Exploiting Intel Optane Persistent
Memory for Full Text Search

Shoaib Akram
ANU, Canberra

shoaib.akram@anu.edu.au

#| Australian
“=); National
S University

Full text search is ubiquitous
Web search (GO 816 b Bmg

Retall

Y

Social media
Qa

Search = Indexing + Query eval

Indexing builds an [word1 — document-list
inverted index word2 — document-list

Query evaluation Google
searches for words

Google Search I'm Feeling Lucky

Challenge: I/0 intensity

Writing & merging partial indices on
storage takes up 40% of exec time

DAV ,
BB syscall - copy — access |

Challenge: DRAM capacity

NVMe SSD violates real
time response constraint

SSD:1.5s | 5 torm AND,
99% tail latency

milliseconds

DRAM: 70 ms

< Data growth outpaces DRAIM scaling

Data volume — 2X
DRAM GB/$ — 20%

Today: Give up real time, or give
up cost efficiency

Looking forward

Reduce I/O overhead

Find a fresh memory scaling roadmap

Persistent memory (PM)

4X denser than DRAIV
Load/store access
Non-volatile

Contribution: PM Search Engine

Exploiting PM for building/storing indices
— Memory, storage, universal roles
— Fine-grained crash consistent recovery

Extensive PM evaluation vs DRAM/SSD
— |ndexing pert, scalability, bottlenecks
— Talil latency of query workloads

Rest of the talk

Building an index
Exploiting PM

Evaluation

Step 1: Building the hash table

terms posting lists
— —
When the table
the Bl :
is full — Step 2
Ll
bl — L L Ll
Each box is a posting. It contains

f

I

S the document id plus meta-data,
' e.g., frequency and position of
terms

10

Step 2: Sorting the hash table

erms posting lists

-

ii

anu

:

blah

|

the

Step 3: Flushing the hash table

terms posting lists ,
— —m— Partial
“s...segment
B e B s B o B o
L
L

Flushing results in large amounts of sequentail /0 .

Step 4: Merging segments
Merging segments is crucial for fast query evaluation

lanu [[] [] [bl []][] |blaj]
blah | | | [the | | |

lanu [[] [] [bl []][] |blaj]
blah | | | [the | | |

Merging results in large amounts of read/write 1/O

13

Index = Segment + Dictionary

lanu | [] []| bl []][]

blah | [| fthe | | |

Segment: Sequentially sorted postings on storage

Dictionary: To find posting lists in segments, indexers use a
key-value store, such as, Berkeley DB

14

Different ways to exploit PM

Hash table, DRAM — PM
Partial segments, SSD — PM
Merged segments, SSD — PM

Dictionary, SSD — PM

15

PM configurations for indexing

Name of Placement of Table, Postings, and Dictionary [Role of
Configuration |H Table Partial St Merged St Dict Optane PM
stock DRAM SSD SSD SSD none
table-pm PM SSD SSD SSD main memory
pm-only PM PM PM PM universal

hybrid DRAM PM PM PM storage
hybrid+ DRAM PM PM SSD storage

16

PM configurations for indexing

Name of Placement of Table, Postings, and Dictionary [Role of
Configuration |H Table Partial St Merged St Dict Optane PM
stock DRAM SSD SSD SSD none

_tablepm __|PM ___SSD____SSD ______ SSD ___|main memory}
pm-only PM PM PM PM universal

hybrid DRAM PM PM PM storage
hybrid+ DRAM PM PM SSD storage

16

PM configurations for indexing

Name of Placement of Table, Postings, and Dictionary [Role of
Configuration |H Table Partial St Merged St Dict Optane PM
stock DRAM SSD SSD SSD none
table-pm PM SSD SSD SSD main memory
pm-only PM PM PM PM universal

|'hybrid DRAM PM PM PM storage
l
Lhybrid+ DRAM PM PM SSD storage

16

Crash consistent indexing

Crash consistent segment flushing
— Use pmem_persist(segment)
— Track progress (doclds)

Crash consistent merging
— [Tracking progress is tricky
— Details of “logging” in the paper

17

Baseline Engine

MoSBENCH

P S e a rc h y Silas Boyd-Wickizer, Austin T. Clements, Yandong Mao, Aleksey Pesterev, M. Frans Kaashoek, Robert Morris, Nickolai Zeldovich mosbench@pdos

MosBENCH is a set of application benchmarks designed to measure scalability of operating systems. It consists of applications that
previous work has shown not to scale well on Linux and applications that are designed for parallel execution and are kernel
intensive. The applications and workloads are chosen to stress important parts of many kernel components.

Native, fast, and flexible

Easily integrated with Intel PMDK

18

Indexing Methodology

Dataset and measurement
— Wikipedia English (DRAM)
— Execution time
— 1 GB HT per core, up to 32 cores

PM setup
— |Interleaved, local, EXT4+DAX

— pmemkyv dictionary github.com/pmem/pmemkyv

19

Experimental Platform

2 TB PM
0.5 TB DRAM:
1.5 TB NVMe Optane SSD iiimiliiiis

Indexing perf with one core

B stock ¥ table-pom ®pm-only
hybrid ® hybrid+ cc-hybrid

Normalized Indexing
Time
©c o o -
EaS @) oo o

o o
S N

21

PM as main/only is 30% slower

B stock ¥ table-pm ®pm-only
10 hybrid B hybrid+ cc-hybrid
0
0.8 30%

Normalized Indexing
Time

© o o o
o NN OB~AOO

21

Is 8% slower than stock

B stock ¥ table-pm ®pm-only
hybrid B hybrid+ cc-hybrid

30% 8% slower
than stock

Normalized Indexing
Time
©c o o -
EaS @) oo o

o o
S N

21

Hybrid+ is best, 20% over stock

B stock ¥ table-pm ®pm-only
hybrid B hybrid+ cc-hybrid

IIIi/O

Normalized Indexing
Time
©c o o -
EaS @) oo o

o o
S N

21

Hybrid+ is best, pmkv costs 28%

B stock ¥ table-pm ®pm-only
hybrid B hybrid+ cc-hybrid

I I I 128 %

o o =
» W O

Normalized Indexing
Time

© o o
o N b

21

Crash consistency costs 10%

B stock
hybrid

¥ table-pm ®pm-only

B hybrid+ cc-hybrid

Normalized Indexing
Time
©c o o -
EaS @) oo o

o o
S N

21

syscall — mmap is mainly why
hybrid+ beats stock

Use perf counters to M| oad W Store Rest

observe Load/Store 1.5
. o)
stalls the multicore 0,
incurs g% 1.0
>
(ZLDQ 0.5
0.0

22

Indexing scalability

—stock -+ table-pm

o 40 o pm-only ® hybrid+
> 0.8
£ 0.6 .
5 GEJ R T]-PM cfgs

e T
SE 04 T
o 0.2 o .
E e ——
s 0.0
“ 1 4 8 16 32

Core Count

23

Hybrid+ Incurs an increase In
memory stalls (32 cores)

Use perf counters to M| oad W Store Rest

observe Load/Store 1.5
. o)
stalls the multicore 0,
incurs g% 1.0
>
;’O 0.5
0.0

24

Crash consistent indexing with 32
cores improves perf

Baseline: No

32 cores: Invalidated .
pmem_persist()

cache lines become c o015
replacement candidates, "o, € 11
improving LLC hit rate & '; -
> 2 I
— -~
(_‘—2 > O I —l' \'
o\o E -5 \~—/

1 4 8 16 32
Core Count

25

Query Evaluation Methodology

Tall latency of 100K concurrent queries
- 1 term

> AND 2 terms

See paper for details
—> Term selection, variation, ranking

26

Talil latency of single-term queries
DRAM = PM =SSD

Accessing a single “ °* DRAM 4+ PM ¢ SSD
o . 3000 s
posting list results in a S A

sequential access & 2000 $
pattern o :
® 1000 1
—
T 0
A 1 50 99

% of Requests

27

Tall latency of 2-term AND
Region 1: DRAM < SSD < PM

50% Shortest queries & 50 °* DRAM 4+ PM «SSD

p
Advancing two lists £ 40 PM is slow for
leads to random Y 30 concurrent &
accesses I3 0 random

©

— 10

T 0

1 50 99
% of Requests

28

Tall latency of 2-term AND
Region 2: DRAM < PM < SSD

* DRAM 4+ PM < SSD

50% Longest queries B 1500 ! |
These queries access £ PCle SSD interface is s
the SSD media >1000 Slowerthan PM DDR-T¢

&

© 500

-

T 0

- 1 50 09

% of Requests

28

More analysis In the paper

Indexing: updates

Query eval: access patterns
Breakdowns: sort vs merge, load vs store
pmemkyv: volatile map, binding

Other: OS caching impacts

29

Key Takeaways

PM does not scale well for write I/0O bound
indexing

PM shines for the latency-critical
query evaluation

30

Contribution: PM Search Engine

Exploiting PM for building/storing indices
— Memory, storage, universal roles
— Fine-grained crash consistent recovery

Extensive PM evaluation vs DRAM/SSD
— |ndexing pert, scalability, bottlenecks
— Talil latency of query workloads

31

