7 - .
A0\ UNIVERSITY | Australian

> '
OF CRETE ~—=-/ National

= University

0w N =
¢~:.<“l;%;;’/?"’t el & 1 B .q*. |
£ {‘L‘TC':':’;)" » | §
2 ﬁ.”’i‘i\" A . "1
RedHat N SR |
T30 e I
INSTITUTE OF COMPUTER SCIENCE

SmartSweep: Efficient Space Reclamation in

Tiered Managed Heaps

lacovos G. Kolokasis Konstantinos Delis Shoaib Akram
kolokasis@ics.forth.gr konstdelis@ics.forth.gr shoaib.akram@anu.edu.au
Foivos S. Zakkak Polyvios Pratikakis Angelos Bilas

fzakkak@redhat.com polyvios@ics.forth.gr bilas@ics.forth.gr

Analytics frameworks need large heaps
= Popular big data frameworks running on managed runtimes N

APACHE

Spark

= Jo process large amount of data they need large heaps

= However, scaling DRAM in a single server is costly and impractical

= DRAMis expensive in dollar cost, energy, and power

= Remote memory offers a scalable, cost-efficient way to extend the Java heap

@neoqj

= Useidle memory across remote servers

MPLR 25 2

Garbage collection over remote memory is expensive

= Large remote heaps make GC operations slower and costly Local memory
Page Cache
 Remote scans and compactions amplifies GC overhead (A) é @0
= Significant network traffic[MemLiner 0SDI'22] ﬂ%ﬂ
Remote memory

Managed Heap

000 POAEAOOO

MPLR 25 3

https://www.usenix.org/conference/osdi22/presentation/wang

Garbage collection over remote memory is expensive

= Large remote heaps make GC operations slower and costly Local memory
= Remote scans and compactions amplifies GC overhead QPEG C@aCh:g
= Significant network traffic[MemLiner 0SDI'22] m{mm

Remote memory

» Our approach: Divide heap to local (H1) and remote (H2) 000 0OGOOO
= “Dual-heap” architecture
= Limit GC operations in local memory only e P
= No full scans and compactions over remote heap o0 é --------- ¢
« Up to 177x less network /0 traffic than single-heap e

architectures 000 6OAO

MPLR 25 3

https://www.usenix.org/conference/osdi22/presentation/wang

Garbage collection over remote memory is expensive

= Large remote heaps make GC operations slower and costly Local memory
= Remote scans and compactions amplifies GC overhead QPEG C@aCh:g
= Significant network traffic[MemLiner 0SDI'22] m{mm

Remote memory

» Our approach: Divide heap to local (H1) and remote (H2) 000 0OGOOO
= “Dual-heap” architecture
= Limit GC operations in local memory only e P
= No full scans and compactions over remote heap o0 é --------- ¢
« Up to 177x less network /0 traffic than single-heap e

architectures 000 6OAO

= Challenge:Reclaim space in remote heap promptly
= Otherwise, wasted memory, OOM errors

MPLR 25 3

https://www.usenix.org/conference/osdi22/presentation/wang

SmartSweep: Space reclamation without remote GC scans

JVM = Remote heap is region-based
Local heap (H1) Remote heap (H2) = Treat all objectsin aregion as
a single unit
Region 0 Region N

JVM metadata = Estimate live HZ objects
(H2 regions metadata » Metadata for each H2 region
(local memory)

f f '« Noremote GC scans

H2 card table][H2 liveness map

lmmmmmmmm e l --- = Reclaim HZ regions with garbage
Local rTI1emory = Transfer HZ regions to H1
5 Page Cafhe = GCreclaims dead H2 objects
Remote memory (local memory)

MPLR 25 4

Outline

= Motivation

» Preliminary design
* Finding dead objects without scanning the remote heap
» Reclaiming dead objects in the remote heap
= Maintaining object references in the remote heap

= Preliminary evaluation

= Conclusions & Future work

MPLR 25 5

Finding dead objects without scanning the remote heap

= Estimatinglive objects for each H2 region
= Track forward references(H1 — H2)

Local heap (H1) Remote heap (H2)

MPLR 25

Finding dead objects without scanning the remote heap

= Estimatinglive objects for each H2 region
= Track forward references(H1 — H2)
= Detect changesinreferences inside regions

Local heap (H1) Remote heap (H2)

MPLR 25

Finding dead objects without scanning the remote heap

= Estimatinglive objects for each H2 region
= Track forward references(H1 — H2)
= Detect changesinreferences inside regions

= Forforward references we use spatial information
= Simple reference counting — misleading results

Local heap (H1) Remote heap (H2)

MPLR 25

Finding dead objects without scanning the remote heap

= Estimating live objects for each HZ region Local heap (H1) Remote heap (H2)

= Track forward references (H1— H2)

= Detect changesinreferences inside regions

= Simple reference counting — misleading results

= Use aliveness map (1byte per 4 KB H2 segment) Liveness map

= For forward references we use spatial information
= Dirty the byte that correspond to the fwd ref.

1
1
1
|
1
1
1
|
1
1
1
|
1
1
JVM metadata (local DRAM) !
1
1
1
|
1
1
1
|
1
1
1
|
1

MPLR 25 6

Finding dead objects without scanning the remote heap

= Estimatinglive objects for each H2 region

Local heap (H1) Remote heap (H2)

—

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
| JVM metadata (local DRAM) !
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

= Track forward references (H1— H2)

= Detect changesinreferences inside regions

= Forforward references we use spatial information
= Simple reference counting — misleading results

= Use aliveness map (1byte per 4 KB H2 segment) Liveness map

= Dirty the byte that correspond to the fwd ref.

Card table

* Forinter-region references we track the updates =~~~ """"""""""""-"omommommoommooes
= Use acard table(one byte per 4 KB H2 segment)
= Record mutator threads updates
= Count the number of dirty cards — reveal reference changes

MPLR 25 6

= Score each H2 region using Local heap (H1) Remote heap (H2)

= L: #dirty bytesinliveness map / # region obj

= [D: #dirty cards perregion

=
-— -——
g > g)
I v \
\ 1\ 1
\ ’ \ ’
e d e

= We define a threshold (U):
» Score(Ri)<U: Riis queued for transfer

JVM metadata (local DRAM)

Liveness map

Card table

1 L
2 D

L
D

Regions metadata

MPLR 25 7

Reclaim dead objects in the remote heap without compactions

= Score each H2 region using
= L: #dirty bytesinliveness map / # region obj
= [D: #dirty cards perregion

= We define a threshold (U):
» Score(Ri)<U: Riis queued for transfer

= Toavoid in-place compactions
= Transferregions from H2 to H

Local heap (H1)

Remote heap (H2)

Local heap (H1)

Remote heap (H2)

=
g D
f \
\ 1
\ ’
~__~

~ - ~
N \
v \
[1
V2EERN ’
he 4 e o4

Local heap (H1)

= Next GC cycle: GC reclaims the dead objects

(ﬁ [o

Remote heap (H2)

= GC transfers live H2 objects back to H2

/

= For H2 regions full of garbage we just zero their metadata

MPLR 25

Maintaining cross-region and cross-heap references

= Nalve fix: move the region’s entire transitive closure
= Too expensive when dependencies are widespread

= SmartSweep’s placement strategy
= Put the transitive closure of an object into a separate region
= =70 % of HZ regions are referenced by less than 2 other regions
= Limited connectivity — cheaper to patch in place

= Future work: Maintain a cross-region remember sets for each region
= Updated during GC and via JIT post-write barriers

MPLR 25 8

Outline

= Motivation

= Preliminary design
* Finding dead objects without scanning H2
= Reclaim space in H2
= Maintaining cross-region references

= Preliminary evaluation

= Conclusions & Future work

MPLR 25 9

Preliminary implementation

* We implement SmartSweep on top of TeraHeap (ASPLOS '23)in OpendJDK 17
= TeraHeap is the state-of-the-art dual heap architecture

« Organize objects into regions and reclaim regions when all objects are dead
= Suitable for large and low-cost capacity storage devices
- Impractical for limited remote memory, resulting in OOM errors

= Qur prototype moves to HZ only primitive and leaf objects
= Only forward references(H1— H2)
= Primitive and leaf objects occupy > 70% of the Java heap in Spark and Neo4j-GDS
= Confirms that our prototype captures the dominant memory behavior

= SmartSweep accesses remote memory via NVMe-over-fabric (NVMe-oF) via MMIO

MPLR 25 10

https://dl.acm.org/doi/10.1145/3582016.3582045

Preliminary evaluation

= Experimental platform:

= 4 dual-socket servers with Intel Xeon E5-2630 v3 CPUs (2.4 GHz, 8 cores/ 16
threads each — 32 threads total per node)

= 256 GB DDR4 DRAM per server
= Ubuntu 24.02 with Linux kernel 5.14

= Configuration:
= 1serverruns the application; 3 servers act as remote memory (NVMe-oF)
» Spark 3.3.0 with 1executor and 8 mutator threads
= Neo4j-GDS with 4 mutator threads (community edition limit)
= 8 GC threads in all configurations

MPLR 25 1

SmartSweep reduces wasted space without hurting performance

= SmartSweep achieves comparable performance with TeraHeap

= SmartSweep reduces space waste by 507%

3500 1 50000 - -
4 | | —_
3000 1 [/ 22] at:e:ec = Teraheap
O 77 'O < 40000 - . SmartSweep
v 2500 - Major GC %
= 2000 1 7 & 30000 -
S 7/ e
£ 15001 9% 4 3, 20000 A
O e ©
> 1000 A - | \
L © 1 - \
i & 10000 |
N [\
0 T 0 1 9-4-€ -
TS TS T6 TS5 TS -

0 1000 2000 3000

LR LgR SVD TC CDLP Time (seconds)

MPLR 25 12

Transfer threshold affects GC overhead

Low U —less reclamation, lower cost - = Alive == == Garbage

High U — aggressive reclamation, higher GC cost
= [ransferto Hl more live HZ objects

100

n
o

Objects Transferred (Gb)

= Increase memory pressure in H1

U3 us u10 U30

The threshold value directly affects GC overhead Other W Major GC [Minor GC

4000

S0, we need a dynamic threshold selection —

2000

Time (sec)

“"HE B
ou-u
us U1

Teraheap U3 0 u30

MPLR 25 13

Conclusions & Future work

= Dual-heap architecture can deal with large GC cost in remote managed heaps
= But, they need to reclaim space in remote memory promptly

= We propose SmartSweep
» Estimate the amount of garbage objects per region
= Move regions with large amount of garbage from H2 to HT

= SmartSweep cuts wasted space by half and stays just as fast as TeraHeap

= For future work
= Support for dynamic transfer threshold & and reclaim objects with references in H2

= Evaluation with CXL and compressed-DRAM

MPLR 25 A

Thank you!
Ouestions?

lacovos G. Kolokasis
kolokasis@ics.forth.gr
jackkolokasis.com

We thankfully acknowledge the support of the European Commision projects AERO (GA No 10048318), EUPEX (GA No 101033975) through the
European High-Performance Computing Joint Undertaking (JU), and VMware's University Research Fund.

