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Spark Caching Mechanism

▪ Stores the result of an RDD

▪ Essential when an RDD is used across 
multiple Spark jobs

▪ Caching avoids recomputation and 
reduces execution time

▪ Effective for iterative workloads 
(e.g., ML, graph processing)

▪ How much data do we need to cache?

Storage Level

MEMORY_ONLY

MEMORY_AND_DISK

DISK_ONLY

OFF_HEAP

Source: https://spark.apache.org/docs/latest/rdd-programming-
guide.html
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Increasing Memory Demands!

▪ Analytics datasets grow at high rate
▪ Today ~50ZB
▪ By 2025 ~175ZB

▪ Typical deployments use roughly as 
much DRAM as the input dataset

▪ Typically cached data is even larger 
than the input dataset

50ZB

175ZB

3.5x

Source: Seagate – The Digitization of the World
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Cached Data Size Matters

▪ In-memory caching needs a lot of 
DRAM

▪ DRAM density difficult to increase

▪ Fast storage (NVMe) scales to 
TBs/device

▪ Spark already uses fast storage for 
cached data – However, at high cost

Workload
Input 

Dataset 
(GB)

Cached 
Rdds
(GB)

Linear Regression (LR)
64

182
Log. Regression (LgR) 160
SVM 188
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Dilemma: On-heap vs Off-heap NVMe Caching

Executor
Memory

Execution Memory Storage Memory

Executor
Memory

Pros Cons

On-heap
Cache No Serialization High GC

Off-heap
Cache Low GC High 

Serialization

Can we avoid 
Serialization and reduce GC?

Serialization / Deserialization

Execution Memory Storage Memory

5

GC GC



Cached Objects Behave Differently

Dataset

Create RDD

Persist

Operations

Unpersist

GC

Spark App

Java Heap
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Cached Objects Behave Differently

Dataset

Create RDD

Persist

Operations

Unpersist

GC

Create RDDs

Spark App

Java Heap
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Cached Objects Behave Differently

Dataset

Persist

Operations

Unpersist

GC

Create RDDs

Persist

Spark App

Java Heap

Persist

Operations
▪ GC between persist-unpersist extremely wasteful
▪ GC scans all objects in the heap
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Cached Objects Behave Differently

Dataset

Persist

Operations

Unpersist

GC

Create RDDs

Spark App

Java Heap

Unpersist

▪ GC reclaim cached RDDs after unpersist
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Our Approach: Treat Cached Objects Differently

▪ Objects in JAVA follow generational hypothesis

▪ Opportunity: Nomadic hypothesis observation

▪ Spark cached objects are
▪ Long-lived: Used across multiple Spark jobs (cache)
▪ Intermittently-accessed: Long intervals without access (NVMe)
▪ Grouped life-times: RDD objects leave the cache at the same time (unpersist)

▪ Place cached objects in a special heap
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TeraCache: Introduce a Second JVM heap on NVMe

▪ Execution Heap remains as a garbage collected heap
▪ Maintains the JVM heap for execution purposes

▪ The second TeraCache heap has two significant advantages

▪ No GC: Use persist/unpersist semantics to avoid GC

▪ No Serialization/Deserialization: Use memory-mapped I/O
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TeraCache Design Overview



TeraCache: Design Overview

Execution Memory Storage Memory

JVM heap TeraCacheJVM

Spark Executor

DR1 DR2DRAM

NVMe SSD

mmap()
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Spark Knocks on the JVM Door

Spark Application

Spark 
Runtime

JVM

rdd.persist()

- Store RDD to Storage Memory
- Notify JVM to mark RDD object

▪ Spark notifies JVM for RDD caching
▪ At persist/unpersist operations

▪ Add new TeraFlag word in JVM objects

▪ JVM creates new object, sets TeraFlag

JVM heap TeraCache
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Spark Knocks on the JVM Door

Spark Application

Spark 
Runtime

JVM

rdd.persist()

- Store RDD to Storage Memory
- Notify JVM to mark RDD object

▪ Spark notifies JVM for RDD caching
▪ At persist/unpersist operations

▪ Add new TeraFlag word in JVM objects

▪ JVM creates new object, sets TeraFlag

▪ Move to TeraCache during next full GC

JVM heap TeraCache
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TeraCache Design: Avoid GC



How to Avoid GC in TeraCache?

▪ Disallow backward pointers to Heap

▪ Move transitive closure in TeraCache
JVM heap TeraCache
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How To Avoid GC in TeraCache?

▪ Disallow backward pointers to Heap

▪ Move transitive closure in TeraCache

▪ Allow forward pointers from Heap

▪ Objects in TeraCache do not move

▪ Fence GC from following forward pointers

JVM heap TeraCache

JVM heap TeraCache
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Organize TeraCache in Regions

▪ Objects that belong to the same RDD
have similar life-time

▪ Organize TeraCache in regions
▪ Place objects in regions based on life-time
▪ Dynamic size of regions

▪ Bulk free
▪ Reclaim entire region

...
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Bulk Free Regions
▪ To provide correct and bulk free

▪ Allow only pointers within regions
▪ Merge regions with crossing 

pointers when objects move to TeraCache

▪ Keep a bit map with live regions
▪ Track reachable regions from JVM heap 

in every GC

▪ During GC marking phase identify 
active regions
▪ Mark the bit array if there is a pointer from 

the JVM heap to a TeraCache region
JVM heap TeraCache

JVM heap TeraCache
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TeraCache Design: Avoid Serialization



No Serialization→Memory Mapped I/O

▪ MMIO allows same data format on memory and device

▪ No explicit device I/O - Only accesses using load/store

▪ Linux Kernel already supports required mechanisms for MMIO

▪ We use FastMap [USENIX ATC'20]: Optimize scalability of Linux MMIO
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Competition for DRAM Resource
▪ Execution Memory must reside in DRAM

▪ A lot of short-lived data
▪ We need large DR1

▪ Cached objects are accessed as well
▪ E.g., Iterative jobs reuse cached data
▪ We need large DR2

▪ Can we statically divide DRAM between 
the heaps?

Execution Memory Storage Memory

JVM heap TeraCache

DR1 DR2DRAM

JVM

Executor

NVMe SSD

mmap()
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Dividing DRAM between Heaps
▪ KMeans (KM)-jobs produce more 

short-lived data
▪ More minor GCs
▪ More space for DR1

▪ Linear Regression (LR)-jobs reuse 
more cached data
▪ More page faults/s
▪ More space for DR2

▪ Dynamic Resizing of DR1, DR2
▪ Based on page-fault rate in MMIO
▪ Based on minor GCs

3x 2x
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Preliminary Evaluation



Early Prototype Implementation

▪ We implement a prototype of TeraCache based on ParallelGC
▪ Place New Generation on DRAM
▪ Place Old Generation on fast storage device
▪ Explicitly disable GC on Old Generation

▪ Remaining to be implemented
▪ Cached RDDs reclamation
▪ Dynamic DR1/DR2 resizing

▪ Evaluation
▪ GC overhead
▪ Serialization overhead
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TeraCache Improves Performance by 25%

▪ Compared to Serialization: TC better up to 37% (on average 25%)
▪ Compared to GC + Linux swap: TC better up to 2x

2x
37%

SW – Linux Kernel Swap

HY – MEMORY_AND_DISK

TC - TeraCache
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TeraCache Reduces GC Time by up to 50%

50%

HY – MEMORY_AND_DISK

TC - TeraCache
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Conclusions



TeraCache: Efficient Caching over Fast Storage
▪ Spark incurs high overhead for caching RDDs

▪ We observe: Spark cached data follow a nomadic hypothesis

▪ We introduce TeraCache which both reduces GC and eliminates 
serialization by using two heaps (generational, nomadic)

▪ We improve performance of Spark ML workloads by 25% (avg)

▪ Currently we are working on the full prototype
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