
Analyzing and Improving the Scalability of
In-Memory Indices for Managed Search Engines

ISMM 2023

Aditya (Adi) Chilukuri
aditya.chilukuri@anu.edu.au

Shoaib Akram
shoaib.akram@anu.edu.au

● Serve a large and impatient user base

● Tail latency impacts profit & loss

● Goal: High throughput and low response time

2

Full text search is ubiquitous

ISMM 2023

3

Inverted indices power search

ISMM 2023

4

Inverted indices are outgrowing memory capacity

ISMM 2023

● Index is placed in DRAM (fastest storage resource available today)
● As datasets grow, indices grow proportionally

○ Problem: DRAM capacity is limited
○ Problem: Scalable devices (SSDs) have high latency

5

Index is typically placed in the page cache

ISMM 2023

● Indices are archived on disks/SSDs
● Read index to DRAM to serve queries
● In a managed (Java) runtime, there are two options

Page cache (unsafe accesses, typical)

6ISMM 2023

● Indices are archived on disks/SSDs
● Read index to DRAM to serve queries
● In a managed (Java) runtime, there are two options

Page cache (unsafe accesses, typical) Managed heap (GC cost, avoided today)

Index is typically placed in the page cache

7

Behaviour of query evaluation

ISMM 2023

● Dictionary lookup is fast
● Posting traversal is slow (especially for popular queries)
● Postings traversal: sequential access pattern
● Posting lists are variable-sized (depends on term frequency)

8

Compression saves storage space but increases query
latency

ISMM 2023

● Compress search indices to save space
● Decompress “on demand”
● Decompressing in-memory postings incurs a cost!

9

Let’s use an uncompressed search index

ISMM 2023

● Potential speed-up?
● Pressure on memory?

10

Baseline and proposed systems using DRAM

ISMM 2023

Baseline: Lucene Postings
Format on DRAM (LPF-DRAM)

● Use Apache Lucene
(Java search engine
library)

● Use existing code
from the Lucene
project

Proposed: Direct Postings
Format on DRAM (DPF-DRAM)

● Data is normalised
● Mismatch between compute power and memory bandwidth exists
● Capacity can only come from scalable memory

11

Search is 37% faster over an uncompressed index

ISMM 2023

● Non-Volatile Memory (NVM)
○ Most promising complement to DRAM to build a large physical

address space
○ Intel Optane persistent memory (discontinued but technology still

promising)

● Other rapidly evolving options (promising but not focus of this work)

● Fast local storage (NVMe SSDs)

● Remote disaggregated memory

12

Dealing with limited memory capacity

ISMM 2023

13

Non-volatile Main Memory (NVM)

ISMM 2023

Load-store
access

Syscall ⇒ copy to page cache ⇒
access

NVM DRAM

● Large capacity to complement DRAM
● Accessible on the (NV)DIMM interface

○ As a persistent storage device
○ As extension to DRAM

● Capacities/DIMM can scale up to many times DRAM DIMMs if technology
follows the DRAM/SSD roadmap

● Large capacity to complement DRAM
● Accessible on the (NV)DIMM interface

○ As a persistent storage device
○ As extension to DRAM

● Capacities/DIMM can scale up to many times DRAM DIMMs if technology
follows the DRAM/SSD roadmap

14

Non-volatile Main Memory (NVM)

ISMM 2023

Load-store
access

Syscall ⇒ copy to page cache ⇒
access

NVM DRAM

Microbenchmarks:
2-3x slower reads

15ISMM 2023

Can we place an
uncompressed index on
NVM and gain a similar

speedup over a compressed
index in DRAM?

16

Design space

ISMM 2023

LPF-DRAM DPF-DRAM

LPF-NVM DPF-NVM

17

Design space

ISMM 2023

LPF-DRAM DPF-DRAM

LPF-NVM DPF-NVM● LPF-DRAM and DPF-DRAM
same as before.

18

Design space

ISMM 2023

LPF-DRAM DPF-DRAM

LPF-NVM DPF-NVM● LPF-DRAM and DPF-DRAM
same as before.

● LPF-NVM places index on
NVM file system, no OS
page cache.

19

Design space

ISMM 2023

LPF-DRAM DPF-DRAM

LPF-NVM DPF-NVM● LPF-DRAM and DPF-DRAM
same as before

● LPF-NVM places index on
DAX NVM file system (no OS
page cache)

● DPF-NVM mmap Java heap
to NVM

20

Hybrid DRAM-NVM setup

ISMM 2023

DPF-NVM

● DPF-NVM places search objects on NVM (unnecessary slowdown)

21

Hybrid DRAM-NVM setup

ISMM 2023

DPF-NVM DPF-HYB

● DPF-NVM places search objects in NVM (unnecessary slowdown)
● DPF-HYB: place young generation in DRAM
● Ensure index is moved to old gen during setup
● Sensitivity analysis of young generation size
● Maximal DRAM use ≈ 2GB

22

NVM only 2% slower than DRAM for compressed (LPF) index

ISMM 2023

2% slower

23

Uncompressed index (DPF) 37% faster than compressed
(LPF)

ISMM 2023

37% faster

24

NVM only 10% slower than DRAM for uncompressed (DPF) index

ISMM 2023

10% slower

25

NVM only 10% slower than DRAM for uncompressed (DPF) index

ISMM 2023

30% faster

26

Hybrid setups ≈ DPF-DRAM (fastest system tested)

ISMM 2023

Bigger young gen on
DRAM ⇒ faster

● LPF-NVM only 2% slower than LPF-DRAM
● DPF-NVM only 10% slower than DPF-DRAM
● DPF-NVM 30% faster than LPF-DRAM (SoA)

But we know NVM is 2-3x slower

27

Surprising results!

ISMM 2023

● LPF-NVM only 2% slower than LPF-DRAM
● DPF-NVM only 10% slower than DPF-DRAM
● DPF-NVM 30% faster than LPF-DRAM (SoA)

But we know NVM is 2-3x slower

28

Surprising results!

ISMM 2023

Confounding factors?

● LPF-NVM only 2% slower than LPF-DRAM
● DPF-NVM only 10% slower than DPF-DRAM
● DPF-NVM 30% faster than LPF-DRAM (SoA)

But we know NVM is 2-3x slower

29

Surprising results!

ISMM 2023

Confounding factors?
● GC overhead?
● Other CPU hardware factors?

30

Is GC a confounding factor?

ISMM 2023

GC is not a confounding factor

● DPF exhibits negligible GC cost
○ Only allocation is per-query

objects that are short-lived
and die in nursery

○ Old gen contains immutable
index with primitive arrays (no
scanning necessary)

○ Today: Big data apps (try to)
avoid high GC cost by using
primitive arrays

Only 5%

31

Intel’s top down approach to performance analysis

ISMM 2023

● ILP machinery makes it hard to
pinpoint bottlenecks

● Need a systematic
methodology to rule out events

● If an issue slot was not utilized
in a cycle, who is to blame?
○ Memory response time
○ Mis-speculation
○ Overwhelmed decoder
○ Lack of physical reg.

32

High latency of NVM is not exposed in query execution

ISMM 2023

33

CPU wastes 2-3x more time waiting for NVM than DRAM

ISMM 2023

2-3x

2-3x

● Both LPF and DPF show
2-3x higher cycles
stalled on NVM than
DRAM

34

CPU wastes 2-3x more time waiting for NVM than DRAM

ISMM 2023

2-3x

2-3x

2-3x

2-3x

● Both LPF and DPF show
2-3x higher cycles
stalled on NVM than
DRAM

● Multi-core as well

35

Cycles stalled on NVM is low

ISMM 2023

● Both LPF and DPF show
2-3x higher cycles
stalled on NVM than
DRAM

● Multi-core as well

17% max

36

Do results scale to larger indices?

ISMM 2023

● Build large indices
using open web crawl
data

● From now on:
show results for
DPF-HYB (2288MB)

37

Findings are applicable to (very) large index sizes

ISMM 2023

● Missing data: memory
exhausted.

38

Findings are applicable to (very) large index sizes

ISMM 2023

● Missing data: memory
exhausted.

● DPF-Hybrid consistently
better than LPF-DRAM
(SoA)

30% better

39

Findings are applicable to (very) large index sizes

ISMM 2023

● Missing data: memory
exhausted.

● DPF-Hybrid consistently
better than LPF-DRAM
(SoA)

● LPF-NVM modestly
slower than LPF-DRAM.

10% slower

40

Key insight: prefetchers more effective for larger indices

ISMM 2023

41

Key insight: NVM latency hidden by sequential access
pattern and prefetching

ISMM 2023

42

Key takeaways

ISMM 2023

● Memory and storage is evolving
○ Space-time tradeoffs are changing

● Compression + off-heap is standard today for big data apps
○ Critical (but not all) data can have a new home in

uncompressed format

● Future Work
○ Hardware: NVMe and remote memory
○ Software: Other frameworks + specialized Java heap

