
Emulating	and	Evaluating		
Hybrid	Memory	for	Managed	
Languages	on	NUMA	Hardware	

Shoaib	Akram	(Ghent),	Jennifer	B.	Sartor	(Ghent	and	VUB),	
Kathryn	S.	Mckinley	(Google),	and	Lieven	Eeckhout	(Ghent)	

Shoaib.Akram@UGent.be	

2	

Hybrid	DRAM-PCM	memory	

Speed		
Endurance	

Capacity	

DRAM	 PCM	

J	More	GB/$	with	Phase	Change	Memory	
L	Higher	latency	and	low	endurance	

3	

Managing	DRAM-PCM	memory	
Mitigate	PCM	wear-out		
Bridge	the	DRAM-PCM	latency	gap		
		

Speed		
Endurance	

Capacity	

DRAM	 PCM	

4	

Operating	System		
			Coarse-grained	

							pages	 KB

Garbage	collection	
				Proactive	J		
				Fine-grained		
					objects	

KB KB KB

Write-Rationing		
Garbage	Collection		
for	Hybrid	Memories		

Managing	DRAM-PCM	memory	

GC	manages	DRAM-PCM	hybrid	better	than	OS	

5	

Study	parameter	sensitivity		

Gain	insight		
	What	triggered	the	writeback	to	memory?	

Slow	process		
	Page	Rank	over	twitter	à	hours	versus	months!	

Pros/cons	of	simulating	DRAM-PCM	

Incomplete	model		
	Missing	OS	or	proprietary	hardware	features	

6	

Multi-socket	NUMA	for	
emulating	DRAM-PCM	hybrid	
memory	

Emulation	for	hybrid	memory	

Fast	evaluation	of	emerging	workloads	
	Several	co-running	BIG	graph	analytic	
	applications	written	in	Java	

7	

Focus	is	to	model	the	latency	of	PCM	

Focus	is	to	evaluate	explicit	memory	
management	in	C/C++	

Existing	emulation	platforms	

8	

Contribution:	Emulation	platform	
DRAM-PCM	emulation	for	managed	
applications			

Comparison	with	Sniper	using		
write-rationing	garbage	collectors	

9	

Contribution:	Analysis	of	PCM	writes	
PCM	writes	and	write	rates	

C++	versus	Java	
Impact	of	multiprogramming	
Classic	versus	emerging	applications	

Is	PCM	practical	as	main	memory?	

10	

Outline	

Heap	management	
Kingsguard	collectors	
Comparison	with	simulation	
Write	analysis		

Outline	

Heap	management	
Kingsguard	collectors	
Comparison	with	simulation	
Write	analysis		

10	

DRAM	heap	management		
Heap	Tracker		

HEAP_BEGIN	 HEAP_END	
Heap	Organization	

nursery	 mature	

11	

available	 occupied	

DRAM	heap	management		
Heap	Tracker		

HEAP_BEGIN	 HEAP_END	
Heap	Organization	

nursery	 mature	

Physical	Memory		

11	

available	 occupied	

DRAM-PCM	heap	management		
JVM	uses	mbind()	to	inform	the	OS	to	map		
a	space	in	DRAM	or	PCM	

12	

Anything	else	the	JVM	should	do? 		

Next:	Sanity	check	with	a	DRAM	nursery		
and	PCM	mature	

13	

DRAM-PCM	heap	management		
Heap	Tracker		

Heap	Organization	
nursery	 mature	

Physical	Memory		

HEAP_BEGIN	 HEAP_END	PCM_BEGIN	

available	 occupied	

13	

DRAM-PCM	heap	management		
Heap	Tracker		

Heap	Organization	
nursery	 mature	

Physical	Memory		

HEAP_BEGIN	 HEAP_END	PCM_BEGIN	

available	 occupied	

13	

DRAM-PCM	heap	management		
Heap	Tracker		

Heap	Organization	
nursery	 mature	

Physical	Memory		

HEAP_BEGIN	 HEAP_END	PCM_BEGIN	

available	 occupied	

✗	

DRAM-PCM	heap	management		
Options	

✔	

14	

	Map/unmap	pages	in	physical	memory	
	whenever	space	grows/shrinks	
	Two	free	lists	

15	

DRAM-PCM	heap	management		
Heap	Tracker		

Heap	Organization	
nursery	 mature	

Physical	Memory		

DRAM_BEGIN	 PCM_END	PCM_BEGIN	

available	 occupied	

16	

Outline	

Heap	management	
Kingsguard	collectors	
Comparison	with	simulation	
Write	analysis		

17	

nursery	 mature	

Kingsguard-Nursery	(KG-N)	
Write-rationing	GC:	concentrate	writes	in	DRAM	

70%	
of	writes	

22%	
to	2%	of	objects	

18	

nursery	 mature	

Kingsguard-Writers	(KG-W)	

mature	

KG-W	monitors	writes	in	a	DRAM	observer	space	
Trades	off	performance	for	better	endurance	

19	

CPU	 CPU	
8	cores	
SMT	✔		
20MB			

Emulation	setup	

Jikes	RVM	
App/Monitor	

OS	

Monitor:	Intel	pcm-memory.x
to	get	per-socket	write	rate	

✗	

20	

Emulation	versus	simulation	
PCM	write	reduction	with	KG-N	and	KG-W		
versus	PCM-Only				

Execution	time	increase	with	KG-W	versus	KG-N	

No	OS	in	simulation	
Faithfully	model	emulator				

KG-N			

KG-W		

Simulation			 Emulation			

4% 8%
62% 64%

21	

Reduction	in	PCM	writes	with	KG-N	
and	KG-W	versus	PCM-Only	
Kingsguard	collectors	limit	PCM	writes	
KG-W	much	better	than	KG-N	

22	

Increase	in	execution	time	with		
KG-W	versus	KG-N	

Simulation			 Emulation			

+7% +10%KG-W			

KG-W	is	slower	than	KG-N	because	it	monitors	
writes	to	objects	

Graph	workload	evaluation	

23	

Page	Rank	and	Connected	Components	
	LiveJournal	social	network				

ALS	Factorization	
	Netflix	challenge		

GraphChi:	Analyze	BIG	graphs	on	a	single	machine	
	Both	Java	and	C++	implementations		

Graph	apps	write	more	than	DaCapo	

24	

0	

2	

4	

6	

8	

N
or
m
al
ize

d	
PC

M
	

w
rit
e	
ra
te
	

Page
Rank

Connected	
Components		

ALS	
Factorization	

PCM-Only				

Billions	of	vertices	à	Billions	of	objects	

0	

1	

2	

3	

4	

N
or
m
al
ize

d	
	

PC
M
	w
rit
es
		
Java	 KG-N	 KG-W	

Page
Rank

Connected	
Components		

ALS	
Factorization	

25	

Java	writes	more	to	PCM	than	C++	

C++	

Java	writes	more	to	PCM	than	C++	
Reasons	

Higher	allocation	volume	
Copying	between	heap	spaces	
Zeroing	to	provide	memory	safety	

à	

26	

0	

1	

2	

3	

4	

N
or
m
al
ize

d	
	

PC
M
	w
rit
es
		
Java	 KG-N	 KG-W	

27	

Java	writes	more	to	PCM	than	C++	

Allocation		
higher	by		
1.34X	

	1.6X	

	2X	

C++	

Page
Rank

Connected	
Components		

ALS	
Factorization	

Page
Rank

Connected	
Components		

ALS	
Factorization	

28	

Instance	1	

Instance	2	

Instance	2	

Shared Last-Level Cache

0	

4	

8	

1 2 3 4 N
or
m
al
ize

d	
PC

M
	

w
rit
es
	

Degree of multiprogramming

Writes	increase	super-linearly	due	to	
multiprogramming	with	PCM-Only	

29	

Instance	1	

Instance	2	

Instance	2	

Shared Last-Level Cache

0	

4	

8	

1 2 3 4 N
or
m
al
ize

d	
PC

M
	

w
rit
es
	

Degree of multiprogramming

KG-W

Writes	increase	linearly	due	to	
multiprogramming	with	KG-W	

30	

0	

100	

200	

300	

400	
PC

M
	w
rit
e	
ra
te
	

in
	M

B/
s	

PCM-Only	 KG-W	

DaCapo Pjbb GraphChi

PCM-Only	is	not	practical	as	main	
memory	

140 MB/s

31	

Conclusions	
Across	the	stack	emulation	of	
hybrid	memory		

Similar	outcomes	with	different	
evaluation	methods			

More	research	to	make	PCM		
practical	as	main	memory	 140 MB/s

