
SmartSweep: Efficient Space Reclamation in
Tiered Managed Heaps

Iacovos G. Kolokasis
kolokasis@ics.forth.gr

Foivos S. Zakkak
fzakkak@redhat.com

Shoaib Akram
shoaib.akram@anu.edu.au

Polyvios Pratikakis
polyvios@ics.forth.gr

Angelos Bilas
bilas@ics.forth.gr

UNIVERSITY
OF CRETE

Konstantinos Delis
konstdelis@ics.forth.gr

2

Analytics frameworks need large heaps

MPLR ’25

▪ Popular big data frameworks running on managed runtimes

▪ To process large amount of data they need large heaps

▪ However, scaling DRAM in a single server is costly and impractical
▪ DRAM is expensive in dollar cost, energy, and power

▪ Remote memory offers a scalable, cost-efficient way to extend the Java heap
▪ Use idle memory across remote servers

3

Garbage collection over remote memory is expensive

MPLR ’25

Local memory

Remote memory

A B C D E F G H I
Managed Heap

A B C D
Page Cache

▪ Large remote heaps make GC operations slower and costly
▪ Remote scans and compactions amplifies GC overhead
▪ Significant network traffic [MemLiner OSDI’22] High I/O

https://www.usenix.org/conference/osdi22/presentation/wang

3

Garbage collection over remote memory is expensive

MPLR ’25

Local memory

Remote memory

A B C D E F G H I
Managed Heap

A B C D
Page Cache

▪ Large remote heaps make GC operations slower and costly
▪ Remote scans and compactions amplifies GC overhead
▪ Significant network traffic [MemLiner OSDI’22]

▪ Our approach: Divide heap to local (H1) and remote (H2)
▪ “Dual-heap” architecture
▪ Limit GC operations in local memory only
▪ No full scans and compactions over remote heap
▪ Up to 177x less network I/O traffic than single-heap

architectures

High I/O

Local memory

Remote memory

D E F G H I
Remote heap

Local heap
A B C

Page cache
D E

https://www.usenix.org/conference/osdi22/presentation/wang

3

Garbage collection over remote memory is expensive

MPLR ’25

Local memory

Remote memory

A B C D E F G H I
Managed Heap

A B C D
Page Cache

▪ Large remote heaps make GC operations slower and costly
▪ Remote scans and compactions amplifies GC overhead
▪ Significant network traffic [MemLiner OSDI’22]

▪ Our approach: Divide heap to local (H1) and remote (H2)
▪ “Dual-heap” architecture
▪ Limit GC operations in local memory only
▪ No full scans and compactions over remote heap
▪ Up to 177x less network I/O traffic than single-heap

architectures

▪ Challenge:Reclaim space in remote heap promptly
▪ Otherwise, wasted memory, OOM errors

High I/O

Local memory

Remote memory

D E F G H I
Remote heap

Local heap
A B C

Page cache
D E

https://www.usenix.org/conference/osdi22/presentation/wang

4

SmartSweep: Space reclamation without remote GC scans

MPLR ‘25

JVM

…

Local heap (H1) Remote heap (H2)

Region 0 Region N

JVM metadata
H2 regions metadata

H2 card table H2 liveness map

Local memory

Remote memory

Page cache

▪ Remote heap is region-based
▪ Treat all objects in a region as

a single unit

▪ No remote GC scans
▪ Estimate live H2 objects
▪ Metadata for each H2 region

(local memory)

▪ Reclaim H2 regions with garbage
▪ Transfer H2 regions to H1
▪ GC reclaims dead H2 objects

(local memory)

Outline

5MPLR ‘25

▪ Motivation

▪ Preliminary design
▪ Finding dead objects without scanning the remote heap
▪ Reclaiming dead objects in the remote heap
▪ Maintaining object references in the remote heap

▪ Preliminary evaluation

▪ Conclusions & Future work

Finding dead objects without scanning the remote heap
▪ Estimating live objects for each H2 region

▪ Track forward references (H1 → H2)

6MPLR ‘25

B C D E

Local heap (H1) Remote heap (H2)

A F G H

Finding dead objects without scanning the remote heap
▪ Estimating live objects for each H2 region

▪ Track forward references (H1 → H2)
▪ Detect changes in references inside regions

6MPLR ‘25

B C D E

Local heap (H1) Remote heap (H2)

A F G H

Finding dead objects without scanning the remote heap
▪ Estimating live objects for each H2 region

▪ Track forward references (H1 → H2)
▪ Detect changes in references inside regions

▪ For forward references we use spatial information
▪ Simple reference counting → misleading results

6MPLR ‘25

B C D E

Local heap (H1) Remote heap (H2)

A F G H

Finding dead objects without scanning the remote heap
▪ Estimating live objects for each H2 region

▪ Track forward references (H1 → H2)
▪ Detect changes in references inside regions

▪ For forward references we use spatial information
▪ Simple reference counting → misleading results
▪ Use a liveness map (1 byte per 4 KB H2 segment)
▪ Dirty the byte that correspond to the fwd ref.

6MPLR ‘25

B C D E

Local heap (H1) Remote heap (H2)

A F G H

Liveness map

JVM metadata (local DRAM)

Finding dead objects without scanning the remote heap
▪ Estimating live objects for each H2 region

▪ Track forward references (H1 → H2)
▪ Detect changes in references inside regions

▪ For forward references we use spatial information
▪ Simple reference counting → misleading results
▪ Use a liveness map (1 byte per 4 KB H2 segment)
▪ Dirty the byte that correspond to the fwd ref.

▪ For inter-region references we track the updates
▪ Use a card table (one byte per 4 KB H2 segment)
▪ Record mutator threads updates
▪ Count the number of dirty cards → reveal reference changes

6MPLR ‘25

B C D E

Local heap (H1) Remote heap (H2)

A F G H

Liveness map

JVM metadata (local DRAM)

Card table

D E G

Reclaim dead objects in the remote heap without compactions
▪ Score each H2 region using

▪ L: # dirty bytes in liveness map / # region obj
▪ D: # dirty cards per region

▪ We define a threshold (U):
▪ Score(Ri) < U: Ri is queued for transfer

7MPLR ‘25

B C D E

Local heap (H1) Remote heap (H2)

A F G H

Liveness map

JVM metadata (local DRAM)

Card table

L = 1
D = 2

L = 2
D = 1

Regions metadata

Reclaim dead objects in the remote heap without compactions
▪ Score each H2 region using

▪ L: # dirty bytes in liveness map / # region obj
▪ D: # dirty cards per region

▪ We define a threshold (U):
▪ Score(Ri) < U: Ri is queued for transfer

▪ To avoid in-place compactions
▪ Transfer regions from H2 to H1
▪ Next GC cycle: GC reclaims the dead objects
▪ GC transfers live H2 objects back to H2

▪ For H2 regions full of garbage we just zero their metadata

7MPLR ‘25

B C D E

Local heap (H1) Remote heap (H2)

A F G H

B C D E

Local heap (H1) Remote heap (H2)

A F G H

B C

Local heap (H1) Remote heap (H2)

A F G H

Maintaining cross-region and cross-heap references
▪ Naïve fix: move the region’s entire transitive closure

▪ Too expensive when dependencies are widespread

▪ SmartSweep’s placement strategy
▪ Put the transitive closure of an object into a separate region
▪ ≈ 70 % of H2 regions are referenced by less than 2 other regions
▪ Limited connectivity → cheaper to patch in place

▪ Future work: Maintain a cross-region remember sets for each region
▪ Updated during GC and via JIT post-write barriers

8MPLR ‘25

Outline

9MPLR ‘25

▪ Motivation

▪ Preliminary design
▪ Finding dead objects without scanning H2
▪ Reclaim space in H2
▪ Maintaining cross-region references

▪ Preliminary evaluation

▪ Conclusions & Future work

Preliminary implementation
▪ We implement SmartSweep on top of TeraHeap (ASPLOS ‘23) in OpenJDK 17

▪ TeraHeap is the state-of-the-art dual heap architecture
■ Organize objects into regions and reclaim regions when all objects are dead
■ Suitable for large and low-cost capacity storage devices
■ Impractical for limited remote memory, resulting in OOM errors

▪ Our prototype moves to H2 only primitive and leaf objects
▪ Only forward references (H1 → H2)
▪ Primitive and leaf objects occupy > 70% of the Java heap in Spark and Neo4j-GDS
▪ Confirms that our prototype captures the dominant memory behavior

▪ SmartSweep accesses remote memory via NVMe-over-fabric (NVMe-oF) via MMIO

10MPLR ‘25

https://dl.acm.org/doi/10.1145/3582016.3582045

Preliminary evaluation
▪ Experimental platform:

▪ 4 dual-socket servers with Intel Xeon E5-2630 v3 CPUs (2.4 GHz, 8 cores / 16
threads each → 32 threads total per node)

▪ 256 GB DDR4 DRAM per server
▪ Ubuntu 24.02 with Linux kernel 5.14

▪ Configuration:
▪ 1 server runs the application; 3 servers act as remote memory (NVMe-oF)
▪ Spark 3.3.0 with 1 executor and 8 mutator threads
▪ Neo4j-GDS with 4 mutator threads (community edition limit)
▪ 8 GC threads in all configurations

11MPLR ‘25

▪ SmartSweep achieves comparable performance with TeraHeap

▪ SmartSweep reduces space waste by 50%

SmartSweep reduces wasted space without hurting performance

12MPLR ‘25

▪ Low U →less reclamation, lower cost

▪ High U → aggressive reclamation, higher GC cost
■ Transfer to H1 more live H2 objects
■ Increase memory pressure in H1

▪ The threshold value directly affects GC overhead

▪ So, we need a dynamic threshold selection

Transfer threshold affects GC overhead

13MPLR ‘25

▪ Dual-heap architecture can deal with large GC cost in remote managed heaps

▪ But, they need to reclaim space in remote memory promptly

▪ We propose SmartSweep
▪ Estimate the amount of garbage objects per region
▪ Move regions with large amount of garbage from H2 to H1

▪ SmartSweep cuts wasted space by half and stays just as fast as TeraHeap

▪ For future work
▪ Support for dynamic transfer threshold & and reclaim objects with references in H2
▪ Evaluation with CXL and compressed-DRAM

14MPLR ‘25

Conclusions & Future work

Thank you!
Questions?

Iacovos G. Kolokasis
kolokasis@ics.forth.gr

jackkolokasis.com

We thankfully acknowledge the support of the European Commision projects AERO (GA No 10048318), EUPEX (GA No 101033975) through the
European High-Performance Computing Joint Undertaking (JU), and VMware’s University Research Fund.

