NVM after they are immutable
= Writesto NVM are direct without OS buffering

= Writes are synchronous (calling thread does not return from memory copy until
the copy is complete)

= |t eases crash consistency

= Queries do not see a massive pause due to device overload during bulk write (such
as fsync)

TACQO 2025 15

Pre- Global descriptor table DSegl | | | NSegl J€mmmmmm e Qs

Commit with per-segment meta- \ o (thread
data, D=DRAM, N=NVM
\ pool
/segment-desc] \ / segment_descl
ptr_tab|e}“ CERRELLEEEEEE il ptr_m_table
ptr_words T\ ptr_words
/ \ block_idx & : posting_list
tablel g v
.——)I read-optimized posting list | Q >I mergeable posting list | next |
term1 term1
term2 term?2
.——)I read-optimized posting list | (@] >I mergeable posting list | next |

_ AN L

Ephemeral Long-lived Ephemeral Long-lived
DRAM NVM
Commit
queue
Threads:

Two-phase engrave: ingester commits a NVM segment in the commit queue when DRAM heap is full

Pre- Global descriptor table D_Segq] D_Seg2 | | NoSeql Krmmmmmmm e Qs

Commit with per-segment meta- \ P (
data, D=DRAM, N=NVM & -

(heap \ N

thread
pool

full) N A /S
segment_descl | segment_desc2 / segment_descl
ptr_tab|e]o" ptr_tab|e2 --..._... [RRRRELLELLEL ELhD ptr_m_table
ptr_words ptr_words e, T\ ptr_words
///'7 “\\\ block_idx ¢ block_idx . : posting_list
tablel g : v
.——)I read-optimized posting list | : Q >I mergeable posting list | next |
term1 : term1
term?2 term2
.——)I read-optimized posting list | 5 Qo >I mergeable posting list | next |
tab|82 -‘---“-l“““-
term?2 (----- ------ amunmmns®
o1 l
\\‘ 4// \\\; ‘/// —
Ephemeral Long-lived Ephemeral Long-lived
DRAM NVM
Commit
queue

Threads:

Two-phase engrave: ingester commits a NVM segment in the commit queue when DRAM heap is full

Commit Global descriptor table B=Segt D_Seq2 N_Segl K - ===""==" """ "--mmmmmmmmmemmm—eo—————o——-— oo 0

uer
with per-segment meta- \ o (t(:wea):i
data, D=DRAM, N=NVM .,\ A5 pool
/ segment_dech\ segment_descl
ptr_tab|ez ., [RRRRELLELLEL ELhD ptr_m_table
ptr_words ., (ﬁ ptr_words
/ \ block_idx : posting_list
“$‘ @
H Q >I mergeable posting list | next |
term1
term?2
Q >I mergeable posting list | next |
table2 -“_‘.‘..‘.‘.‘
term2 |4
o1 l
\\‘ 4// \\\; ‘/// —

Ephemeral Long-lived Ephemeral Long-lived
DRAM NVM
Commit
queue
Threads:

Two-phase engrave: ingester commits a NVM segment in the commit queue when DRAM heap is full

Eager NVM Write - Lazy Pointer Update

= (Query evaluators do not access the recently written index partition into NVM
= NVMis slower than DRAM

= Eventually, SPIRIT updates the segment descriptor to point to NVM copy based on
many factor(e.g., running out of DRAM)

= These policies are possible as directing query evaluators to DRAM or NVM
segment happens via an in-memory pointer table

= Lucene has afile(commit point) that stores locations of index partitions

= S0, one set of system calls to access commit point and one set of system calls
to access the actual index (hence near-real-time)

TACQO 2025 19

Merge Global descriptor table D_Seg2 N_Segl K=" """"""""""""""""-mmmmmomommmmmoooommmmm-oo-

uer
with per-segment meta- \ o (t(:wea):i
data, D=DRAM, N=NVM .,\ A5 pool
/ segment_dech\ segment_descl
ptr_tab|ez ., [RRRRELLELLEL ELhD ptr_m_table
ptr_words ., (ﬁ ptr_words
/ \ block_idx : posting_list
“$‘ @
H Q >I mergeable posting list | next |
term1
term?2
Q >I mergeable posting list | next |
table2 -“_‘.‘..‘.‘.‘
term2 |4
o1 l

Ephemeral Long-lived Ephemeral Long-lived

DRAM NVM

Ingester pushes the committed segment in the commit queue for merging into the merged NVM segment

Threads: Merger
Merge

queue

Merge GIObaI descriptor table _D:S_e.g_z N_Seg2 N_Seg_l ___ @
(flushing with per-segment meta- P (
7

query
thread
pool

data, D=DRAM, N=NVM

second

segment for
demo purposes) / \

segment_descl | segment_desc2

! ptr_m_tab|e ptr_m_tab|e
(:ﬁ ptr_words ptr_words
/ \ : posting_list posting_list
'
Q >I mergeable posting list | next |
term1
term?2
Qo >I mergeable posting list | next |
term?2
(@) >| | next |
Ephemeral Long-lived Ephemeral Long-lived
DRAM NVM
Threads: Merger
Merge

queue

Merge i
g Gl'obaldescrlptortable N=—Seg2 N=Seg} 7 query
with per-segment meta- L (thread
data, D=DRAM, N=NVM @ pool
1
1
1
1
|
1
(\ \%
//,' ‘\\\ Term
Dictionary
| mergeable posting list | next | term1
)]
J/ term?2
| mergeable posting list | nextl
i
{____________________'
| | nextl
Ephemeral Long-lived Ephemeral Long-lived
DRAM NVM
Threads: Merger
Merge

queue

Merge

Global descriptor table

with per-segment meta-
data, D=DRAM, N=NVM

query
thread
pool

2
= |
o

(\ \%
Term
Dictionary
| mergeable posting list | next | term]
)]
J/ term?2
| mergeable posting list | next |
i
{____________________'
| [rext |
Ephemeral Long-lived Ephemeral Long-lived
DRAM NVM
Threads: Merger
Merge

queue

L 1
All steps Global descriptor table D_Seq] D_Seg? o N_Seg2 N_SeqT S“'“““i‘ -----------------------------------
Occurrin with per-segment meta- \\\\ M g S
g data, D=DRAM, N=NVM D_Lockl D_Lock2: N_Lock?2 N_Lockl N
concurrently R
b’. v Ty \
segment_descl | segment_desc2 segment_descl | segment_desc2
ptr_tablet., ptr_table?2 (@) [CECECPETTLREY SILEL B ptr_m_table ptr_m_table
ptr_words "._ ptr_words (—-ﬂ ptr_words ptr_words
block_idx‘j' block_idx : posting_list posting_list Term
tablel g v Dictionary
@ Q- -->| read-optimized posting list | Q >I mergeable posting list | next | term
term1 term1 1 J
term2
term?2 term?2 J,
block || block block @@ {-->| rcad-optimized posting list @ »| mergeable posting list | EEKEN
1
1
table2 S |
term2 term2 {
block || block || block [€ QO 1--3| | o >| [next |
- — o x1 x2
\|Wr|te—opt|m|zed posting list \ /
Y /
——/
Ephemeral Long-lived Ephemeral Long-lived
DRAM NVM
Ingester pushes the committed segment in the commit queue for merging into the merged NVM segment
Commit
Flush queue Engrave queue gueue v
Threads: Merger
Merge
queue

Two-phase engrave: ingester commits a NVM segment in the commit queue when DRAM heap is full

Design principles of SPIRIT (1)

= Make indexed data instantly visible

= No expensive transformation because everything is memory encourages
instant visibility

= Operate nonstop from a user-space hybrid memory heap
= Expensive kernel entry points that prohibit real-time response are eliminated
= No block storage 10. No filesystem calls. No external memory allocators

= Perform macro-management
= Minimum locking
= Many operations are performed in bulk (like freeing heap memory)

TACQO 2025 25

Design principles of SPIRIT (2)

= Persist proactively but control visibility

= Move index segments to NVM instantly (direct, byte-addressable writes), but
delay visibility until DBRAM is under pressure

= Maximize memory economy
= |n-place merging(enabled by NVM)
= Metadata sharing

= Allow multiple operational modes
= Volatile and graceful shutdown
= (Crash-consistent indexing(beware the performance hit!)

TACQO 2025 26

Crash consistency

= Experience: NVM consistency is harder than disk (many byte-granular updates)

= Requires a combination of atomic operations, cache line flushes,
L fences, and undo/redo logs

= Canrecover all writes to NVM including partial NVM writes and partially merged
partitions

= [DRAM partitions are unrecoverable but log enough information to rebuild the index

= Stronger consistency guarantees but slows down in-place merging significantly
(future work)

TACQO 2025 27

Query evaluation

= No filesystem operations to access the index

= Uptodate DRAM and NVM partitions visible via pointer indirection

= (Query evaluator requires minor changes to traverse DBRAM and NVM segments
= Minimum locking overhead due to concurrent indexing

= (Query caching for frequently encountered queries

TACQO 2025 28

Methodology

= |mplementation in C++, using Intel PMDK API| to access NVM

= Benchmarking datasets:

= [ndexing dataset: Wikipedia English corpus. 1M/5M/10M docs, clipped to 1KB
each

= (uery dataset: Generated from top 50K terms ranked on occurrence in the
corpus as provided by luceneutil, classified by frequency (low/medium/high).
Includes single term (L, M, H)and double term(LL, MM, HH).

= SPIRIT generally run with concurrent indexing/querying: queries run constantly
while last 20% of docs are ingested.

TACQO 2025 29

Methodology

= SPIRIT parameters varied in comparisons:
= DRAM heap size relative to total index size
= Loose(L): 100%
= Moderate(M): 55%
= Tight(T): 15%

= Persistence modes:
= Volatile mode (V)
= Graceful shutdown mode (G)
= Crash consistent mode(C)

TACQO 2025 30

Methodology

® Lucene configs for comparison with SPIRIT:

" NRT: Near-Real Time, refreshes reader to ingest new docs at interval. Index on DRAM,
unlimited DRAM provisions. Remaining configs have a static index.

= DAX: Off-heap index on NVM (with DAX), with DRAM as heap.

= NODAX/SSD: Off-heap index on NVM (without DAX)and SSD respectively, with DRAM as heap
and page cache. This requires filesystem access to segments.

®" DPF: On-heap index using Lucene’s Direct Postings Format (DPF), with heap backed by NVM
and DRAM provisions created as page cache

" Use best practices to try mitigate the effects of Lucene’s managed runtime
" Total DRAM provisions matched in comparisons to SPIRIT

TACQO 2025 31

Evaluation system details

= Some experiments use small subset of total BRAM/NVM capacity; thisis for
tractability purposes, and key findings were validated with larger datasets.

System DRAM
Operating System Ubuntu 18.04.1 Linux OS (5.4.0 kernel) Capacity 400 GB
Hardware Dell PowerEdge R740) Server Bus frequency 800 MHz (DDR 1.6 GHz)
" Bus width 64 bits
! or Channels 6
Processors Intel Xeon Gold 6252N Ranks 1 rank/channel
Number of cores 48 physical cores (96 logical) Banks 8 banks/rank
Core frequency 23 GHz
Issue width 4-wide e
ROB size 128 entries Capacity 1.5TB
Branch predictor hybrid local/global predictor Hardware Intel Optane Persistent Memory
Max. outstanding 48 loads, 32 stores, 10 L1-D misses SSD
Capacity 1TB
Hardware 3.5-Inch, Seagate, SATA (6 Gbps)

TACO 2025 32

Throughput comparisons

= Harmonic mean of QPS across workloads (higher is better)
= (Crash consistency modes have negligible impact on QPS

= SPIRIT achieves higher average throughput over all Lucene modes

2500
2000
» 1500
(=W
< 1000
50

& @ ’, Q
AL &'& ; =)
°-’ °.> < cv’e% < %L% c"b x\%Q~ &'Q:\%& Q% 'QY" QQQ QQ EOQY”%

(=2 -

TACO 2025 33

Throughput comparisons

= More detailed breakdown shows SPIRIT only underperforms for L/LL queries

u SP-D = SP-N SP-HT SP-HM ®=SP-HL ®=DPF-D ®=DPE-N
= DPF-HT mDPF-HM mDPF-HL ®=LPF-HT w=LPF-HM = LPF-HL
> 40
o)
Note: < 35
<
LPF here % 3.0
refersto =
Lucene DAX Z 2
[~
1)
config A 2.0
2 15
N Lucene
£ 1.0
)
g =zl |
[~
< 0.0 m =3
L M H LL MM HH

TACO 2025 34

Latency comparisons

= NRT Lucene performs very poor for both average and tail latency

= Penalty of filesystem operations incurred by reading new segments is
significant

L ' M 1 H ‘ LL ' MM HH ‘
PSO P95 P99 Avg P50 P95 P99 Avg P50 P95 P99 Avg PS0 P95 P99 Avg| PS0 P9S P99 Avg| PSO P95 P99

Avg t

51’-("-1“ 67 91 105 65 96 172 247 105 258 1854 2197 425 114 177 210 111 289 511 719 301 1609 8003 11832 2410

SP-C-M 45 62 71 45 65 116 167 71 179 1074 1471 288 78 121 143 77 217 422 604 232 1436 6421 10476 2125

SP-C-L 28 36 41 28 41 75 108 45 126 1007 1109 211 48 71 87 47 158 331 509 172 1277 5549 9580 1868

NRT-1 ’ 42815 306709 542697 83717 45131 297782 477702 82816 63795 377984 577864 111173 47487 318163 545872 89286 51384 322060 556774 92507 61659 384500 564877 112931

NRT-IU‘ 358 53637 242252 10226 671 56869 281596 11354 2703 115079 362296 21704 811 61355292364 12055 1420 74535 315342 14356 3976 120219 411704 21891

NRT"““‘ 109 340 12849 1305 331 1028 29172 2028 1772 13164 80319 6862 230 720 25458 1854 597 1249 25846 2190 2822 0592 56248 7504
?\'R’I"-IK‘ 67 154 223 229 208 663 1396 602 1663 12489 39404 5336 127 287 573 351 329 779 1346 769 2441 7708

&/

16988 5114
NR"“L\ 12 47 88 19 127 546 1044 219 1526 _12086_ 35025 3456 27 56 108 33 185 515 830 225 2163 __7011 14286 __ 2930

| atencies in microseconds

TACO 2025 36

Latency comparisons

= [atency breakdown again shows SPIRIT underperforms only for L/LL queries

P50 | P95 | P99 Avg. PSO| P95 | P99| Avg| P50, P9S| P99 Avg] PS50 | P9S| P99 Avg P50v POS | P99 | Avg| P50| P95 | P99| Avg

SP-C-T 67 9] 105 65 96 172 | 247 105 2581 18541 2197| 425 114 177} 210 111 2891 511 719 301| 1609 8003 | 11832 2410
SP-C-M 45 62 71 45 65 116 167 71 179, 1074] 1471 288 78 | 121 143 77, 217 422| 604, 232 1436 642110476 2125
SP-C-L 28 36 41 28 41 75 108 45 126/ 1007 1109 211 48 71 87 47! 158] 331 5090 172| 1277 5549 9580, 1868

DAX-T 11 51 102 19 157 713 1500| 290] 1884f 24902 45781 5024 24 54 98 27| 214)| 608 | 947| 241| 2252| 8102 |24595| 3029
DAX-M 11 53 105 19 156, 694 1446| 248 1776 14349 44533 3783 25 56| 100 27 223 625 976 245 2245 7661 14616 2918

DAX-L 11 53 110 171 155] 701 1232 238 1462] 12373 25403 | 3062 26 571 102 27| 233] 642 | 1005| 266! 2344 7660 | 13894 2882
NODAX 8 43 87 16| 134 614 1395] 205| 1507| 10882 30731 | 3137 19 47| 102 24 232| 661 | 1069 264| 2479 | 7878 |12702| 2964
SSD 9 45 92 16| 132 619 1424 204| 1301 8667 26119 | 2663 19 46 93 24, 2291| 659 | 1114| 259 2532 7803 | 12257| 299

| atencies in microseconds

TACO 2025 37

Latency comparisons

= (Crash consistency incurs a latency penalty, especially when using tighter heaps
= Attributable to additional NVM bandwidth contention from logging

= (Graceful shutdown mode has no difference on the other hand

[H ‘ LL { MM ' HH |

i ' M
P50 P95 P99 Avg‘ PSO P95 P99 Avg| P50 P95 P99 Avg

P50 P95 P99 Avg P50 P95 P99 A\vg’ P50 P95 P99 Avg

43 215 426 599 226 1467 7421 11227 2245

SP-V-T 26 41 52 27 59 137 211 68 228 1834 2126 398 42 85 116
SP-V-M 26 38 46 27 48 101 152 55 166 1061 1446 277 42 77 99 43 183 378 559 195 1369 6361 10502 203

SP-V-L 26 36 42 27 41 75 109 46 125 1000 1094 213 42 72 85 43 159 334 507 174 1281 5601 9697 1x7§
SP4‘4” 67 91 105 65 96 172 247 105 258 1854 2197 425 114 177 210 111 289 511 719 301 1609 8003 11832 2410
SP-C-M 45 62 71 45 65 116 167 71 179 1074 1471 288 78 121 143 77 217 422 604 232 1436 6421 10476 2125
SP-C-L 28 36 41 28 41 75 108 45 126 1007 1109 211 48 71 87 47 158 331 509 172 1277 5549 9580 1868

| atencies in microseconds

38

TACO 2025

Indexing performance

= [nvolatile mode, SPIRIT's indexing is faster than Lucene’s
L faster merging
L faster committing to persistent medium

= Graceful shutdown SPIRIT is negligibly slower, and remains faster than Lucene

= However, full crash consistency slows down SPIRIT segment merging significantly

= Difficult to control granularity of logging during merging, as undoing/redoing a
partial merge on a segment-granularity is intractable

TACQO 2025 39

Performance scales with DRAM capacity

_ DRAM capacity matters for QPS
= [arge DRAM delivers better QPS

M Large W Moderate M Tight
1.0

0.4
0.0

HH Avg

o O
o o

QPS Relative to Large DRAM

= NVM bandwidthis limited lowering QPS when DRAM is scarce

TACO 2025 40

Query caching helps even using NVM as cache medium

= Query cache stores results of an earlier query obviating(re)computation

mm NVM Cache mmDRAM Cache =—Cache Disabled
1.6

1.4
1.2
0.8
0.6
0.4
0.2

0

2% 4% 10% 15% 20% 25% 50%
Cache Size Relative to Index

= [nteresting result: One can place the query cache in NVM and still gain OPS

[u—

QPS Normalized to Cache
Disabled

TACQO 2025 41

Eager engrave policy is justified in limiting NVM contention

= Experiment: Execute stealing instances that only do engraving or merging

= DandP aretwo types of merge operations
m Engrave « MergeD m MergeP

1.0
%
% 0.8
};z 0.6
S 04
:
S 02

0.0

1 4 8

Number of Stealers
= QPSislower when engraving(NVM writes)in progress showing NVM bw is limited

TACO 2025 42

Key Takeaways

= Growing datasets demand more memory for real-time search engines

= Filesystem operations are expensive in state-of-the-art enterprise engines
inhibiting real-time operation

= DRAM-NVM server delivers better QPS and tail response than highly optimized
SSD-DRAM ones

= SPIRIT offers instant visibility of ingested documents
= A memory-centric design and operation facilitates instant visibility

= (Crash consistency guarantees are stronger than SSD-based engines but slows
down ingestion-side operations

TACQO 2025 43

