

DVFS PERFORMANCE PREDICTION FOR MANAGED MULTITHREADED APPLICATIONS

Shoaib Akram, Jennifer B. Sartor, Lieven Eeckhout Ghent University, Belgium Shoaib.Akram@elis.UGent.be

DVFS Performance Prediction

Sample at all DVFS states (3) **Estimate** performance (2)

Managed Multithreaded Applications

Synchronization

Store Bursts

Heterogeneity

Background

Base Frequency

- t_{base} sum of
 - -Scaling (S)
 - -Non-Scaling (NS)

Target Frequency

- r = Base/Target
- $S \rightarrow S * r$
- NS → No change
- $t_{target} = (S*r) + NS$
 - Not simple
 - OOO+MLP

State of the Art

- CRIT estimates non-scaling by
 - -Measuring critical path through loads
 - Ignoring store operations

R. Miftakhutdinov, E. Ebrahimi, and Y. N. Patt. Predicting performance impact of DVFS for realistic memory systems. MICRO, 2012.

Multithreaded CRIT (M+CRIT)

Base Frequency Target Frequency 2X

Use CRIT to identify each thread's non-scaling

High error for multithreaded Java!

Sources of Inaccuracy in M+CRIT

Scaling or non-scaling?

Sources of Inaccuracy in M+CRIT

Scaling or non-scaling?

Our Contribution

Scaling or non-scaling?

Our Contribution

DEP+BURST

A New DVFS Performance Predictor

Example: Inter-thread Dependences

```
T0
while (cond0)
                         while (cond1)
                         Acquire(¶ock) Wait
Acquire(lock)
                               crit sec() ...
     crit sec()
                         Release(qock)
Release(lock)
```

- Intercept synchronization activity
- Reconstruct execution at target frequency

Identifying Synchronization Epochs

Base Frequency Target Frequency

Identifying Synchronization Epochs

Base Frequency Target Frequency

Identifying Synchronization Epochs

Base Frequency Target Frequency
To T1

Reconstruction at Target Frequency

Reconstruction at Target Frequency

Reconstruction at Target Frequency

DEP: Summary

Our Contribution

DEP+BURST

A New DVFS Performance Predictor

Our Contribution

A New DVFS Performance Predictor

Store Bursts

- Reasons
 - -Zero initialization
 - Copying collectors
- Modeling Steps
 - -Track how long the store queue is full
 - —Add to the non-scaling component

Methodology

- Jikes RVM 3.1.2
- Production collector (Immix)
- # GC threads = 2
- 2x min. heap

- 4 cores, 1.0 GHz → 4.0 GHz
- 3-level cache hierarchy
- LLC fixed to 1.5 GHz
- DVFS settings for 22 nm Haswell

- Seven multithreaded benchmarks
- Four application threads

Accuracy

Baseline Frequency = 1.0 GHz

Energy Manager

Energy Savings

Conclusions

- DEP+BURST: First predictor that accounts for
 - Application and service threads
 - Synchronization → inter-thread dependencies
 - Store bursts
- High accuracy
 - Less than 10% estimation error for seven Java bmarks.
- Negligible hardware cost
 - One extra performance counter
 - Minor book-keeping across epochs
- Demonstrated energy savings
 - 20 % avg. for a 10% slowdown (mem-intensive Java apps.)

DVFS PERFORMANCE PREDICTION FOR MANAGED MULTITHREADED APPLICATIONS

Thank You!

Shoaib.Akram@elis.UGent.be