-] Australian
~—=/ National
=~ University

Analyzing and Improving the Scalability of

In-Memory Indices for Managed Search Engines

Aditya (Adi) Chilukuri Shoaib Akram
aditya.chilukuri@anu.edu.au shoaib.akram@anu.edu.au

ISMM 2023

Full text search is ubiquitous

GbMmy a

e Serve alarge and impatient user base

e Taillatency impacts profit & loss

e Goal: High throughput and low response time

ISMM 2023 2

Inverted indices power search

Document 1: Never arrive late
Document 2: Never say never

Dictionary h (Postings h
Terms Offsets
arrive 4
late 4
never B
say [
o

ISMM 2023 S

Inverted indices are outgrowing memory capacity

Document 1: Never arrive late
Document 2: Never say never

~
Dictionary h (Postings

Terms Offsets
arrive
late >

never »<1,1,[0]> —> <2,2,[0,2]>

say <2,1,[1]>
_ J U W,

LG G

e Indexisplacedin (fastest storage resource available today)
e Asdatasets grow, indices grow proportionally

o Problem: DRAM capacity is limited

o Problem: Scalable devices(SSDs) have high latency

ISMM 2023 4

Index is typically placed in the page cache

e Indices are archived on disks/SSDs
e Readindex to DRAM to serve queries
e |namanaged(Java)runtime, there are two options

P - e

Heap . | OSPageCache !
Search ; Index :
Objects A :

Index

Page cache (unsafe accesses, typical)

ISMM 2023 5

Index is typically placed in the page cache

e Indices are archived on disks/SSDs
e Readindex to DRAM to serve queries
e |namanaged(Java)runtime, there are two options

{0} {o}

Heap |1 0S Page Cache | Heap
Search : e Search .
Objects A ! Objects

Page cache (unsafe accesses, typical) Managed heap (GC cost, avoided today)

ISMM 2023 6

Behaviour of query evaluation

4)

User query Term dictionary Posting list Documents about
"Drop bear" lookups traversal "drop bears"

\ 4

Dictionary lookup is fast

Posting traversal is slow (especially for popular queries)
Postings traversal: sequential access pattern

Posting lists are variable-sized (depends on term frequency)

ISMM 2023 7

Compression saves storage space but increases query
latency

4 -\

User query Get compressed Merge both lists, Documents about
"Drop bear" ' posting lists score and rank : "drop bears"

Decompress

lookups posting lists

K "Drop", "bear"

e (Compress searchindices to save space
e [ecompress“on demand”
e [Decompressingin-memory postings incurs a cost!

ISMM 2023 8

Term dictionary ‘7

/

Let's use an uncompressed search index

4 —)

Merge both lists, ' Documents about
score and rank 4 "drop bears"

User query

"Drop bear" Get posting lists

Term dictionary
lookups

\ "Drop", "bear"

e Potential speed-up?
e Pressure on memory?

ISMM 2023 9

Baseline and proposed systems using

Baseline: Lucene Postings Proposed: Direct Postings
Format on DRAM (LPF-DRAM) Format on DRAM (DPF-DRAM)
............. > e Use Apache Lucene
.................................. (dava SearCh engine
library)
S — e Use existing code
Heap hOS Page Cache Heap from the Lucene
gﬁfggtg Compressed Index gﬁ?ggtg Uncompressed Index project
A $ ________________
' Compressed
[Index

ISMM 2023 10

Search is 37% faster over an uncompressed index

.
N

Remove
decompression
from query
evaluation!

9.8x
the memory
capacity

Average Query Latency (Normalised
to LPF-DRAM)
o © o o
o N = o)} [02] =
~N
o
a
o
g
(<)}
~
[y
< ™
o
N
3 B
o
N
s -
w
2 -~
-

e [Dataisnormalised
e Mismatch between compute power and memory bandwidth exists
e (Capacity can only come from scalable memory

ISMM 2023

Query :
evaluation ||
is
37% faster!

We need
9.8x

the memory

capacity

Dealing with limited memory capacity

e Non-Volatile Memory (NVM)

o Most promising complement to DRAM to build a large physical
address space

o Intel Optane persistent memory (discontinued but technology still
promising)

e Other rapidly evolving options (promising but not focus of this work)
e Fastlocal storage (NVMe SSDs)

e Remote disaggregated memory

ISMM 2023 12

Non-volatile Main Memory (NVM)

e [arge capacity to complement DRAM
e Accessible onthe (NV)DIMM interface
o Asa persistent storage device

o Asextension to DRAM

e (apacities/DIMM can scale up to many times DRAM DIMMs if technology
follows the DRAM/SSD roadmap

Syscall = copy to page cache =
access

Load-store
access

ISMM 2023

Non-volatile Main Memory (NVM)

e Large capacity to complement DRAM Microbenchmarks:
e Accessible on the (NV)DIMM interface 2-3x slower reads

o Asa persistent storage device
o Asextension to DRAM

e (apacities/DIMM can scale up to many times DRAM DIMMs if technology
follows the DRAM/SSD roadmap

NVM =~ |

|.— DRAM

Syscall = copy to page cache =
access

Load-store
access

ISMM 2023

Can we place an
uncompressed index on
NVM and gain a similar

speedup over a compressed
iIndex in DRAM?

ISMM 2023 15

Design space

NVM

SSD

DRAM

ISMM 2023

LPF-DRAM DPF-DRAM
........... b, L
Heap 0s Page Cache ! Heap
Search Search
Objects Compressed Index : Objects Uncompressed Index
bt 1@&
Compreséed
Index
LPF-NVM DPF-NVM
< b,
NVM File System Heap Heap
Search Search
Compressed Index Objects Objects Uncompressed Index

Design space / LPF-DRAM DPF-DRAM \

W1 b

NVM
, i,
. Heap | ' OSPage Cache | H

eap] age Cache eap
—_— SSD D Compressed Index Scacc] Uncompressed Index
Objects P ! Objects P

() e /N

DRAM :
| S—

\ Compressed /
Index

e | PF-DRAMand DPF-DRAM TPE-NVM DPF-NVM

same as before.

NVM File System Heap Heap
Search Search ‘
’ Compressed Index Objects Objects | Uncompressed Index ‘

ISMM 2023 17

LPF-DRAM DPF-DRAM

Design space

NVM
Heap " 0s Page Cache | Heap
— SSD Search ’ . Search
Objects : pressed Index Objects Uncompressed Index
DRAM
CompressW
. Index |
° -~ . —
LPF-DRAM and DPF-DRAM LPE-NVM A DPE-NVM
same as before.
e | PF-NVM placesindexon -
NVM file system, no OS
page cache. et R
NVM File System Heap Heap
\ Compressed Index ggfggg cs)sﬁ;g; Uncompressed Index ’
— A W

ISMM 2023 18

LPF-DRAM DPF-DRAM

Design space

NVM
B Heap "1 08 Page Cache | ; Heap
- J SSD Search ’ . : Search
Objects | ! pressed Index | Objects ,, Uncompressed Index ‘
DRAM :
CompressW
. Index |
e | PF-DRAMand DPF-DRAM LPE-NVM ~ SPE-NVM)
same as before
e | PF-NVM placesindexon - —

DAX NVM file system(no OS
page cache) L4 'y

e DPF-NVM mmap Java heap || /e ssen s:?:h
tO N V M Compressed Index

Objects

Heap
cs)gﬁ;g; | Uncompressed Index ’
-—
ISMM 2023 19

Hybrid DRAM-NVM setup

DPF-NVM
b,
Heap
Search
Objects Uncompressed Index

e [DPF-NVM places search objects on NVM (unnecessary slowdown)

ISMM 2023 20

Hybrid DRAM-NVM setup

DPF-NVM DPF-HYB

Heap
Search N ' SSEL Uncompressed Index
Objects Uncompressed Index Objects
Young Gen Heap Old Gen Heap

DPF-NVM places search objects in NVM (unnecessary slowdown)
DPF-HYB: place young generation in DRAM

Ensure index is moved to old gen during setup

Sensitivity analysis of young generation size

Maximal DRAM use = 2GB

ISMM 2023 21

NVM only 2% slower than DRAM for compressed (LPF) index

m [PF-DRAM m L PF-NVM m DPF-DRAM
m DPF-NVM ®m DPF-HYB:9M m DPF-HYB:36M
DPF-HYB:143M DPF-HYB:572M DPF-HYB:2288M

8 1.2
b

Q
N
= 1 = 2% slower

=

2 fr 0.8

22 0.6

Py

g @)

= 0.4

@4

S

< 0.2

o

<

0

ISMM 2023

Uncompressed index (DPF) 37% faster than compressed
(LPF)

m [PF-DRAM m [PF-NVM ® DPF-DRAM
® DPF-NVM m DPF-HYB:9M m DPF-HYB:36M
DPF-HYB:143M DPF-HYB:572M DPF-HYB:2288M

1.2

0.8 37% faster
0.6
0.4
0.2

[am—

Average Query Latency Normalized to
DRAM-LPF

)

ISMM 2023

NVM only 10% slower than DRAM for uncompressed (DPF) index

m [PF-DRAM m [PF-NVM ® DPF-DRAM
® DPF-NVM m DPF-HYB:9M m DPF-HYB:36M
DPF-HYB:143M DPF-HYB:572M DPF-HYB:2288M

1.2

1
0.8
0.6
0.4
0.2

0

10:/0 slower

Average Query Latency Normalized to
DRAM-LPF

ISMM 2023

NVM only 10% slower than DRAM for uncompressed (DPF) index

m LPF-DRAM m LPF-NVM m DPF-DRAM
= DPE-NVM m DPF-HYB:9M m DPE-HYB:36M
DPE-HYB: 143M DPF-HYB:572M DPE-HYB:2288M

2 1.2
=
Q
N
= 1
£
5 °
22 0.6
35
e
= 0.4
&
S0
< 0.2
4
3~

0

ISMM 2023

Hybrid setups = DPF-DRAM (fastest system tested)

m LPF-DRAM ®m LPF-NVM ® DPF-DRAM
m DPF-NVM m DPF-HYB:9M m DPF-HYB:36M
DPF-HYB:143M DPF-HYB:572M DPF-HYB:2288M

2 1.2
B
N
= 1 Bigger young gen on
g DRAM = faster
Q

Z 0.8

23

22 06 I
=

g A

= 0.4

g

&

S 0.2

>

<

o

ISMM 2023

Surprising results!

e |PF-NVMonly 2% slower than LPF-DRAM
e DPF-NVMonly 10% slower than DPF-DRAM
e DPF-NVM30% faster than LPF-DRAM (SoA)

But we know NVM is 2-3x slower

ISMM 2023 27

Surprising results!

e |PF-NVMonly 2% slower than LPF-DRAM
e DPF-NVMonly 10% slower than DPF-DRAM
e DPF-NVM30% faster than LPF-DRAM (SoA)

But we know NVM is 2-3x slower

Confounding factors?

ISMM 2023

Q0

—
b

CONFOUNDING
FACTORS

Surprising results!

e |PF-NVMonly 2% slower than LPF-DRAM
e DPF-NVMonly 10% slower than DPF-DRAM
e DPF-NVM30% faster than LPF-DRAM (SoA)

But we know NVM is 2-3x slower

Confounding factors?

e (GC overhead?
e (Other CPU hardware factors?

ISMM 2023

Q0

—"
b

CONFOUNDING
FACTORS

Is GC a confounding factor?
e DPF exhibits negligible GC cost

6.0% o
m L PF-DRAM O Onoly allocationis per ql{ery
o 5.0% : objects that are short-lived
c.z 4.0% A and die in nursery
§3-0% o 0ld gen contains immutable
E 2.0% index With primitive arrays(no
= scanning necessary)
1.0% '. I
0.0% -. o Today: Big data apps (try to)
IT 2T 4T 8T 12T 24T 48T avoid high GC cost by using

primitive arrays

GC is not a confounding factor

ISMM 2023 50

Intel’s top down approach to performance analysis

—— Bad | B—— e [LP machinery makes it hard to
Specul Retirin ackend Boun i °
Bound i g pinpoint bottlenecks
R | B g e Need asystematic
elc S 0|5 E
Band- 5o ¢ BASE § BC°'ed it methodology to rule out events
5|2 s .

- ' - e |[fanissue slot was not utilized
a2l 2l £y g oewon 2TTEY e ina cycle, who is to blame?
2ol 2|83 5 |S 5| Port = Memo .
35|50 'g % a |© 8 Utili(;atsgon £ ; ; ; Bouncrly O Memory response time
“|=| 8 == @l o Mis-speculation

\
—] 1. = o Qverwhelmed decoder
5 5 RIS s 3= & .
5|8 RERE 85 s o Lack of physical reg.
m g s |

ISMM 2023 31

High latency of NVM is not exposed in query execution

Memory Bound ® Core Bound m® Retiring ®Frontend Bound © Bad Speculation

1.2
= I
gz 0.8
=~
s~ 04
E
5 0.2 / /
. % % _ _
| LPF-DRAM LPE-NVM DPF-DRAM DPF-NVM |

ISMM 2023 32

CPU wastes 2-3x more time waiting for NVM than DRAM

m [PF-DRAM m LPF-NVM m DPF-DRAM m DPF-NVM
¥ ¥ e Both LPF and DPF show

0

. 20% 2-3x higher cycles
o
2 N stalled on NVM than
1)) 0
E 16% A DRAM

12%
= & 2-3x
(]
= >
S5 8%
wn O
9
> 4
U 0

o =1 |
1T 48T

ISMM 2023 33

CPU wastes 2-3x more time waiting for NVM than DRAM

m [PF-DRAM m LPF-NVM m DPF-DRAM m DPF-NVM
¥ ¥ e Both LPF and DPF show

0
. 20% 2-3x higher cycles
o
i» - - stalled on NVM than
o) 0
E _ 16% A DRAM
b=)
= > 12% -1 - e Multi-core as well
. § 2-3x
=
S5 8%
wn O -3X
9
> 4y
U 0

[
8T

2
0%
IT 4

ISMM 2023 34

Cycles stalled on NVM is low

m [PF-DRAM m LPF-NVM m DPF-DRAM m DPF-NVM
¥ ¥ e Both LPF and DPF show

209)
» o 17% max 2-3x higher cycles
2 ., == e A stalled on NVM than
2 16% DRAM
'§ § e Multi-core as well
~z 12%
(D]
= p=
S5 8%
v O
9
> 4
U 0

0% -II -l.
IT 48T

ISMM 2023 35

Do results scale to larger indices?

e Build large indices
using open web crawl Crawl

data
e Fromnowon:

show results for
DPF-HYB (2288MB)

ISMM 2023 56

Findings are applicable to (very) large index sizes

1.4 mLPF-DRAM m LPF-NVM = DPF-DRAM = DPF-HYB P MiSSing data: memory
1.2

1 exhausted.
. - I'm I

0.6

0.4 ‘

0.2
0

760 MB 3.7GB 69GB 14GB 35GB 87GB
Index Size (When Compressed)

Average Query Latency
Normalized to LPF-DRAM
()
o0

ISMM 2023 37

Findings are applicable to (very) large index sizes

%2 1.4 mLPF-DRAM m LPF-NVM m DPF-DRAM = DPF-HYB MiSSing data: memory
§§ 1.2 exhausted.
Sg ! 30/ better DPF-Hybrid consistently
53 08 better than LPF-DRAM
Coy_g 0.6 (SOA)
o.x 04
g g 02

Z 0

760 MB 3.7GB 69GB 14GB 35GB 87GB
Index Size (When Compressed)

ISMM 2023 38

Findings are applicable to (very) large index sizes

1.4 mLPF-DRAM m LPF-NVM = DPF-DRAM = DPF-HYB P MiSSing data: memory

%2 o

§§ -2 - exhausted.

Sg ! i e DPF-Hybrid consistently
=3 038] i

22 0e I better than LPF-DRAM
C‘é,’zg 0'4 = (SOA)

55, e LPF-NVM modestly

zg ™ slower than LPF-DRAM.

760 MB 3.7GB 69GB 14GB 35GB 87GB
Index Size (When Compressed)

ISMM 2023 39

Key insight: prefetchers more effective for larger indices

ISMM 2023

5
\ ——LPF-DRAM
4 N\ ——LPF-NVM
. \, —=—DPF-DRAM
S 3 N\ «~DPF-HYB
< .
= 2
| NS
R
0
500 MB 5.00 GB 50.00 GB

Index Size (log scale)

40

Key insight: NVM latency hidden by sequential access
pattern and prefetching

60.0% ——LPF-DRAM
_ . —«—LPF-NVM
2 e —=— DPF-DRAM
£ 40.0% ° o DPE-HYB
==
32 30.0% .
o)
= = % .
gg 20.0%
£7100% =2 —
S o I R i X
¥ 0.0% N

500 MB 5.00 GB 50.00 GB
Index Size (log scale)

ISMM 2023 41

Key takeaways

e Memory and storage is evolving
o Space-time tradeoffs are changing

e Compression + off-heap is standard today for big data apps
o Critical (but not all)data can have a new home in
uncompressed format

e Future Work
o Hardware: NVMe and remote memory
o Software: Other frameworks + specialized Java heap

ISMM 2023 42

