Crystal Gazer: Profile-Driven
Write-Rationing Garbage Collection
for Hybrid Memories

Shoaib Akram (Ghent), Jennifer B. Sartor (Ghent and VUB),
Kathryn S. McKinley (Google), and Lieven Eeckhout (Ghent)
Shoaib.Akram@UGent.be

I VRIJE I
J— UNIVERSITEIT < 5
GHENT m BRUSSEL o g e

UNIVERSITY



Main memory capacity expansion
DRAM - Charge storage a scaling limitation

1
Manufacturing 3 0.9 /

complexity makes g 03
DRAM pricing |
0.7

volatile
Source: WSTS, IC Insights
Jan’17 Jan’18

1

Price/

0.6



Phase change memory (PCM)

reset to amorphous
Leg
> " 3

More Gb/S

Byte addressable
Latency - DRAM
&) Write endurance

a\crystalline

temperature

time



Hybrid DRAM-PCM memory

DRAM PCM

PCM alone can wear out in a few months time
This work = Use DRAM to limit PCM writes



Garbage Collection to limit
PCM writes

GC understands memory semantics

A GC approach is finer grained Oper;ting
than OS approaches System
Hardware

Write-Rationing Garbage Collection for Hybrid Memories, PLDI, 2018

5



KG-W ngsguard -Writers

observer I

DRAM
PCM




KG-W drawbacks

Overhead of dynamic monitoring

Limited time window to predict write intensity
— mispredictions

Excessive & fixed DRAM consumption



Predicting highly written objects
without a DRAM observer

Crystal Gazer

S




Allocation site as a write predictor

new Object ()
new Object ()
new Object ()
new Object ()

0. Q O o



Allocation site as a write predictor

new Object
new Object
new Object
new Object

0. Q O 9o

()
()
()
()

Uniform distribution &



Allocation site as a write predictor

new Object () a new Object()
new Object () b new Object()
new Object () new Object()

new Object( - d new dram Object ()

0. Q 0o 9o
[ | I | B |
L | I | I |

Uniform distribution ¢
Skewed distribution &



Write distribution by allocation site

—Writes
—Volume Pjbb2005

N

% mature objects
=

o J O

o U ©O U1 O
\%\

0 50 100 150
Sites sorted by writes

A tew sites capture majority of the writes

10



Crystal Gazer overview

Application N Advice N Bytecode Object

Profiling Generation  Compilation Placement
1 ) 4
a = new Object() a = new Object()

b = new Object() b = new_dram Object()



Application profiling (offline)

Goal: Generate a write intensity trace

01 0 4 A() + 10
02 0 4 A() + 10
03 2048 4 A() + 10
04 2048 4096 B() + 4

12



Tracking alloc sites and # writes
Object layout

payload

H writes
alloc site

Compiler inserts code to compute allocation sites

Write barrier tracks # writes to each object

13



Application Profiling

Minimize full-heap collections - 3 GB heap

Nursery size a balance b/w size of trace
and mature object coverage

2.4X slowdown across 15+ applications



Advice generation

Goal: Generate <alloc-site, advice> pairs
advice > DRAM or PCM
Input is a write-intensity trace

Two heuristics to classify allocation sites as
DRAM or PCM

15



Alloc site classification heuristics

Freq: A threshold % of objects from a site get more
than a threshold # writes - DRAM

&) Aggressively limits PCM writes

& No distinction based on object size

16



Alloc site classification heuristics
Write density - Ratio of # writes to object size

Dens: A threshold % of objects from a site have
more than a threshold write density - DRAM

17



Classification thresholds

Homogeneity threshold - 1%

Frequency threshold - 1
Density threshold - 1



Classification examples

Frequency threshold =1
PCM writes = ?, DRAM bytes = ?

01 0 4 A() + 10
02 0 4 A() + 10
03 128 4 A() + 10
04 128 4096 B() + 4




Classification examples

Frequency threshold =1
PCM writes = ?, DRAM bytes = ?

01 0 4 A() + 10
02 0 4 A() + 10

19



Classification examples

Frequency threshold =1
PCM writes = 0/256, DRAM bytes = 5008

01 0 4 A() + 10
02 0 4 A() + 10

19



Classification examples

Density threshold =1
PCM writes = ?, DRAM bytes = ?

01 0 4 A() + 10
02 0 4 A() + 10
03 128 4 A() + 10
04 128 4096 B() + 4




Classification examples

Density threshold =1
PCM writes = ?, DRAM bytes = ?

01 0 4 A() + 10
02 0 4 A() + 10

- 32

04 128 4096 B() + 4

20



Classification examples

Density threshold =1
PCM writes = ?, DRAM bytes = ?

01 0 4 A() + 10
02 0 4 A() + 10
03 128 4 A()+10 = 32
04 128 4096 B)+4 =<1

20



Classification examples

Density threshold =1
PCM writes = 128/256, DRAM bytes = 12

01 0 4 A() + 10
02 0 4 A() + 10
03 128 4 A()+10 = 32
04 128 4096 B)+4 =<1

20



Bytecode compilation

Introduce a new bytecode - new dram()

Bytecode rewriter modifies DRAM sites to use
new_dram()

21



Object placement

new _dram() - Set a bit in the object header

GC - Inspect the bit on nursery collection to
copy object in DRAM or PCM

22



Object placement

DRAM

Is marked
highly written? v/



Key features of Crystal Gazer
Eliminate overheads of dynamic monitoring

Proactive - less mispredictions

Reduces DRAM usage & opens up pareto-optimal
tradeoffs b/w capacity and lifetime



Evaluation methodology

15 Applications - DaCapo, GraphChi, SpeclBB
Medium-end server platform

Different inputs for production and advice

Jikes RVM



Emulation on NUMA hardware

App
Jikes RVM
OS

16 hardware threads and 20 MB L3
Use Intel pcm-memory.x to get per-socket write rate .



Lifetime versus DRAM capacity

0.8
0.7
= 0.6
0.5
0.4
0.3

PCM writes relative
to KG-N

‘ .
6z AKG-W Pjbb2005
. _
)
100 150 200 250

DRAM capacity in MB
Crystal Gazer provides Pareto-optimal choices



PCM Writes

W KG-W M Dens M Freq W S-Dens M S-Freq

E 1.0
@)

<z
2205
= Q

= 00
('l

> 2 O
® S
«\\@ RO R

To optimize for lifetime, use Freq & survivors

24



Execution time
W KG-W M Dens M Freq W S-Dens M S-Freq
30% g

=
Ul

o

=

S 1.0

Sz

)

£ L¥DO.5

0.0

“’ N AR
|_|>j \2\‘9&6 ‘\g},b Q&%&Q‘O

To optimize for performance, use Freq or Dens

25



DRAM capacity

W KG-W M Dens M Freq W S-Dens M S-Freq

c 75
s = 50
< 2
s 0 25
X

0

0 O @ )
& 3 Q&é\Q &

To optimize for DRAM usage, use Dens

26



Write rates
BKG-N BKG-W mS-Dens M S-Freq

= 600
.C
400
200
20

\2{90‘ ,\3} Q@%(\‘}\Q

Write rate |

Write-rationing GC makes PCM practical

27



Profile-driven write-rationing GC

Allocation site a good predictor of writes

Hybrid memory is inevitable

Static approach beats dynamic
— Better performance
— Reduced DRAM capacity
— Better PCM lifetime

29



