Managing Hybrid Memories by Predicting Object Write Intensity

Shoaib Akram, Kathryn S. Mckinley, Jennifer B. Sartor, Lieven Eeckhout Ghent University, Belgium Shoaib.Akram@UGent.be

DRAM as main memory is facing multiple challenges

Cost high when scaling to 100s of GB Reliability a concern as stored charge very small

Opportunity for new memory technologies to replace DRAM

Explosion of new storage concepts, and materials technology

Source: https://www.nextplatform.com/2015/07/29/scaling-the-growing-system-memory-hierarchy/

Hybrid memory is the best of **DRAM** and **PCM** PCM DRAM Speed Speed Endurance 🖌 Endurance Energy V Energy Density 🗸 Density

This work uses DRAM for frequently written data

Garbage collection: key advantage of using a managed language

Memory automatically reclaimed for reuse More than just reclaim, stuff better organized

Use GC to keep frequently written objects in DRAM

- Reactive approach
 - Monitors writes to objects
 - More fine-grained compared to hardware and OS approaches
 - No page migrations
- Write-rationing garbage collection for hybrid memories, PLDI 2018

Use GC to keep frequently written objects in DRAM

Proactive approach Use a profile-guided predictor (this work)

Profiling methodology

- Java Virtual Machine
 - Jikes RVM (version 3.1.2)
 - 4 MB nursery
 - 2 GB Mark Sweep mature

- Java applications
 - 9 from DaCapo
 - PsuedoJBB 2005
 - Default inputs

The outcome of profiling is a write intensity trace

For each unique object X

- I. Size
- 2. Туре
- 3. Allocation site <method-name, bytecode index>
- 4. #Writes

Measuring entropy of different features

Object	Size	# Writes	
01	12 B 1000		
02	12 B	1000	
03	64 KB	1000	
04	32	0	
05	32	0	

Each size has an entropy of 0

Measuring entropy of different features

Object	Size #Write		
01	12 B	1000	
02	12 B	1000	
03	64 KB	1000	
04	32	1000	
05	32	0	

Size 32 has an entropy of I

Homogeneity curves compare size vs. type vs. allocation site

Heuristics to classify allocation sites as write-intensive or not

- Goals
 - I. Minimize DRAM utilization
 - 2. Minimize PCM writes
- Parameters
 - I. Criteria to determine write intensive objects
 - 2. Homogeneity threshold

Criteria # I: write frequency

Write frequency threshold = I KObject Size Site # Writes 12 1000 01 Α 1000 12 02 Α 65536 1000 Α 03 X 04 Α 32 0 X 32 05 Α $\mathbf{0}$

Criteria # 2: write density

Write density threshold = I

Object	Site	Size	# Writes	
01	А	12	1000	1
02	А	12	1000	~
03	Α	65536	1000	X
04	А	32	0	X
05	А	32	0	X

Criteria # I: write frequency Write frequency threshold = I KHomogeneity threshold = 50% Object Size Site # Writes 12 1000 01 Α 1000 12 02 Α 65536 1000 03 Α X Α 32 O40 X 32 \mathbf{O} Α 05

Site A is write-intensive

Criteria # 2: write density Write density threshold = I Homogeneity threshold = 50% Object Size Site # Writes 12 1000 01 Α 12 1000 02 Α 65536 1000 Α X 03 X Α 32 O40 X 32 Α 0 05

Site A is NOT write-intensive

Baseline generational heap organization

DRAM

Distribution of writes to objects

Empirical observations

- I. Nursery is highly mutated
- 2. 2% of mature objects get 80% of writes

Generational heap organization in hybrid memory

PCM Writes vs. DRAM Utilization

Homogeneity threshold = 1%

Allocation site predictor yields better tradeoffs than size and type

Homogeneity threshold = 1% , Write-Density (50)

Profile-guided predictor is more effective compared to existing work

What is missing in the workshop paper?

- Implementation details
 - Compiler sets a bit in the object header
 - GC chooses the correct allocator
- Big data benchmarks
- Emulation on a real NUMA machine
- Performance results

Conclusions

- Exploit GC for improving the lifetime of emerging memories
- Allocation sites correctly predict write intensity
- Use an allocation site predictor to eliminate a large number of writes to PCM

Challenge: limit # writes to PCM Solution: Use DRAM for frequently written data

Online monitoring introduces mutator and GC overheads

Online monitoring introduces mutator and GC overheads

