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Hybrid	DRAM-PCM	memory	

Speed		
Endurance	

Capacity	

DRAM	 PCM	

J	More	GB/$	with	Phase	Change	Memory	
L	Higher	latency	and	low	endurance	
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Managing	DRAM-PCM	memory	
Mitigate	PCM	wear-out		
Bridge	the	DRAM-PCM	latency	gap		
		

Speed		
Endurance	

Capacity	

DRAM	 PCM	
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Operating	System		
			Coarse-grained	

							pages	 KB

Garbage	collection	
				Proactive	J		
				Fine-grained		
					objects	

KB KB KB

Write-Rationing		
Garbage	Collection		
for	Hybrid	Memories		

Managing	DRAM-PCM	memory	

GC	manages	DRAM-PCM	hybrid	better	than	OS	
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Study	parameter	sensitivity		

Gain	insight		
	What	triggered	the	writeback	to	memory?	

Slow	process		
	Page	Rank	over	twitter	à	hours	versus	months!	

Pros/cons	of	simulating	DRAM-PCM	

Incomplete	model		
	Missing	OS	or	proprietary	hardware	features	
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Multi-socket	NUMA	for	
emulating	DRAM-PCM	hybrid	
memory	

Emulation	for	hybrid	memory	

Fast	evaluation	of	emerging	workloads	
	Several	co-running	BIG	graph	analytic	
	applications	written	in	Java	
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Focus	is	to	model	the	latency	of	PCM	

Focus	is	to	evaluate	explicit	memory	
management	in	C/C++	

Existing	emulation	platforms	
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Contribution:	Emulation	platform	
DRAM-PCM	emulation	for	managed	
applications			

Comparison	with	Sniper	using		
write-rationing	garbage	collectors	
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Contribution:	Analysis	of	PCM	writes	
PCM	writes	and	write	rates	

C++	versus	Java	
Impact	of	multiprogramming	
Classic	versus	emerging	applications	

Is	PCM	practical	as	main	memory?	
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Outline	

Heap	management	
Kingsguard	collectors	
Comparison	with	simulation	
Write	analysis		



Outline	

Heap	management	
Kingsguard	collectors	
Comparison	with	simulation	
Write	analysis		
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DRAM	heap	management		
Heap	Tracker		

HEAP_BEGIN	 HEAP_END	
Heap	Organization	

nursery	 mature	

11	

available	 occupied	



DRAM	heap	management		
Heap	Tracker		

HEAP_BEGIN	 HEAP_END	
Heap	Organization	

nursery	 mature	

Physical	Memory		

11	

available	 occupied	



DRAM-PCM	heap	management		
JVM	uses	mbind()	to	inform	the	OS	to	map		
a	space	in	DRAM	or	PCM	

12	

Anything	else	the	JVM	should	do? 		

Next:	Sanity	check	with	a	DRAM	nursery		
and	PCM	mature	
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DRAM-PCM	heap	management		
Heap	Tracker		

Heap	Organization	
nursery	 mature	

Physical	Memory		

HEAP_BEGIN	 HEAP_END	PCM_BEGIN	

available	 occupied	
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DRAM-PCM	heap	management		
Heap	Tracker		

Heap	Organization	
nursery	 mature	

Physical	Memory		

HEAP_BEGIN	 HEAP_END	PCM_BEGIN	

available	 occupied	
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DRAM-PCM	heap	management		
Heap	Tracker		

Heap	Organization	
nursery	 mature	

Physical	Memory		

HEAP_BEGIN	 HEAP_END	PCM_BEGIN	

available	 occupied	

✗	



DRAM-PCM	heap	management		
Options	

✔	
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	Map/unmap	pages	in	physical	memory	
	whenever	space	grows/shrinks	
	Two	free	lists	
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DRAM-PCM	heap	management		
Heap	Tracker		

Heap	Organization	
nursery	 mature	

Physical	Memory		

DRAM_BEGIN	 PCM_END	PCM_BEGIN	

available	 occupied	
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Outline	

Heap	management	
Kingsguard	collectors	
Comparison	with	simulation	
Write	analysis		
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nursery	 mature	

Kingsguard-Nursery	(KG-N)	
Write-rationing	GC:	concentrate	writes	in	DRAM	

70%	
of	writes	

22%	
to	2%	of	objects	
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nursery	 mature	

Kingsguard-Writers	(KG-W)	

mature	

KG-W	monitors	writes	in	a	DRAM	observer	space	
Trades	off	performance	for	better	endurance	
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CPU	 CPU	
8	cores	
SMT	✔		
20MB			

Emulation	setup	

Jikes	RVM	
App/Monitor	

OS	

Monitor:	Intel	pcm-memory.x 
to	get	per-socket	write	rate	

✗	
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Emulation	versus	simulation	
PCM	write	reduction	with	KG-N	and	KG-W		
versus	PCM-Only				

Execution	time	increase	with	KG-W	versus	KG-N	

No	OS	in	simulation	
Faithfully	model	emulator				



KG-N			

KG-W		

Simulation			 Emulation			

4% 8%
62% 64%
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Reduction	in	PCM	writes	with	KG-N	
and	KG-W	versus	PCM-Only	
Kingsguard	collectors	limit	PCM	writes	
KG-W	much	better	than	KG-N	
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Increase	in	execution	time	with		
KG-W	versus	KG-N	

Simulation			 Emulation			

+7% +10%KG-W			

KG-W	is	slower	than	KG-N	because	it	monitors	
writes	to	objects	



Graph	workload	evaluation	
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Page	Rank	and	Connected	Components	
	LiveJournal	social	network				

ALS	Factorization	
	Netflix	challenge		

GraphChi:	Analyze	BIG	graphs	on	a	single	machine	
	Both	Java	and	C++	implementations		



Graph	apps	write	more	than	DaCapo	
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Billions	of	vertices	à	Billions	of	objects	
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Java	writes	more	to	PCM	than	C++	

C++	



Java	writes	more	to	PCM	than	C++	
Reasons	

Higher	allocation	volume	
Copying	between	heap	spaces	
Zeroing	to	provide	memory	safety	

à	
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Java	writes	more	to	PCM	than	C++	

Allocation		
higher	by		
1.34X	

	1.6X	

	2X	

C++	

Page  
Rank 

Connected	
Components		

ALS	
Factorization	

Page  
Rank 

Connected	
Components		

ALS	
Factorization	
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Instance	1	

Instance	2	

Instance	2	

Shared Last-Level Cache 
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Writes	increase	super-linearly	due	to	
multiprogramming	with	PCM-Only	
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PCM-Only	is	not	practical	as	main	
memory	

140 MB/s
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Conclusions	
Across	the	stack	emulation	of	
hybrid	memory		

Similar	outcomes	with	different	
evaluation	methods			

More	research	to	make	PCM		
practical	as	main	memory	 140 MB/s






