
Shoaib Akram
ANU, Canberra

shoaib.akram@anu.edu.au

1

Full text search is ubiquitous
Web search

Retail

Social media

2

Search = Indexing + Query eval
Indexing builds an
inverted index

Query evaluation
searches for words

Indexing speed increasingly critical

word1 → document-list
word2 → document-list

3

Challenge: I/O intensity
Writing & merging partial indices on
storage takes up 40% of exec time

syscall → copy → access
DRAM

4

Challenge: DRAM capacity
NVMe SSD violates real
time response constraint

🙁 Data growth outpaces DRAM scaling
Data volume → 2X
DRAM GB/$ → 20%

m
illi

se
co

nd
s SSD: 1.5 s

DRAM: 70 ms

2-term AND,
99% tail latency

5

Looking forward

Reduce I/O overhead

Find a fresh memory scaling roadmap

Today: Give up real time, or give
up cost efficiency

Persistent memory (PM)

6

4X denser than DRAM
Load/store access
Non-volatile

DRAM
Optane

8

Contribution: PM Search Engine
Exploiting PM for building/storing indices
→ Memory, storage, universal roles
→ Fine-grained crash consistent recovery

Extensive PM evaluation vs DRAM/SSD
→ Indexing perf, scalability, bottlenecks
→ Tail latency of query workloads

9

Rest of the talk
Building an index

Exploiting PM

Evaluation

10

Step 1: Building the hash table

the
anu

bl

bla

blah

terms posting lists

Each box is a posting. It contains
the document id plus meta-data,
e.g., frequency and position of
terms

When the table
is full → Step 2

Step 2: Sorting the hash table

anu
bl

bla

blah

the

terms posting lists

11

12

Step 3: Flushing the hash table

anu
bl

bla

blah

the

terms posting lists Partial
segment

Flushing results in large amounts of sequentail I/O

Step 4: Merging segments

anu bl bla
blah the

anu bl bla
blah the

Merging segments is crucial for fast query evaluation

Merging results in large amounts of read/write I/O

13

14

Index = Segment + Dictionary

anu bl
blah the

Segment: Sequentially sorted postings on storage

Dictionary: To find posting lists in segments, indexers use a
key-value store, such as, Berkeley DB

term offset
anu
bl

0
6

15

Different ways to exploit PM
Hash table, DRAM → PM

Partial segments, SSD → PM

Merged segments, SSD → PM

Dictionary, SSD → PM

16

PM configurations for indexing

Name of Placement of Table, Postings, and Dictionary Role of
Configuration H Table Partial St Merged St Dict Optane PM
stock DRAM SSD SSD SSD none
table-pm PM SSD SSD SSD main memory
pm-only PM PM PM PM universal
hybrid DRAM PM PM PM storage
hybrid+ DRAM PM PM SSD storage

PM configurations for indexing

Name of Placement of Table, Postings, and Dictionary Role of
Configuration H Table Partial St Merged St Dict Optane PM
stock DRAM SSD SSD SSD none
table-pm PM SSD SSD SSD main memory
pm-only PM PM PM PM universal
hybrid DRAM PM PM PM storage
hybrid+ DRAM PM PM SSD storage

16

PM configurations for indexing

Name of Placement of Table, Postings, and Dictionary Role of
Configuration H Table Partial St Merged St Dict Optane PM
stock DRAM SSD SSD SSD none
table-pm PM SSD SSD SSD main memory
pm-only PM PM PM PM universal
hybrid DRAM PM PM PM storage
hybrid+ DRAM PM PM SSD storage

16

17

Crash consistent indexing
Crash consistent segment flushing
→ Use pmem_persist(segment)
→ Track progress (docIds)

Crash consistent merging
→ Tracking progress is tricky
→ Details of “logging” in the paper

18

Baseline Engine
Psearchy

Native, fast, and flexible

Easily integrated with Intel PMDK

19

Indexing Methodology
Dataset and measurement
→ Wikipedia English (DRAM)
→ Execution time
→ 1 GB HT per core, up to 32 cores

PM setup
→ Interleaved, local, EXT4+DAX
→ pmemkv dictionary github.com/pmem/pmemkv

20

Experimental Platform

2 TB PM
0.5 TB DRAM
1.5 TB NVMe Optane SSD

Our in-house server with DRAM, PM, & SSD

21

Indexing perf with one core

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

ize
d

In
de

xi
ng

Ti
m

e
stock table-pm pm-only
hybrid hybrid+ cc-hybrid

PM as main/only is 30% slower

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

ize
d

In
de

xi
ng

Ti
m

e
stock table-pm pm-only
hybrid hybrid+ cc-hybrid

30%

21

Hybrid is 8% slower than stock

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

ize
d

In
de

xi
ng

Ti
m

e
stock table-pm pm-only
hybrid hybrid+ cc-hybrid

30% 8% slower
than stock

21

Hybrid+ is best, 20% over stock

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

ize
d

In
de

xi
ng

Ti
m

e
stock table-pm pm-only
hybrid hybrid+ cc-hybrid

20%

21

Hybrid+ is best, pmkv costs 28%

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

ize
d

In
de

xi
ng

Ti
m

e
stock table-pm pm-only
hybrid hybrid+ cc-hybrid

28%

21

Crash consistency costs 10%

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

ize
d

In
de

xi
ng

Ti
m

e
stock table-pm pm-only
hybrid hybrid+ cc-hybrid

10%

21

22

syscall → mmap is mainly why
hybrid+ beats stock

0.0

0.5

1.0

1.5

sto
ck

hybrid+

N
or

m
al

ize
d

C
yc

le
s

Load Store RestUse perf counters to
observe Load/Store
stalls the multicore
incurs 1.4X

23

Indexing scalability

0.0
0.2
0.4
0.6
0.8
1.0

1 4 8 16 32N
or

m
al

ize
d

In
de

xi
ng

Ti
m

e

Core Count

stock table-pm
pm-only hybrid+

PM cfgs

24

Hybrid+ incurs an increase in
memory stalls (32 cores)

0.0

0.5

1.0

1.5

sto
ck

hybrid+

N
or

m
al

ize
d

C
yc

le
s

Load Store RestUse perf counters to
observe Load/Store
stalls the multicore
incurs 4X

2X

25

Crash consistent indexing with 32
cores improves perf

-5
0
5

10
15

1 4 8 16 32

%
 In

cr
ea

se
 in

In

de
xi

ng
 T

im
e

Core Count

Baseline: No
pmem_persist()32 cores: Invalidated

cache lines become
replacement candidates,
improving LLC hit rate

26

Query Evaluation Methodology
Tail latency of 100K concurrent queries

→ 1 term
→ AND 2 terms

See paper for details
→ Term selection, variation, ranking

27

Tail latency of single-term queries
DRAM = PM = SSD

0

1000

2000

3000

Ta
il

La
te

nc
y

(m
s)

% of Requests

DRAM PM SSD

50 991

Accessing a single
posting list results in a
sequential access
pattern

28

Tail latency of 2-term AND
Region 1: DRAM < SSD < PM

0
10
20
30
40
50

Ta
il

La
te

nc
y

(m
s)

% of Requests

DRAM PM SSD

50 991

50% Shortest queries
Advancing two lists
leads to random
accesses

PM is slow for
concurrent &
random

Tail latency of 2-term AND
Region 2: DRAM < PM < SSD

0

500

1000

1500

Ta
il

La
te

nc
y

(m
s)

% of Requests

DRAM PM SSD

50 991

50% Longest queries
These queries access
the SSD media

PCIe SSD interface is
slower than PM DDR-T

28

3X

29

More analysis in the paper
Indexing: updates

Query eval: access patterns

Breakdowns: sort vs merge, load vs store

pmemkv: volatile map, binding

Other: OS caching impacts

30

Key Takeaways
PM does not scale well for write I/O bound
indexing

PM shines for the latency-critical
query evaluation

31

Contribution: PM Search Engine
Exploiting PM for building/storing indices
→ Memory, storage, universal roles
→ Fine-grained crash consistent recovery

Extensive PM evaluation vs DRAM/SSD
→ Indexing perf, scalability, bottlenecks
→ Tail latency of query workloads

