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Single-ISA heterogeneous multi-cores

Multiple core types

representing different power/performance trade-offs

Well-established power benefits
[Kumar et al. MICRO’03, ISCA'04]
Comercial examples

Big.LITTLE, Kal-El d big high-performance
cores

small power-efficient
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Prior Work: Put the Thread That Will Benefit the
Most on the Big Core

Many different scheduling techniques .
Static scheduling XA /
Chen and John, DAC08 N\

Sampling-based scheduling
Kumar et al., ISCA’04,; Patsilaras et al., TACO’12

Proxies for performance

Memory-domance (Becchi et al., JILP'08; Koufaty et al., EuroSys’10;
Shelepov et al., OS Review’09)

Age-based Scheduling (Lakshminararayana et al., SC'09)

Model-based scheduling
Van Craeynest et al., ISCA’12; Lukefahr et al., MICRO’12
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Traditional Scheduling can be Suboptimal

>
execution time
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Fairness-Aware Schedulinlg on Single-ISA
Heterogeneous Multi- Cores

Scheduling methodologies that aim to improve fairness
Equal-time scheduling

Eqgual-progress scheduling

Will show that Fairness-Aware Scheduling

Significantly improves fairness

Allowing QoS, accounting,...

Significantly reduced run-time for many multi-threaded applications
over state-of-the-art throughput-optimizing scheduling
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Fairness for Heterogeneous Multi-Cores

Number of cycles to execute
/ a thread on a heterogeneous
multi-core

slowdown=Sli = T'lhet,i /TibLg,i

\ Number of cycles to execute a
thread in isolation on big core

Schedule is fair if slowdown of all running threads is the same

fairness=1 —clS=1—0clS /ulS =1 —std dev(S)/avg(s)

Coefficient of variation, a
measure of unfairness
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Experimental Setup >>I

sniper
Simulated hardware
issue width 4-wide
clock frequency 2.6 GHz
cache hierarchy 32KB (p) / 256 KB (p)/ 16MB (s)
parch in-order out-of-order
Sniper:
parallel, hardware-validated x86-64 multi-core
simulator

Multi-threaded and multi-programmed workloads
spec2006, PARSEC and MapReduce
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Achieving Fairness: Equal-time Scheduling

— Each thread runs for same amount of time on each core
type

Can be implemented with minor changes to a Round-robin scheduler

. t, t IOkt &, & R
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Optimizing for Fairness Reduces Run-time for
Homogeneous Multi-Threaded Workloads

1B3S system
Hpinned ®throughput-optimized ™ equal-time
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Equal-Time Doesn’t Guarantee Equal-Progress

Some threads experience a larger slowdown than others
- Equal time on different core types # equal progress
— Therefore fairness is not guaranteed

Running on small core Running on big core

execution time
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Achieving Fairness: Equal-progress
Fairness-Aware Scheduling

— Guarantee that all threads make the same progress
compared to their big-core performance

— Continuously monitor fairness and adjust schedule to
achieve fairness

Sdi=Tlhet,i /Tibig,i =TIbig,i+Tismalli /Tibig,i+Tismalli /RLE

"\ Scale execution time
on small core
Overall slowdown of
the thread Performance ratio between

big and small core
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Estimating the Performance Ratio

— Proposed 3 methods

- sampling-based

sampling !------ sampling  [symbiosis

________________

> hlstory based

sampling E—E------------
R Ri——f" =/

— model-based
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Performance Impact Estimation (PIE)

[Van Craeynest et al., ISCA’12]
1. Determine where application spends its execution time

Use change in MLP exposed to predict change in CPI_ .,

Use change in ILP exposed to predict change in CPI, .,

A
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MLP change

CPlL,q

CPIsmaII
MLP
ILP

small

—
small

ILP change
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Fairness-aware Scheduling Across Configurations
for Multi-Programmed Workloads

®pinned ® throughput-optimized ® equal-time B equal-progress

normalized throughput
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Optimizing Fairness Reduces Run-time for
Homogeneous Multi-Threaded Workloads

1B3S system

M pinned M throughput-optimized M equal-time ™M equal-progress
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normalized run-tim

Optimizing for Fairness Reduces Run-time for
Heterogeneous Multi-Threaded Workloads
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= pinned o - Heterogeneous applications
H throughput-optimized

M equal-time Threads can have different

W equal-progress performance ratio

Equal-time scheduling does not
result in a fair schedule

— Equal progress greatly reduces
run-time over throughput-
optimized AND equal-time
scheduling for heterogeneous
multi-threaded applications

dedup ferret

1B3S
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Fairness-aware Scheduling Across Configurations
for Homogeneous Multi-Threaded Workloads

Hpinned M throughput-optimized ™ equal-time ™ equal-progress
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Conclusions and Contributions

Proposed Fairness-optimizing scheduling
Two methods: equal-time and equal-progress

Multi-program workloads

Achieves average fairness of 86% for a 1B3S system while

within 3.6% performance of throughput-optimizing
scheduling

Allows for QoS, cycle-accounting, etc. in heterogeneous
systems

Multi-threaded workloads

Unfair performance results in no performance benefits
from heterogeneity

Threads running on a big core wait at barriers for threads running
on small core

Average 14% (and up to 25%) performance improvement over
pinned scheduling
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