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Full text search is ubiquitous
Web search

Retail

Social media
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Search = Indexing + Query eval
Indexing builds an 
inverted index

Query evaluation 
searches for words

Indexing speed increasingly critical

word1 → document-list
word2 → document-list
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Challenge: I/O intensity
Writing & merging partial indices on 
storage takes up 40% of exec time 

syscall → copy → access
DRAM
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Challenge: DRAM capacity
NVMe SSD violates real 
time response constraint

🙁 Data growth outpaces DRAM scaling
Data volume → 2X 
DRAM GB/$ → 20%

m
illi

se
co

nd
s SSD: 1.5 s

DRAM: 70 ms

2-term AND,
99% tail latency
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Looking forward

Reduce I/O overhead

Find a fresh memory scaling roadmap

Today: Give up real time, or give 
up cost efficiency



Persistent memory (PM)
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4X denser than DRAM
Load/store access
Non-volatile 

DRAM
Optane
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Contribution: PM Search Engine 
Exploiting PM for building/storing indices 
→ Memory, storage, universal roles
→ Fine-grained crash consistent recovery

Extensive PM evaluation vs DRAM/SSD
→ Indexing perf, scalability, bottlenecks 
→ Tail latency of query workloads
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Rest of the talk
Building an index

Exploiting PM

Evaluation
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Step 1:  Building the hash table

the
anu

bl

bla

blah

terms posting lists

Each box is a posting. It contains 
the document id plus meta-data, 
e.g., frequency and position of 
terms

When the table 
is full → Step 2



Step 2:  Sorting the hash table

anu
bl

bla

blah

the

terms posting lists
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Step 3:  Flushing the hash table

anu
bl

bla

blah

the

terms posting lists Partial 
segment

Flushing results in large amounts of sequentail I/O



Step 4: Merging segments

anu bl bla
blah the

anu bl bla
blah the

Merging segments is crucial for fast query evaluation

Merging results in large amounts of read/write I/O
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Index = Segment + Dictionary

anu bl
blah the

Segment: Sequentially sorted postings on storage

Dictionary: To find posting lists in segments, indexers use a 
key-value store, such as, Berkeley DB 

term offset
anu
bl

0
6
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Different ways to exploit PM
Hash table, DRAM → PM   

Partial segments, SSD → PM

Merged segments, SSD → PM

Dictionary, SSD → PM
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PM configurations for indexing

Name of Placement of Table, Postings, and Dictionary Role of 
Configuration H Table Partial St Merged St Dict Optane PM
stock DRAM SSD SSD SSD none
table-pm PM SSD SSD SSD main memory
pm-only PM PM PM PM universal
hybrid DRAM PM PM PM storage
hybrid+ DRAM PM PM SSD storage



PM configurations for indexing

Name of Placement of Table, Postings, and Dictionary Role of 
Configuration H Table Partial St Merged St Dict Optane PM
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PM configurations for indexing

Name of Placement of Table, Postings, and Dictionary Role of 
Configuration H Table Partial St Merged St Dict Optane PM
stock DRAM SSD SSD SSD none
table-pm PM SSD SSD SSD main memory
pm-only PM PM PM PM universal
hybrid DRAM PM PM PM storage
hybrid+ DRAM PM PM SSD storage
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Crash consistent indexing
Crash consistent segment flushing
→ Use pmem_persist(segment)
→ Track progress (docIds)

Crash consistent merging
→ Tracking progress is tricky
→ Details of “logging” in the paper
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Baseline Engine
Psearchy

Native, fast, and flexible

Easily integrated with Intel PMDK
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Indexing Methodology
Dataset and measurement
→ Wikipedia English (DRAM)
→ Execution time
→ 1 GB HT per core, up to 32 cores

PM setup
→ Interleaved, local, EXT4+DAX
→ pmemkv dictionary github.com/pmem/pmemkv
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Experimental Platform

2 TB PM 
0.5 TB DRAM
1.5 TB NVMe Optane SSD

Our in-house server with DRAM, PM, & SSD



21

Indexing perf with one core 
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PM as main/only is 30% slower
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Hybrid is 8% slower than stock
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Hybrid+ is best, 20% over stock
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Hybrid+ is best, pmkv costs 28%
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Crash consistency costs 10%
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syscall → mmap is mainly why 
hybrid+ beats stock
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Indexing scalability
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Hybrid+ incurs an increase in 
memory stalls (32 cores)
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Crash consistent indexing with 32 
cores improves perf
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Query Evaluation Methodology
Tail latency of 100K concurrent queries 

→ 1 term 
→ AND 2 terms

See paper for details
→ Term selection, variation, ranking
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Tail latency of single-term queries 
DRAM = PM = SSD
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Tail latency of 2-term AND 
Region 1: DRAM < SSD < PM
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Advancing two lists 
leads to random 
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PM is slow for
concurrent &
random



Tail latency of 2-term AND 
Region 2: DRAM < PM < SSD
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3X
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More analysis in the paper
Indexing: updates

Query eval: access patterns

Breakdowns: sort vs merge, load vs store

pmemkv: volatile map, binding

Other: OS caching impacts
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Key Takeaways
PM does not scale well for write I/O bound 
indexing

PM shines for the latency-critical
query evaluation
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Contribution: PM Search Engine 
Exploiting PM for building/storing indices 
→ Memory, storage, universal roles
→ Fine-grained crash consistent recovery

Extensive PM evaluation vs DRAM/SSD
→ Indexing perf, scalability, bottlenecks 
→ Tail latency of query workloads


