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Analytical Modeling
Key features
– Super fast
– Useful complement to simulation
– Quickly explore large design spaces in early design stages

Three types:
– Empirical modeling

• Black-box model, Easy to build, Needs training examples
– Mechanistic modeling à this paper

• White-box model, Insight
– Hybrid modeling

• Parameter fitting of semi-mechanistic model, Needs training
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Prior Work in Mechanistic Modeling

Interval analysis for OOO cores
Michaud [PACT’99], Karkhanis [ISCA’04], Eyerman [TOCS’09]

Microarchitecture-independent model
Van den Steen [ISPASS’15]

Limited to single-core processors
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Prior Work in Multicore Models
Amdahl’s Law: high abstraction

– Hill/Marty [Computer’08]
Hybrid models: 

– Popov [IPDPS’15]: Amdahl’s Law + simulation
Multi-programmed workloads: no inter-thread 
communication nor synchronization

– Jongerius [TC’18]
Machine learning: empirical, black-box model

– Ipek [ASPLOS’06], Lee [MICRO’08]

This work: multicore, multithreaded, mechanistic (white-
box), microarchitecture-independent profile
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Paper Contribution
Microarchitecture-independent mechanistic 
performance model for multithreaded 
workloads on multicore processors

per-thread 
characteristics

inter-thread 
interactions

uarch-indep profile
of multi-threaded app

RPPM

multicore config

performance

one-time cost
super fast: ~sec/min

current limitation:
same number of threads 
in profiling vs. prediction
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Single-Threaded Interval Model

total cycle count

N = dynamic instruction count
Deff = effective dispatch rate; is function of ILP, I-mix, ALU contention

uarch-indep branch predictor model [De Pestel, ISPASS’15]

miss rates predicted using StatStack
[Eklov and Hagersten, ISPASS’10] 

uarch-indep MLP model 
[Van den Steen, CAL’18]
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Naïve Extensions

Apply single-threaded model [Van den Steen, ISPASS’15] to
– Main thread
– Critical thread

Fails to model
– Synchronization
– Coherence effects
– Resource contention

barrier

main
thread

worker threads

avg 45% error

critical thread:
avg 28% error 7



Modeling Multithreaded Performance 
is Fundamentally Difficult

Need super accurate per-thread performance 
prediction 
– Accumulating errors because of synchronization

Need to accurately model 
– Inter-thread synchronization

• Barriers, critical sections, producer/consumer, etc.
– Inter-thread communication

• Cache coherence
– Inter-thread interference

• Shared resources (e.g., LLC)
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Accumulating Random Errors

Predicting single-thread performance

Random errors across short intervals cancel out
Systematic errors (obviously) don’t
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Accumulating Errors (cont’d)

Predicting multithreaded performance b/w barriers

Random errors do not cancel out
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Problem Exacerbates with Thread Count

Synthetic barrier-synchronized loop w/ 1M 
iterations and fixed work per iteration
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RPPM Model

Per-thread characteristics

Synchronization

Shared memory accesses

Profiling

Predict per-thread 
performance per 

synchronization epoch

Predict impact of 
synchronization

Prediction

Van den Steen [ISPASS’15]
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Pin-based; measured per
synchronization epoch



Profiling Synchronization
Intercept library function calls in Pin
– pthread and OpenMP
– Automatic

For example
– Critical sections (pthread)

pthread_mutex_lock
pthread_mutex_unlock

– Barriers (OpenMP)
gomp_team_barrier_wait (gomp_barrier_t)

User-level synchronization: annotate manually
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Condition Variables
Barrier using condition variables:

Similar solution for producer-consumer, semaphores, etc.
Too cumbersome? No!
– 4 Parsec benchmarks: pthread_cond_wait
– facesim: pthread_cond_wait and 
pthread_cond_broadcast 14

function is not always called
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Shared Memory Behavior

Cold misses: first reference
Conflict/capacity misses: StatStack [Eklov ISPASS’10]
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Reuse distance = no. references = 5

Stack distance = no. unique references = 3

Cache miss rate prediction for LRU cache



Shared Memory Behavior cont’d
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larger reuse distance à
possibly negative interference

shorter reuse distance à
positive interference

used for modeling
private L1/L2 caches

used for modeling
shared LLC

if a write à write invalidation
for D (infinite reuse distance)

per-thread
reuse distance

global reuse distance



Prediction
Per-epoch active execution time

Single-threaded model 

• To predict active execution time per 
synchronization epoch

• Miss rates account for interference and 
coherence
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Prediction
Synchronization overhead

Symbolic execution: fastest to slowest thread 
– Fastest thread(s)

experience(s) 
idle time

– Slowest thread
determines
execution time

Critical sections, barriers, condition variables, 
thread create/join, etc. 18



Experimental Evaluation
Rodinia (OpenMP)
– Barrier synchronization

Parsec (pthread)

Simulator: HW-validated x86 Sniper, quad-core
4-wide OOO [Carlson TACO’14]
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MAIN (models main thread): reasonable accuracy
for Rodinia but highly inaccurate for Parsec

Rodinia

Parsec Summary

45%



CRIT (models critical thread):
more accurate for Parsec

Rodinia

Parsec Summary

28%



RPPM (models critical thread per sync-epoch):
11% avg error versus MAIN (45%) and CRIT (28%)

Rodinia

Parsec Summary

11%



Design Space Exploration

Which is the best performing 10-GOPS processor?

Hybrid exploration strategy:
– Use RPPM to predict optimum design
– Simulate designs within 5% of predicted optimum

Identify true optimum for all but one benchmark
– RPPM predicts optimum for vast majority of benchmarks
– Handful benchmarks need two simulation runs
– pathfinder: within 2% of true optimum
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smallest small base big biggest

frequency (GHz) 5.0 3.33 2.5 2.0 1.66

width 2 3 4 5 6



Bottlegraphs:
Visualizing a thread’s criticality and parallelism
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a thread’s criticality:
share in total 

execution time

a thread’s parallelism:
no. parallel threads when active

simulation

RPPM

[Du Bois, OOPSLA’13]



Bottlegraphs:
Balanced workloads
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Main thread distributes and co-works with worker threads



Bottlegraphs:
Imbalanced workloads
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facesim: main thread performs slightly more work
freqmine: main thread is bottleneck (but does parallel work)



Bottlegraphs:
Highly imbalanced workloads
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Main thread does not perform any parallel work



Conclusions
Microarchitecture-independent mechanistic performance model for 
multithreaded workloads on multicore processors

– Accumulating random errors
– Inter-thread synchronization, communication, interference

Evaluation against simulation: 11% avg error versus MAIN (45%) and 
CRIT (28%)

Use cases
– Design space exploration
– Workload characterization

Future work: predict across thread counts
– Predict Y-thread performance from X-thread profile (Y>X)
– Predict Y-thread performance on X-core system (Y>X)
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