}

i ral)
UNIVERSITEIT (intel

GENT

Fairness-Aware Scheduling on Single-ISA
Heterogeneous Multi-Cores

Kenzo Van Craeynest*
Shoaib Akram*
Wim Heirman *
Aamer Jaleel”

Lieven Eeckhout?

+ Ghent University
* VSSAD, Intel Corporation

PACT 2013 - Edinburgh- September 11t 2013

Single-ISA heterogeneous multi-cores

Multiple core types

representing different power/performance trade-offs

Well-established power benefits
[Kumar et al. MICRO’03, ISCA'04]
Comercial examples

Big.LITTLE, Kal-El d big high-performance
cores

small power-efficient

3/1/16 Kenzo Van Craeynest

Prior Work: Put the Thread That Will Benefit the
Most on the Big Core

Many different scheduling techniques .
Static scheduling XA /
Chen and John, DAC08 N\

Sampling-based scheduling
Kumar et al., ISCA’04,; Patsilaras et al., TACO’12

Proxies for performance

Memory-domance (Becchi et al., JILP'08; Koufaty et al., EuroSys’10;
Shelepov et al., OS Review’09)

Age-based Scheduling (Lakshminararayana et al., SC'09)

Model-based scheduling
Van Craeynest et al., ISCA’12; Lukefahr et al., MICRO’12

3/1/16 Kenzo Van Craeynest 3

Traditional Scheduling can be Suboptimal

>
execution time

3/1/16 Kenzo Van Craeynest

00000000000

normalized
run-time
100

(),

c

1] I
m R S —

(o] © ! 0]
T m I I N N

% - I I N Y I I
0 S S ———

= re) I
= X I

ﬂ 0 I
s T

% > e
" o]

m s
o R N N

O -
~"a m I O S

c 7 [Y N I
0 R I

c m]
(o]

L]

v

c

=

Q

()]

§®)

()

()

-

=

-

Fairness-Aware Schedulinlg on Single-ISA
Heterogeneous Multi- Cores

Scheduling methodologies that aim to improve fairness
Equal-time scheduling

Eqgual-progress scheduling

Will show that Fairness-Aware Scheduling

Significantly improves fairness

Allowing QoS, accounting,...

Significantly reduced run-time for many multi-threaded applications
over state-of-the-art throughput-optimizing scheduling

3/1/16 Kenzo Van Craeynest

Fairness for Heterogeneous Multi-Cores

Number of cycles to execute
/ a thread on a heterogeneous
multi-core

slowdown=Sli = T'lhet,i /TibLg,i

\ Number of cycles to execute a
thread in isolation on big core

Schedule is fair if slowdown of all running threads is the same

fairness=1 —clS=1—0clS /ulS =1 —std dev(S)/avg(s)

Coefficient of variation, a
measure of unfairness

3/1/16 Kenzo Van Craeynest

Experimental Setup >>I

sniper
Simulated hardware
issue width 4-wide
clock frequency 2.6 GHz
cache hierarchy 32KB (p) / 256 KB (p)/ 16MB (s)
parch in-order out-of-order
Sniper:
parallel, hardware-validated x86-64 multi-core
simulator

Multi-threaded and multi-programmed workloads
spec2006, PARSEC and MapReduce

3/1/16 Kenzo Van Craeynest

Achieving Fairness: Equal-time Scheduling

— Each thread runs for same amount of time on each core
type

Can be implemented with minor changes to a Round-robin scheduler

. t, t IOkt &, & R
. t, t t t, AR, ot
.-- bttt ottt IR
.--- b, bt ottty

3/1/16 Kenzo Van Craeynest 9

Optimizing for Fairness Reduces Run-time for
Homogeneous Multi-Threaded Workloads

1B3S system
Hpinned ®throughput-optimized ™ equal-time

hist
wc
Ir
pca
km
sm

canneal

Q_ L
= Q
5 =
33

swaptions
fluidanimate

blackscholes |
streamcluster

9/10/2013 Kenzo Van Craeynest 11

Equal-Time Doesn’t Guarantee Equal-Progress

Some threads experience a larger slowdown than others
- Equal time on different core types # equal progress
— Therefore fairness is not guaranteed

Running on small core Running on big core

execution time

3/1/16 Kenzo Van Craeynest 11

Achieving Fairness: Equal-progress
Fairness-Aware Scheduling

— Guarantee that all threads make the same progress
compared to their big-core performance

— Continuously monitor fairness and adjust schedule to
achieve fairness

Sdi=Tlhet,i /Tibig,i =TIbig,i+Tismalli /Tibig,i+Tismalli /RLE

"\ Scale execution time
on small core
Overall slowdown of
the thread Performance ratio between

big and small core

3/1/16 Kenzo Van Craeynest

12

Estimating the Performance Ratio

— Proposed 3 methods

- sampling-based

sampling !------ sampling [symbiosis

> hlstory based

sampling E—E------------
R Ri——f" =/

— model-based

3/1/16 Kenzo Van Craeynest 13

Performance Impact Estimation (PIE)

[Van Craeynest et al., ISCA’12]
1. Determine where application spends its execution time

Use change in MLP exposed to predict change in CPI_ .,

Use change in ILP exposed to predict change in CPI, .,

A

CPIL,,
MLPy;, A
ILPyq

T

£

o
—
o
@)

MLP change

CPlL,q

CPIsmaII
MLP
ILP

small

—
small

ILP change

3/1/16 Kenzo Van Craeynest

14

Fairness-aware Scheduling Across Configurations
for Multi-Programmed Workloads

®pinned ® throughput-optimized ® equal-time B equal-progress

normalized throughput
1.3

1.2

1.1 -

1.0

0.9 -
1B1S 1B3S 3B1S 1B7S 7B1S

fairness

100%
90% -
80% -
70% -
60% -
50% -
40% -

QoS, cycle-accounting , abstraction of heterogeneity,...
0% -

1B1S 1B3S 3B1S 1B7S 7B1S
3/1/16 Kenzo Van Craeynest

15

Optimizing Fairness Reduces Run-time for
Homogeneous Multi-Threaded Workloads

1B3S system

M pinned M throughput-optimized M equal-time ™M equal-progress

hist

wc

Ir

pca

km

sm
blackscholes
canneal
swaptions
streamcluster
fluidanimate

9/10/2013 Kenzo Van Craeynest

19

3/1/16

]

normalized run-tim

Optimizing for Fairness Reduces Run-time for
Heterogeneous Multi-Threaded Workloads

0.9

0.8 -

0.7
0.6
0.5

0.3
0.2
0.1

= pinned o - Heterogeneous applications
H throughput-optimized

M equal-time Threads can have different

W equal-progress performance ratio

Equal-time scheduling does not
result in a fair schedule

— Equal progress greatly reduces
run-time over throughput-
optimized AND equal-time
scheduling for heterogeneous
multi-threaded applications

dedup ferret

1B3S

Kenzo Van Craeynest 17

Fairness-aware Scheduling Across Configurations
for Homogeneous Multi-Threaded Workloads

Hpinned M throughput-optimized ™ equal-time ™ equal-progress

1.0

0.9

o
@

o
~

o
(&)}

normalized run-time
(e»] (e»] (e»] o
N B O

o
[y

o
o

%))) 4)
L o i ™~ L
(a2] (as] (as] (2] [a8]
i i on i ™~

3/1/16 Kenzo Van Craeynest 18

Conclusions and Contributions

Proposed Fairness-optimizing scheduling
Two methods: equal-time and equal-progress

Multi-program workloads

Achieves average fairness of 86% for a 1B3S system while

within 3.6% performance of throughput-optimizing
scheduling

Allows for QoS, cycle-accounting, etc. in heterogeneous
systems

Multi-threaded workloads

Unfair performance results in no performance benefits
from heterogeneity

Threads running on a big core wait at barriers for threads running
on small core

Average 14% (and up to 25%) performance improvement over
pinned scheduling

3/1/16 Kenzo Van Craeynest 19

3/1/16

Questions?

Kenzo Van Craeynest

20

