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Main memory capacity expansion
DRAM - Charge storage a scaling limitation
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Phase change memory (PCM)
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Hybrid DRAM-PCM memory

DRAM PCM

PCM alone can wear out in a few months time
This work = Use DRAM to limit PCM writes



Garbage Collection to limit
PCM writes

GC understands memory semantics

A GC approach is finer grained Oper;ting
than OS approaches System
Hardware

Write-Rationing Garbage Collection for Hybrid Memories, PLDI, 2018
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KG-W drawbacks

Overhead of dynamic monitoring

Limited time window to predict write intensity
— mispredictions

Excessive & fixed DRAM consumption



Predicting highly written objects
without a DRAM observer

Crystal Gazer

S




Allocation site as a write predictor
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Allocation site as a write predictor
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Allocation site as a write predictor

new Object () a new Object()
new Object () b new Object()
new Object () new Object()
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Write distribution by allocation site

—Writes
—Volume Pjbb2005

N

% mature objects
=

o J O

o U ©O U1 O
\%\

0 50 100 150
Sites sorted by writes

A tew sites capture majority of the writes
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Crystal Gazer overview

Application N Advice N Bytecode Object

Profiling Generation  Compilation Placement
1 ) 4
a = new Object() a = new Object()

b = new Object() b = new_dram Object()



Application profiling (offline)

Goal: Generate a write intensity trace

01 0 4 A() + 10
02 0 4 A() + 10
03 2048 4 A() + 10
04 2048 4096 B() + 4
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Tracking alloc sites and # writes
Object layout

payload

H writes
alloc site

Compiler inserts code to compute allocation sites

Write barrier tracks # writes to each object
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Application Profiling

Minimize full-heap collections - 3 GB heap

Nursery size a balance b/w size of trace
and mature object coverage

2.4X slowdown across 15+ applications



Advice generation

Goal: Generate <alloc-site, advice> pairs
advice > DRAM or PCM
Input is a write-intensity trace

Two heuristics to classify allocation sites as
DRAM or PCM
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Alloc site classification heuristics

Freq: A threshold % of objects from a site get more
than a threshold # writes - DRAM

&) Aggressively limits PCM writes

& No distinction based on object size
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Alloc site classification heuristics
Write density - Ratio of # writes to object size

Dens: A threshold % of objects from a site have
more than a threshold write density - DRAM
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Classification thresholds

Homogeneity threshold - 1%

Frequency threshold - 1
Density threshold - 1



Classification examples

Frequency threshold =1
PCM writes = ?, DRAM bytes = ?

01 0 4 A() + 10
02 0 4 A() + 10
03 128 4 A() + 10
04 128 4096 B() + 4




Classification examples

Frequency threshold =1
PCM writes = ?, DRAM bytes = ?

01 0 4 A() + 10
02 0 4 A() + 10
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Classification examples

Frequency threshold =1
PCM writes = 0/256, DRAM bytes = 5008

01 0 4 A() + 10
02 0 4 A() + 10
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Classification examples

Density threshold =1
PCM writes = ?, DRAM bytes = ?

01 0 4 A() + 10
02 0 4 A() + 10
03 128 4 A() + 10
04 128 4096 B() + 4




Classification examples

Density threshold =1
PCM writes = ?, DRAM bytes = ?

01 0 4 A() + 10
02 0 4 A() + 10

- 32

04 128 4096 B() + 4
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Classification examples

Density threshold =1
PCM writes = ?, DRAM bytes = ?

01 0 4 A() + 10
02 0 4 A() + 10
03 128 4 A()+10 = 32
04 128 4096 B)+4 =<1
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Classification examples

Density threshold =1
PCM writes = 128/256, DRAM bytes = 12

01 0 4 A() + 10
02 0 4 A() + 10
03 128 4 A()+10 = 32
04 128 4096 B)+4 =<1
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Bytecode compilation

Introduce a new bytecode - new dram()

Bytecode rewriter modifies DRAM sites to use
new_dram()
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Object placement

new _dram() - Set a bit in the object header

GC - Inspect the bit on nursery collection to
copy object in DRAM or PCM
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Object placement

DRAM

Is marked
highly written? v/



Key features of Crystal Gazer
Eliminate overheads of dynamic monitoring

Proactive - less mispredictions

Reduces DRAM usage & opens up pareto-optimal
tradeoffs b/w capacity and lifetime



Evaluation methodology

15 Applications - DaCapo, GraphChi, SpeclBB
Medium-end server platform

Different inputs for production and advice

Jikes RVM



Emulation on NUMA hardware

App
Jikes RVM
OS

16 hardware threads and 20 MB L3
Use Intel pcm-memory.x to get per-socket write rate .



Lifetime versus DRAM capacity
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PCM Writes
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To optimize for lifetime, use Freq & survivors
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Execution time
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To optimize for performance, use Freq or Dens
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DRAM capacity
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To optimize for DRAM usage, use Dens
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Write rates
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Write-rationing GC makes PCM practical
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Profile-driven write-rationing GC

Allocation site a good predictor of writes

Hybrid memory is inevitable

Static approach beats dynamic
— Better performance
— Reduced DRAM capacity
— Better PCM lifetime
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