
TeraCache: Efficient Caching over 
Fast Storage Devices
Iacovos G. Kolokasis1,2, Anastasios Papagiannis1,2, Foivos Zakkak3, Shoaib Akram4,
Christos Kozanitis2, Polyvios Pratikakis1,2, and Angelos Bilas1,2

1University of Crete
2Foundation of Research and Technology Hellas (FORTH), Greece
3Red Hat, Inc.
4Australian National University



Spark Caching Mechanism

▪ Stores the result of an RDD

▪ Essential when an RDD is used across 
multiple Spark jobs

▪ Caching avoids recomputation and 
reduces execution time

▪ Effective for iterative workloads 
(e.g., ML, graph processing)

▪ How much data do we need to cache?

Storage Level

MEMORY_ONLY

MEMORY_AND_DISK

DISK_ONLY

OFF_HEAP

Source: https://spark.apache.org/docs/latest/rdd-programming-
guide.html

2



Increasing Memory Demands!

▪ Analytics datasets grow at high rate
▪ Today ~50ZB
▪ By 2025 ~175ZB

▪ Typical deployments use roughly as 
much DRAM as the input dataset

▪ Typically cached data is even larger 
than the input dataset

50ZB

175ZB

3.5x

Source: Seagate – The Digitization of the World

3



Cached Data Size Matters

▪ In-memory caching needs a lot of 
DRAM

▪ DRAM density difficult to increase

▪ Fast storage (NVMe) scales to 
TBs/device

▪ Spark already uses fast storage for 
cached data – However, at high cost

Workload
Input 

Dataset 
(GB)

Cached 
Rdds
(GB)

Linear Regression (LR)
64

182
Log. Regression (LgR) 160
SVM 188

4

3x



Dilemma: On-heap vs Off-heap NVMe Caching

Executor
Memory

Execution Memory Storage Memory

Executor
Memory

Pros Cons

On-heap
Cache No Serialization High GC

Off-heap
Cache Low GC High 

Serialization

Can we avoid 
Serialization and reduce GC?

Serialization / Deserialization

Execution Memory Storage Memory

5

GC GC



Cached Objects Behave Differently

Dataset

Create RDD

Persist

Operations

Unpersist

GC

Spark App

Java Heap

6



Cached Objects Behave Differently

Dataset

Create RDD

Persist

Operations

Unpersist

GC

Create RDDs

Spark App

Java Heap

7



Cached Objects Behave Differently

Dataset

Persist

Operations

Unpersist

GC

Create RDDs

Persist

Spark App

Java Heap

Persist

Operations
▪ GC between persist-unpersist extremely wasteful
▪ GC scans all objects in the heap

8

Cached RDDs



Cached Objects Behave Differently

Dataset

Persist

Operations

Unpersist

GC

Create RDDs

Spark App

Java Heap

Unpersist

▪ GC reclaim cached RDDs after unpersist

9



Our Approach: Treat Cached Objects Differently

▪ Objects in JAVA follow generational hypothesis

▪ Opportunity: Nomadic hypothesis observation

▪ Spark cached objects are
▪ Long-lived: Used across multiple Spark jobs (cache)
▪ Intermittently-accessed: Long intervals without access (NVMe)
▪ Grouped life-times: RDD objects leave the cache at the same time (unpersist)

▪ Place cached objects in a special heap

10



TeraCache: Introduce a Second JVM heap on NVMe

▪ Execution Heap remains as a garbage collected heap
▪ Maintains the JVM heap for execution purposes

▪ The second TeraCache heap has two significant advantages

▪ No GC: Use persist/unpersist semantics to avoid GC

▪ No Serialization/Deserialization: Use memory-mapped I/O

11



TeraCache Design Overview



TeraCache: Design Overview

Execution Memory Storage Memory

JVM heap TeraCacheJVM

Spark Executor

DR1 DR2DRAM

NVMe SSD

mmap()

13



Spark Knocks on the JVM Door

Spark Application

Spark 
Runtime

JVM

rdd.persist()

- Store RDD to Storage Memory
- Notify JVM to mark RDD object

▪ Spark notifies JVM for RDD caching
▪ At persist/unpersist operations

▪ Add new TeraFlag word in JVM objects

▪ JVM creates new object, sets TeraFlag

JVM heap TeraCache

14



Spark Knocks on the JVM Door

Spark Application

Spark 
Runtime

JVM

rdd.persist()

- Store RDD to Storage Memory
- Notify JVM to mark RDD object

▪ Spark notifies JVM for RDD caching
▪ At persist/unpersist operations

▪ Add new TeraFlag word in JVM objects

▪ JVM creates new object, sets TeraFlag

▪ Move to TeraCache during next full GC

JVM heap TeraCache

15



TeraCache Design: Avoid GC



How to Avoid GC in TeraCache?

▪ Disallow backward pointers to Heap

▪ Move transitive closure in TeraCache
JVM heap TeraCache

17



How To Avoid GC in TeraCache?

▪ Disallow backward pointers to Heap

▪ Move transitive closure in TeraCache

▪ Allow forward pointers from Heap

▪ Objects in TeraCache do not move

▪ Fence GC from following forward pointers

JVM heap TeraCache

JVM heap TeraCache

18



Organize TeraCache in Regions

▪ Objects that belong to the same RDD
have similar life-time

▪ Organize TeraCache in regions
▪ Place objects in regions based on life-time
▪ Dynamic size of regions

▪ Bulk free
▪ Reclaim entire region

...

19

JVM heap TeraCache



Bulk Free Regions
▪ To provide correct and bulk free

▪ Allow only pointers within regions
▪ Merge regions with crossing 

pointers when objects move to TeraCache

▪ Keep a bit map with live regions
▪ Track reachable regions from JVM heap 

in every GC

▪ During GC marking phase identify 
active regions
▪ Mark the bit array if there is a pointer from 

the JVM heap to a TeraCache region
JVM heap TeraCache

JVM heap TeraCache

20



TeraCache Design: Avoid Serialization



No Serialization→Memory Mapped I/O

▪ MMIO allows same data format on memory and device

▪ No explicit device I/O - Only accesses using load/store

▪ Linux Kernel already supports required mechanisms for MMIO

▪ We use FastMap [USENIX ATC'20]: Optimize scalability of Linux MMIO

22



Competition for DRAM Resource
▪ Execution Memory must reside in DRAM

▪ A lot of short-lived data
▪ We need large DR1

▪ Cached objects are accessed as well
▪ E.g., Iterative jobs reuse cached data
▪ We need large DR2

▪ Can we statically divide DRAM between 
the heaps?

Execution Memory Storage Memory

JVM heap TeraCache

DR1 DR2DRAM

JVM

Executor

NVMe SSD

mmap()

23



Dividing DRAM between Heaps
▪ KMeans (KM)-jobs produce more 

short-lived data
▪ More minor GCs
▪ More space for DR1

▪ Linear Regression (LR)-jobs reuse 
more cached data
▪ More page faults/s
▪ More space for DR2

▪ Dynamic Resizing of DR1, DR2
▪ Based on page-fault rate in MMIO
▪ Based on minor GCs

3x 2x

24

DR1 Size (GB) - DRAM = 32GB



Preliminary Evaluation



Early Prototype Implementation

▪ We implement a prototype of TeraCache based on ParallelGC
▪ Place New Generation on DRAM
▪ Place Old Generation on fast storage device
▪ Explicitly disable GC on Old Generation

▪ Remaining to be implemented
▪ Cached RDDs reclamation
▪ Dynamic DR1/DR2 resizing

▪ Evaluation
▪ GC overhead
▪ Serialization overhead

26



TeraCache Improves Performance by 25%

▪ Compared to Serialization: TC better up to 37% (on average 25%)
▪ Compared to GC + Linux swap: TC better up to 2x

2x
37%

SW – Linux Kernel Swap

HY – MEMORY_AND_DISK

TC - TeraCache

27



TeraCache Reduces GC Time by up to 50%

50%

HY – MEMORY_AND_DISK

TC - TeraCache

28



Conclusions



TeraCache: Efficient Caching over Fast Storage
▪ Spark incurs high overhead for caching RDDs

▪ We observe: Spark cached data follow a nomadic hypothesis

▪ We introduce TeraCache which both reduces GC and eliminates 
serialization by using two heaps (generational, nomadic)

▪ We improve performance of Spark ML workloads by 25% (avg)

▪ Currently we are working on the full prototype
30



Iacovos G. Kolokasis
kolokasis@ics.forth.gr
www.csd.uoc.gr/~kolokasis

Thank you for your attention

This work is supported by the EU Horizon 2020 Evolve project (#825061)

Anastasios Papagiannis is supported by Facebook Graduate Fellowship

mailto:kolokasis@ics.forth.gr
http://www.csd.uoc.gr/~kolokasis
https://www.evolve-h2020.eu/


Feedback

Your feedback is important to us.

Don’t forget to rate
and review the sessions.


