Kingsguard: Write-Rationing Garbage Collection for Hybrid Memories

Shoaib Akram (Ghent), Jennifer B. Sartor (Ghent), Kathryn S. Mckinley (Google), and Lieven Eeckhout (Ghent) Shoaib.Akram@UGent.be

DRAM is facing challenges

Scalability Reliability Energy

time

Hybrid DRAM-PCM memory

Speed Endurance Energy Capacity

DRAM

PCM

Challenge

Mitigate PCM wear-out and extend its lifetime

How to mitigate PCM wear-out?

Phase change memory as ...

Wear Level

Wear Level Wear Level Operating System Language runtime

PCM only with leveling is not practical

32 GB PCM memory, 32 cores

OS to limit PCM writes

PCM

Drawbacks Coarse grained Page migrations can be costly

Managed runtime to limit PCM writes

Our work uses garbage collection to keep highly written objects in DRAM

Distribution of writes in GC runtime

70% of writes

Distribution of writes in GC runtime

70% of writes

22% to 2% of objects

Contribution Write-Rationing Garbage Collectors mature

Two write-rationing garbage collectors Kingsguard- Kingsguard-Nursery Writers

Heap organization in **DRAM**

DRAM

KG-N Kingsguard-Nursery

KG-W Kingsguard-Writers

Observing writes

Object
formatheaderreferencesprimitives

Write barrier sets a header bit on object writes

Write barrier configurations Observe references Observe references and primitives

Additional optimizations in KG-W

Large object optimization

Allocate selected large objects in DRAM

Metadata optimization

Allocate PCM metadata in DRAM

Large object optimization

nursery

¹/₂ of remaining nursery

Monitor PCM write rate to tu

18

Metadata optimization

Mature

Full-heap GC: Mark live PCM objects KG-W: Keep mark bytes of PCM objects in DRAM

Metadata optimization

Full-heap GC: Mark live PCM objects KG-W: Keep mark bytes of PCM objects in DRAM address_mark_bit = start_meta + idx_pcm_obj

Evaluation Methodology

Hardware

Software

(1) Simulator(2) Real

Jikes research virtual machine

Java applications

Simulation with Sniper

7 DaCapo applications

4 cores, 1 MB per core LLC

Scale simulated rates to a 32 core machine using trends from real hw

Memory systems

Homogeneous 32 GB DRAM 32 GB PCM

Hybrid 1 GB DRAM 32 GB PCM PCM parameters 4X read latency 4X write energy 10 M writes/cell

PCM lifetimes PCM-Only KG-N KG-W 40 Aears 30 Lifetime in y 0 0 0 0 talan prind prind. Search with Anth Bloat ANS PCM alone is not practical PCM lasts more than 10 years with KG-W

EDP reduction compared to DRAM

Emulation on NUMA hardware

Use Intel perf monitor to measure writes

PCM write rates on NUMA hardware

KG-N reduces write rate by 3.8X over PCM-Only KG-W reduces write rate by 1.9X over KG-N

Crystal Gazer: Profile-Driven Write-Rationing Garbage Collection for Hybrid Memories

Takeaways

Promising to monitor heaps at a fine granularity

Write-rationing GC makes PCM practical as main memory

Similar conclusion with different evaluation methods

