
SPIRIT: Scalable and Persistent In-Memory
Indices for Real-Time Search

Adnan Hasnat
Adnan.Hasnat@anu.edu.au

Shoaib Akram
shoaib.akram@anu.edu.au

§ Serves a large and impatient user base

§ Goals:
§ High query throughput
§ Low average query latency (response time)
§ Low tail query latency

2

Full-text search is ubiquitous

TACO 2025

§ Two important components
§ Dictionary: for each word/term provides the offset into a postings

file
§ Postings: IDs of documents in which the term appears and other

meta-data
§ In traditional search, indices are built offline and read-optimized for

fast query execution
3

Inverted indices power search

TACO 2025

4

Real-time search

TACO 2025

§ “Real time” for search means indexing happens in real time
§ Social networking services like Facebook and X must make new documents

instantly searchable
§ Ingestion of new data must be fast
§ It must appear as part of search results upon ingestion

§ Examples: ElasticSearch, Twitter EarlyBird – Both based on Lucene

§ Real-time search poses challenges
§ Need to transform from write-optimized to read-optimized

organization quickly
§ Concurrent writes (indexing) and reads (query evaluation)

§ Want to serve as many queries as possible from memory to avoid
incurring significant latency penalty of accessing storage

§ Problem: DRAM capacity cannot scale to high ingestion rates!
§ Twitter users create 500 million tweets every day

5

Real-time search is challenging

TACO 2025

6

Real-time search is challenging

TACO 2025

§ Traditional solutions (Apache Solr and ElasticSearch) retain DRAM latency
advantage by keeping segments in DRAM page cache after copy to storage

§ This has problems:
§ OS filesystem overhead from accessing the segment commit point is incurred

even when the data being accessed is in memory
§ Reformatting data for efficient block device usage adds overhead

§ Alternative proposal: extend memory capacity using Nonvolatile Memory
§ Direct memory access (DAX) feature avoids filesystem overhead
§ Byte addressability = no reformatting
§ Slower than DRAM by 2x, but much faster still than storage

§ An enterprise search engine with real-time query evaluation as a first principle
§ Real-time: Newly ingested document/post/tweet is instantly visible

§ Uses a hybrid heap for hosting inverted indices
§ Volatile (DRAM) heap for fresh ingestion
§ Non-volatile (Intel Optane Persistent Memory) heap for long-term preservation

§ Optane NVM serves two roles
§ DRAM capacity expansion (dealing with limited memory)
§ Persistent memory (bypassing the expensive IO/filesystem stack)

7

Our contribution: SPIRIT

TACO 2025

8

Crash resilience & instant restart

TACO 2025

§ Existing data-intensive frameworks maintain a large state in memory (OS page
cache) with an fsync every few minutes

§ Logs are used for recovery, but some background operations (e.g., merging) can
still corrupt the index

§ fsync is expensive and logs are (sometimes) on the critical path

§ Restarting the service is expensive (OS page cache is empty on restart)

§ Use NVM to enable better crash resilience (hindsight: consistency with NVM is
also hard and incurs a performance hit, see paper for details)

Global descriptor
table in DRAM with
partition meta-data
(no filesystem calls
like Lucene)

Index partitions on
NVM heap

Partition or segment Address
1: Compressed state XXXX
2: Fresh state XXXX
3: Merged state YYYY
4: Partially merged state ZZZZ

Index partitions on
volatile DRAM heap

block block block block block block

Design: High-Level overview
Query

Evaluators

Design in detail

10TACO 2025

Global descriptor table
with per-segment meta-
data, D=DRAM, N=NVM

Long-livedEphemeral

DRAM NVM

Ephemeral Long-lived

query
thread

pool

Post-
setup

Threads: Ingester Flusher MergerEngraver

D_Seg1Global descriptor table
with per-segment meta-
data, D=DRAM, N=NVM

Long-livedEphemeral

DRAM NVM

Ephemeral Long-lived

segment_desc1
ptr_table1
ptr_words
block_idx

block block block

block block block

term1

term2

table1

segment = postings + hash table

write-optimized posting list

query
thread

pool

Ingest

Threads: Ingester

D_Seg1Global descriptor table
with per-segment meta-
data, D=DRAM, N=NVM

Long-livedEphemeral

DRAM NVM

Ephemeral Long-lived

Flush

segment_desc1
ptr_table1
ptr_words
block_idx

term1

term2

table1
read-optimized posting list

read-optimized posting list

query
thread

pool

segment = postings + hash table

Flush queue

Threads: Ingester Flusher

D_Seg1 N_Seg1Global descriptor table
with per-segment meta-
data, D=DRAM, N=NVM

Long-livedEphemeral

DRAM NVM

Ephemeral Long-lived

Engrave

segment_desc1
ptr_table1
ptr_words
block_idx

term1

term2

table1
read-optimized posting list

read-optimized posting list

term1

term2

mergeable posting list

mergeable posting list

segment_desc1
ptr_m_table
ptr_words
posting_list

next

next

query
thread

pool

Flush queue

Threads: Ingester Flusher Engraver
Engrave queue

§ SPIRIT writes index partitions (segments) to NVM after they are immutable

§ Writes to NVM are direct without OS buffering

§ Writes are synchronous (calling thread does not return from memory copy until
the copy is complete)

§ It eases crash consistency

§ Queries do not see a massive pause due to device overload during bulk write (such
as fsync)

15

Writes to NVM (Engraving)

TACO 2025

D_Seg1 N_Seg1 Global descriptor table
with per-segment meta-
data, D=DRAM, N=NVM

Long-livedEphemeral

DRAM NVM

Ephemeral Long-lived

Pre-
Commit

segment_desc1
ptr_table1
ptr_words
block_idx

term1

term2

table1
read-optimized posting list

read-optimized posting list

term1

term2

mergeable posting list

mergeable posting list

segment_desc1
ptr_m_table
ptr_words
posting_list

next

next

query
thread

pool

Flush queue

Threads: Ingester Flusher Engraver

Engrave queue
Commit
queue

Two-phase engrave: ingester commits a NVM segment in the commit queue when DRAM heap is full

D_Seg2D_Seg1 N_Seg1 Global descriptor table
with per-segment meta-
data, D=DRAM, N=NVM

Long-livedEphemeral

DRAM NVM

Ephemeral Long-lived

Pre-
Commit
(heap
full)

segment_desc1
ptr_table1
ptr_words
block_idx

term1

term2

table1
read-optimized posting list

read-optimized posting list

term1

term2

mergeable posting list

mergeable posting list

segment_desc1
ptr_m_table
ptr_words
posting_list

read-optimized posting list
term2
table2

segment_desc2
ptr_table2
ptr_words
block_idx

next

next

query
thread

pool

Flush queue

Threads: Ingester Flusher Engraver

Engrave queue
Commit
queue

Two-phase engrave: ingester commits a NVM segment in the commit queue when DRAM heap is full

D_Seg2D_Seg1 N_Seg1Global descriptor table
with per-segment meta-
data, D=DRAM, N=NVM

Long-livedEphemeral

DRAM NVM

Ephemeral Long-lived

Commit

term1

term2

mergeable posting list

mergeable posting list

segment_desc1
ptr_m_table
ptr_words
posting_list

read-optimized posting list
term2
table2

segment_desc2
ptr_table2
ptr_words
block_idx

next

next

query
thread

pool

Flush queue

Threads: Ingester Flusher Engraver

Engrave queue
Commit
queue

Two-phase engrave: ingester commits a NVM segment in the commit queue when DRAM heap is full

§ Query evaluators do not access the recently written index partition into NVM
§ NVM is slower than DRAM

§ Eventually, SPIRIT updates the segment descriptor to point to NVM copy based on
many factor (e.g., running out of DRAM)

§ These policies are possible as directing query evaluators to DRAM or NVM
segment happens via an in-memory pointer table
§ Lucene has a file (commit point) that stores locations of index partitions
§ So, one set of system calls to access commit point and one set of system calls

to access the actual index (hence near-real-time)

19

Eager NVM Write – Lazy Pointer Update

TACO 2025

D_Seg2 N_Seg1Global descriptor table
with per-segment meta-
data, D=DRAM, N=NVM

Long-livedEphemeral

DRAM NVM

Ephemeral Long-lived

Merge

term1

term2

mergeable posting list

mergeable posting list

segment_desc1
ptr_m_table
ptr_words
posting_list

read-optimized posting list
term2
table2

next

next

query
thread

pool

segment_desc2
ptr_table2
ptr_words
block_idx

Flusher Engraver
Flush queue Engrave queue

Commit
queue

Merge
queue

Ingester pushes the committed segment in the commit queue for merging into the merged NVM segment

Threads: Ingester Merger

D_Seg2 N_Seg1N_Seg2Global descriptor table
with per-segment meta-
data, D=DRAM, N=NVM

Long-livedEphemeral

DRAM NVM

Ephemeral Long-lived

Merge

term1

term2

mergeable posting list

mergeable posting list

mergeable posting list next
term2

next

next

segment_desc2
ptr_m_table
ptr_words
posting_list

query
thread

pool

Threads:

segment_desc1
ptr_m_table
ptr_words
posting_list

MergerFlusher Engraver
Flush queue Engrave queue

Commit
queue

Merge
queue

Ingester

(flushing
second
segment for
demo purposes)

N_Seg2Global descriptor table
with per-segment meta-
data, D=DRAM, N=NVM

Long-livedEphemeral

DRAM NVM

Ephemeral Long-lived

mergeable posting list

mergeable posting list

mergeable posting list next

next

next

term1

term2

.

.

.

Term
Dictionary

N_Seg1 query
thread

pool

Merge

Threads: MergerFlusher Engraver
Flush queue Engrave queue

Commit
queue

Merge
queue

Ingester

Global descriptor table
with per-segment meta-
data, D=DRAM, N=NVM

Long-livedEphemeral

DRAM NVM

Ephemeral Long-lived

mergeable posting list

mergeable posting list

mergeable posting list next

next

next

term1

term2

.

.

.

Term
Dictionary

query
thread

pool

Merge

Threads: MergerFlusher Engraver
Flush queue Engrave queue

Commit
queue

Merge
queue

Ingester

block block block

block block block

block block block

read-optimized posting list

read-optimized posting list

read-optimized posting list

segment_desc1
ptr_table1
ptr_words
block_idx

segment_desc2
ptr_table2
ptr_words
block_idx

...

D_Seg2D_Seg1 N_Seg1N_Seg2

D_Lock2D_Lock1 N_Lock1N_Lock2

Global descriptor table
with per-segment meta-
data, D=DRAM, N=NVM

mergeable posting list

term1

term2
mergeable posting list

mergeable posting list
term2

write-optimized posting list segment = postings + hash table

next

next

next

term1

term2

.

.

.

Term
Dictionary

term1

term2

term2

segment_desc1
ptr_m_table
ptr_words
posting_list

segment_desc2
ptr_m_table
ptr_words
posting_list

Long-livedEphemeral Ephemeral Long-lived

query
thread

pool

table1

table2

x1 x2

All steps
occurring
concurrently

Flusher MergerEngraver
Flush queue Engrave queue

Commit
queue

Merge
queue

Two-phase engrave: ingester commits a NVM segment in the commit queue when DRAM heap is full

Ingester pushes the committed segment in the commit queue for merging into the merged NVM segment

Threads: Ingester

DRAM NVM

§ Make indexed data instantly visible
§ No expensive transformation because everything is memory encourages

instant visibility

§ Operate nonstop from a user-space hybrid memory heap
§ Expensive kernel entry points that prohibit real-time response are eliminated
§ No block storage IO. No filesystem calls. No external memory allocators

§ Perform macro-management
§ Minimum locking
§ Many operations are performed in bulk (like freeing heap memory)

25

Design principles of SPIRIT (1)

TACO 2025

§ Persist proactively but control visibility
§ Move index segments to NVM instantly (direct, byte-addressable writes), but

delay visibility until DRAM is under pressure

§ Maximize memory economy
§ In-place merging (enabled by NVM)
§ Metadata sharing

§ Allow multiple operational modes
§ Volatile and graceful shutdown
§ Crash-consistent indexing (beware the performance hit!)

26

Design principles of SPIRIT (2)

TACO 2025

§ Experience: NVM consistency is harder than disk (many byte-granular updates)

§ Requires a combination of atomic operations, cache line flushes,
§ fences, and undo/redo logs

§ Can recover all writes to NVM including partial NVM writes and partially merged
partitions

§ DRAM partitions are unrecoverable but log enough information to rebuild the index

§ Stronger consistency guarantees but slows down in-place merging significantly
(future work)

27

Crash consistency

TACO 2025

§ No filesystem operations to access the index

§ Up to date DRAM and NVM partitions visible via pointer indirection

§ Query evaluator requires minor changes to traverse DRAM and NVM segments

§ Minimum locking overhead due to concurrent indexing

§ Query caching for frequently encountered queries

28

Query evaluation

TACO 2025

29

Methodology

29TACO 2025

§ Implementation in C++, using Intel PMDK API to access NVM

§ Benchmarking datasets:
§ Indexing dataset: Wikipedia English corpus. 1M/5M/10M docs, clipped to 1 KB

each
§ Query dataset: Generated from top 50K terms ranked on occurrence in the

corpus as provided by luceneutil, classified by frequency (low/medium/high).
Includes single term (L, M, H) and double term (LL, MM, HH).

§ SPIRIT generally run with concurrent indexing/querying: queries run constantly
while last 20% of docs are ingested.

30

Methodology

30TACO 2025

§ SPIRIT parameters varied in comparisons:
§ DRAM heap size relative to total index size

§ Loose (L): 100%
§ Moderate (M): 55%
§ Tight (T): 15%

§ Persistence modes:
§ Volatile mode (V)
§ Graceful shutdown mode (G)
§ Crash consistent mode (C)

31

Methodology

31TACO 2025

§ Lucene configs for comparison with SPIRIT:
§ NRT: Near-Real Time, refreshes reader to ingest new docs at interval. Index on DRAM,

unlimited DRAM provisions. Remaining configs have a static index.

§ DAX: Off-heap index on NVM (with DAX), with DRAM as heap.

§ NODAX/SSD: Off-heap index on NVM (without DAX) and SSD respectively, with DRAM as heap
and page cache. This requires filesystem access to segments.

§ DPF: On-heap index using Lucene’s Direct Postings Format (DPF), with heap backed by NVM
and DRAM provisions created as page cache

§ Use best practices to try mitigate the effects of Lucene’s managed runtime
§ Total DRAM provisions matched in comparisons to SPIRIT

32

Evaluation system details

§ Some experiments use small subset of total DRAM/NVM capacity; this is for
tractability purposes, and key findings were validated with larger datasets.

32TACO 2025

33

Throughput comparisons

33TACO 2025

§ Harmonic mean of QPS across workloads (higher is better)

§ Crash consistency modes have negligible impact on QPS

§ SPIRIT achieves higher average throughput over all Lucene modes

34

Throughput comparisons

34TACO 2025

§ More detailed breakdown shows SPIRIT only underperforms for L/LL queries

SPIRIT Lucene

Note:
LPF here
refers to
Lucene DAX
config

36

Latency comparisons

36TACO 2025

§ NRT Lucene performs very poor for both average and tail latency
§ Penalty of filesystem operations incurred by reading new segments is

significant

Latencies in microseconds

37

Latency comparisons

37TACO 2025

§ Latency breakdown again shows SPIRIT underperforms only for L/LL queries

Latencies in microseconds

38

Latency comparisons

38TACO 2025

§ Crash consistency incurs a latency penalty, especially when using tighter heaps
§ Attributable to additional NVM bandwidth contention from logging

§ Graceful shutdown mode has no difference on the other hand

Latencies in microseconds

39

Indexing performance

39TACO 2025

§ In volatile mode, SPIRIT’s indexing is 2.5x faster than Lucene’s
§ 6.74x faster merging
§ 3.78x faster committing to persistent medium

§ Graceful shutdown SPIRIT is negligibly slower, and remains faster than Lucene

§ However, full crash consistency slows down SPIRIT segment merging significantly
§ Difficult to control granularity of logging during merging, as undoing/redoing a

partial merge on a segment-granularity is intractable

40

Performance scales with DRAM capacity

TACO 2025

DRAM capacity matters for QPS

0.0

0.2

0.4

0.6

0.8

1.0

L M H LL MM HH AvgQ
PS

 R
el

at
ive

 to
 L

ar
ge

 D
RA

M

Large Moderate Tight

§ Large DRAM delivers better QPS

§ NVM bandwidth is limited lowering QPS when DRAM is scarce

41

Query caching helps even using NVM as cache medium

TACO 2025

§ Query cache stores results of an earlier query obviating (re)computation

§ Interesting result: One can place the query cache in NVM and still gain QPS

§ Experiment: Execute stealing instances that only do engraving or merging
§ D and P are two types of merge operations

§ QPS is lower when engraving (NVM writes) in progress showing NVM bw is limited

42

Eager engrave policy is justified in limiting NVM contention

TACO 2025

§ Growing datasets demand more memory for real-time search engines

§ Filesystem operations are expensive in state-of-the-art enterprise engines
inhibiting real-time operation
§ DRAM-NVM server delivers better QPS and tail response than highly optimized

SSD-DRAM ones

§ SPIRIT offers instant visibility of ingested documents
§ A memory-centric design and operation facilitates instant visibility

§ Crash consistency guarantees are stronger than SSD-based engines but slows
down ingestion-side operations

43

Key Takeaways

TACO 2025

