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● Serve a large and impatient user base

● Tail latency impacts profit & loss

● Goal: High throughput and low response time

2

Full text search is ubiquitous  
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Inverted indices power search
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Inverted indices are outgrowing memory capacity 
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● Index is placed in DRAM (fastest storage resource available today) 
● As datasets grow, indices grow proportionally

○ Problem: DRAM capacity is limited
○ Problem: Scalable devices (SSDs) have high latency
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Index is typically placed in the page cache

ISMM 2023

● Indices are archived on disks/SSDs
● Read index to DRAM to serve queries
● In a managed (Java) runtime, there are two options

Page cache (unsafe accesses, typical)
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● Indices are archived on disks/SSDs
● Read index to DRAM to serve queries
● In a managed (Java) runtime, there are two options

Page cache (unsafe accesses, typical) Managed heap (GC cost, avoided today)

Index is typically placed in the page cache
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Behaviour of query evaluation 

ISMM 2023

● Dictionary lookup is fast
● Posting traversal is slow (especially for popular queries)
● Postings traversal: sequential access pattern
● Posting lists are variable-sized (depends on term frequency)
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Compression saves storage space but increases query 
latency
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● Compress search indices to save space
● Decompress “on demand” 
● Decompressing in-memory postings incurs a cost!
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Let’s use an uncompressed search index
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● Potential speed-up?
● Pressure on memory?
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Baseline and proposed systems using DRAM
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Baseline: Lucene Postings 
Format on DRAM (LPF-DRAM)

● Use Apache Lucene 
(Java search engine 
library)

● Use existing code 
from the Lucene 
project

Proposed: Direct Postings 
Format on DRAM (DPF-DRAM)



● Data is normalised
● Mismatch between compute power and memory bandwidth exists
● Capacity can only come from scalable memory
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Search is 37% faster over an uncompressed index

ISMM 2023



● Non-Volatile Memory (NVM)
○ Most promising complement to DRAM to build a large physical 

address space
○ Intel Optane persistent memory (discontinued but technology still 

promising)

● Other rapidly evolving options (promising but not focus of this work)

● Fast local storage (NVMe SSDs)

● Remote disaggregated memory
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Dealing with limited memory capacity
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Non-volatile Main Memory (NVM)
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Load-store 
access

Syscall ⇒ copy to page cache ⇒ 
access

NVM DRAM

● Large capacity to complement DRAM
● Accessible on the (NV)DIMM interface

○ As a persistent storage device 
○ As extension to DRAM 

● Capacities/DIMM can scale up to many times DRAM DIMMs if technology 
follows the DRAM/SSD roadmap
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Non-volatile Main Memory (NVM)
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Load-store 
access

Syscall ⇒ copy to page cache ⇒ 
access

NVM DRAM

Microbenchmarks: 
2-3x slower reads
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Can we place an 
uncompressed index on 
NVM and gain a similar 

speedup over a compressed 
index in DRAM?
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Design space 
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LPF-DRAM DPF-DRAM

LPF-NVM DPF-NVM
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18

Design space 
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LPF-DRAM DPF-DRAM

LPF-NVM DPF-NVM● LPF-DRAM and DPF-DRAM 
same as before.

● LPF-NVM places index on 
NVM file system, no OS 
page cache.
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Design space 
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LPF-DRAM DPF-DRAM

LPF-NVM DPF-NVM● LPF-DRAM and DPF-DRAM 
same as before

● LPF-NVM places index on 
DAX NVM file system (no OS 
page cache)

● DPF-NVM mmap Java heap 
to NVM
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Hybrid DRAM-NVM setup
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DPF-NVM

● DPF-NVM places search objects on NVM (unnecessary slowdown)
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Hybrid DRAM-NVM setup
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DPF-NVM DPF-HYB

● DPF-NVM places search objects in NVM (unnecessary slowdown)
● DPF-HYB: place young generation in DRAM
● Ensure index is moved to old gen during setup
● Sensitivity analysis of young generation size
● Maximal DRAM use ≈ 2GB
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NVM only 2% slower than DRAM for compressed (LPF) index

ISMM 2023

2% slower



23

Uncompressed index (DPF) 37% faster than compressed 
(LPF)
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37% faster



24

NVM only 10% slower than DRAM for uncompressed (DPF) index
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10% slower
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NVM only 10% slower than DRAM for uncompressed (DPF) index
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30% faster



26

Hybrid setups ≈ DPF-DRAM (fastest system tested)
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Bigger young gen on 
DRAM ⇒ faster



● LPF-NVM only 2% slower than LPF-DRAM
● DPF-NVM only 10% slower than DPF-DRAM
● DPF-NVM 30% faster than LPF-DRAM (SoA)

But we know NVM is 2-3x slower
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● LPF-NVM only 2% slower than LPF-DRAM
● DPF-NVM only 10% slower than DPF-DRAM
● DPF-NVM 30% faster than LPF-DRAM (SoA)

But we know NVM is 2-3x slower
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Surprising results!

ISMM 2023

Confounding factors?
● GC overhead?
● Other CPU hardware factors?
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Is GC a confounding factor?
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GC is not a confounding factor

● DPF exhibits negligible GC cost
○ Only allocation is per-query 

objects that are short-lived 
and die in nursery

○ Old gen contains immutable 
index with primitive arrays (no 
scanning necessary)

○ Today: Big data apps (try to) 
avoid high GC cost by using 
primitive arrays

Only 5%
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Intel’s top down approach to performance analysis
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● ILP machinery makes it hard to 
pinpoint bottlenecks

● Need a systematic 
methodology to rule out events

● If an issue slot was not utilized 
in a cycle, who is to blame?
○ Memory response time
○ Mis-speculation
○ Overwhelmed decoder
○ Lack of physical reg.
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High latency of NVM is not exposed in query execution
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CPU wastes 2-3x more time waiting for NVM than DRAM
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2-3x

2-3x

● Both LPF and DPF show 
2-3x higher cycles 
stalled on NVM than 
DRAM
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Cycles stalled on NVM is low
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● Both LPF and DPF show 
2-3x higher cycles 
stalled on NVM than 
DRAM

● Multi-core as well

17% max
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Do results scale to larger indices?
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● Build large indices 
using open web crawl 
data

● From now on: 
show results for 
DPF-HYB (2288MB)



37

Findings are applicable to (very) large index sizes
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● Missing data: memory 
exhausted.
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(SoA)

30% better
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Findings are applicable to (very) large index sizes

ISMM 2023

● Missing data: memory 
exhausted.

● DPF-Hybrid consistently 
better than LPF-DRAM 
(SoA)

● LPF-NVM modestly 
slower than LPF-DRAM.

10% slower
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Key insight: prefetchers more effective for larger indices
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Key insight: NVM latency hidden by sequential access 
pattern and prefetching
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Key takeaways
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● Memory and storage is evolving 
○ Space-time tradeoffs are changing

● Compression + off-heap is standard today for big data apps
○ Critical (but not all) data can have a new home in 

uncompressed format

● Future Work
○ Hardware: NVMe and remote memory
○ Software: Other frameworks + specialized Java heap


