
Shoaib Akram
shoaib.akram@anu.edu.au

§ Selection of slides and inspiration from two (great) sources

§ Onur Mutlu (ETH Zurich)
§ Digital Design and Computer Architecture course
§ VLIW and compiler techniques for ILP exploitation
§ The much-loved “camel humps” slide

§ Eric Rotenberg (North Carolina State University)
§ HiPEAC summer school (2015)
§ Out-of-order Scoreboard/ROB illustrations for which countless

ANU students are grateful

Acknowledgements

§ Von Neumann model is inherently a sequential programming
model

§ High performance requires executing many instructions each
clock cycle

§ Parallelism in modern machines
§ Pipelining
§ Spatial duplication

§ Key problem: identifying independent instructions for concurrent
execution

Introduction

Intel Yonah
2006
Core 2

Intel Nehalem
2008
Core i5, i7

Intel Sandy Bridge
2010
Core i5, i7

https://en.wikichip.org/wiki/intel/microarchitectures/sandy_bridge_(client)

Fundamentals

Von Neumann Model

Stored program

Sequential instruction processing

Von Neumann vs. Dataflow
n Consider a Von Neumann program

q What is the significance of the program order?
q What is the significance of the storage locations?

9

v = a + b;
w = b * 2;
x = v - w
y = v + w
z = x * y

+ *2

- +

*

a b

z

Sequential

Dataflow

Which model is more natural to you as a programmer?

a, b are the only inputs
z is the only output

The von Neumann Model
n All major instruction set architectures today use this model

q x86, ARM, MIPS, SPARC, Alpha, POWER, RISC-V, …

n Underneath (at the microarchitecture level), the execution
model of almost all implementations (or, microarchitectures)
is very different
q Pipelined instruction execution
q Multiple instructions at a time
q Out-of-order execution
q Separate instruction and data caches

n But, what happens underneath that is not consistent with
the von Neumann model is not exposed to software
q Difference between ISA and microarchitecture

10

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

Automotive Pipeline

Cookie Pipeline

Time (mins)

0

Ben 1

5 10 15 20 25

Ben 1

30 35 40 45 50 55 60

Ben 2 Ben 2
Ben 3 Ben 3

Ben 1 Ben 1
Ben 2 Ben 2

Ben 3 Ben 3
Ben 4

Sequential Laundry
Time

Alice

Bob

Tim

Wash Dry Fold Hang

A new load begins every 2 hours

6
PM

8
PM

Pipelined Laundry
Time

Alice

Bob

Tim

q A new load begins every 30 mins
q 120 mins divided by 4
q Speed-up of 4!

6
PM

8
PM

6:
30

Recall: Cookie Parallelism
§ Ben and Jon are making cookies. Let’s study the latency and

throughput of rolling and baking many cookie trays with

§ No parallelism

§ Spatial parallelism

§ Pipelining

§ Spatial parallelism + pipelining

Spatial Parallelism (Ben & Jon)

Time (mins)

0

Ben 1

5 10 15 20 25

Ben 1

30 35 40 45 50 55

Jon 1 Jon 1

60

Ben 2 Ben 2
Jon 2 Jon 2

Ben 3 Ben 3
Jon 3 Jon 3

Pipelining (Ben Only)

Time (mins)

0

Ben 1

5 10 15 20 25

Ben 1

30 35 40 45 50 55 60

Ben 2 Ben 2
Ben 3 Ben 3

Ben 4

Spatial + Temporal Parallelism

Time (mins)

0

Ben 1

5 10 15 20 25

Ben 1

30 35 40 45 50 55

Jon 1 Jon 1

60

Ben 2 Ben 2
Jon 2 Jon 2

Ben 3 Ben 3
Jon 3 Jon 3

Ben 4
Jon 4

Recall: Pipelining
§ If a task of latency L is broken into N stages, and all stages are

of equal length, then the throughput is N/L

§ The challenge of pipelining is to find stages of equal length

§ Let’s go back to baking cookies

Arbitrary
Circuit

Tc

Arbitrary
Circuit

Tc

§ Divide a large combinational circuit into shorter stages

§ Insert registers between the stages

§ The outputs of one stage are copied into a register and communicated
to the next stage

§ Run the pipelined circuit at a higher clock frequency

§ Each clock cycle, data flows through the pipeline from left to the right

§ Multiple tasks can be spread across the pipeline

Recall: Pipelining Circuits

Single-Cycle Processor

ExtImm

CLK

A RD

Instruction
Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

0

1

A RD

Data
Memory
WD

WE

1

0

PC1

0
PC'

In
str

19:16

15:12

23:0

SrcB

ALUResult ReadData

WriteData

SrcA

PCPlus4

Result

CLK

AL
U

PCPlus8
R15

3:0

+

4

15
RA1

RA2

Extend

0

1

0

1

ExtImmE

CLK

A RD

Instruction
Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

0

1

A RD

Data
Memory
WD

WE

1

0

PCF1

0
PC'

In
strD

19:16

15:12

23:0

SrcBE

ALUResultE ReadDataW

WriteDataE

SrcAE

PCPlus4F

ResultW

CLK

AL
U

PCPlus8
R15

3:0

+

4

15
RA1D

RA2D

Extend

0

1

0

1

CLK CLK CLK CLK

Fetch Decode Execute Memory Writeback

In
strF

ALUOutM ALUOutW

WA3D

Single-Cycle

Pipelined

Pipelined Processor

ExtIm
m
E

CLK

A RD

Instruction
Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

0
1

A RD
Data

Memory
WD

WE

1
0

PCFPC'

InstrD

19:16

15:12

23:0

25:20

SrcBE

ALUResultE ReadDataW

WriteDataE

SrcAE

PCPlus4F

ResultW

27:26

ImmSrcD

MemWriteD
MemtoRegD

ALUSrcD

RegWriteD

Op
Funct

Control
Unit

ALUFlags
CLK

ALUControlD

AL
U

PCPlus8D

R15

3:0

31:28

FlagWriteD

15:12 Rd

15
RA1D

RA2D

0 1

Extend

0
1

0
1

R
egSrcD

CLK

InstrF

CLK

ALUOutM ALUOutW
WA3E WA3M WA3W

CLK CLK

MemWriteE
MemtoRegE

ALUSrcE

RegWriteE

ALUControlE
MemWriteM
MemtoRegM
RegWriteM

MemtoRegW
RegWriteW

BranchD

FlagsE

FlagWriteE

BranchE

CondE

C
ondExE

1
0

PCSrcD PCSrcE PCSrcM PCSrcW

Flags'
Cond
Unit

StallingSuperscalar: Idea and Datapath
§ Multiple copies of datapath hardware to execute instructions simultaneously
§ Example: 2-way superscalar fetches and executes 2 instructions per cycle

§ Requires 6-ported register file (4 reads, 2 writes), 2 ALUs, 2-ported data memory
§ Ideal CPI = 0.5 and IPC = 2
§ Dependencies and hazards inhibit ideal IPC
§ Above figure does not show forwarding and hazard detection logic

StallingSuperscalar: Impact of Dependencies
§ Example of program with data dependences

§ The program requires 5 cycles to issue six instructions with an IPC
of 1.2

StallingSuperscalar: Important Features
§ Forwarding logic to steer results to ALU early (bypassing register file)

§ Hazard detection logic to stall pipeline to respect true dependences

§ Compiler can do “static scheduling” by analyzing code (simple machine)
§ Trace scheduling
§ Superblock, hyperblock
§ VLIW
§ Compiler can add fix-up code when scheduling past a basic block or have

support from ISA
§ Instructions that trigger recovery from misspeculation

Pipelining: Simplified View

F D E M W
C1 C2 C3 C4 C5 C6 C7 C8

F D E M W
F D E M W

F D E M W
F D E M W

F D E M W

I1
I2
I3
I4à

Insts

27

Pipeline Operation

I1: ADD R0, R5, #10
I2: ADD R1, R5, #10
I3: ADD R2, R5, #10
I4: STR R0, [R7, #4]
I5: STR R1, [R7, #8]
I6: STR R2, [R7, #12]

§ Consider the example instruction sequence

28

ExtImm

CLK

A RD

Instruction
Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

0

1

A RD

Data
Memory
WD

WE

1

0

PC1

0
PC'

In
str

19:16

15:12

23:0

SrcB

ALUResult ReadData

WriteData

SrcA

PCPlus4

Result

CLK

AL
U

PCPlus8
R15

3:0

+

4

15
RA1

RA2

Extend

0

1

0

1

ExtImmE

CLK

A RD

Instruction
Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

0

1

A RD

Data
Memory
WD

WE

1

0

PCF1

0
PC'

In
strD

19:16

15:12

23:0

SrcBE

ALUResultE ReadDataW

WriteDataE

SrcAE

PCPlus4F

ResultW

CLK

AL
U

PCPlus8
R15

3:0

+

4

15
RA1D

RA2D

Extend

0

1

0

1

CLK CLK CLK CLK

Fetch Decode Execute Memory Writeback

In
strF

ALUOutM ALUOutW

WA3D

Single-Cycle

Pipelined

Pipeline Operation: Cycle 1

I1

q Is the pipeline fully utilized? NO

29

ExtImm

CLK

A RD

Instruction
Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

0

1

A RD

Data
Memory
WD

WE

1

0

PC1

0
PC'

In
str

19:16

15:12

23:0

SrcB

ALUResult ReadData

WriteData

SrcA

PCPlus4

Result

CLK

AL
U

PCPlus8
R15

3:0

+

4

15
RA1

RA2

Extend

0

1

0

1

ExtImmE

CLK

A RD

Instruction
Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

0

1

A RD

Data
Memory
WD

WE

1

0

PCF1

0
PC'

In
strD

19:16

15:12

23:0

SrcBE

ALUResultE ReadDataW

WriteDataE

SrcAE

PCPlus4F

ResultW

CLK

AL
U

PCPlus8
R15

3:0

+

4

15
RA1D

RA2D

Extend

0

1

0

1

CLK CLK CLK CLK

Fetch Decode Execute Memory Writeback

In
strF

ALUOutM ALUOutW

WA3D

Single-Cycle

Pipelined

Pipeline Operation: Cycle 2

I2 I1

q Is the pipeline fully utilized? NO

30

ExtImm

CLK

A RD

Instruction
Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

0

1

A RD

Data
Memory
WD

WE

1

0

PC1

0
PC'

In
str

19:16

15:12

23:0

SrcB

ALUResult ReadData

WriteData

SrcA

PCPlus4

Result

CLK

AL
U

PCPlus8
R15

3:0

+

4

15
RA1

RA2

Extend

0

1

0

1

ExtImmE

CLK

A RD

Instruction
Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

0

1

A RD

Data
Memory
WD

WE

1

0

PCF1

0
PC'

In
strD

19:16

15:12

23:0

SrcBE

ALUResultE ReadDataW

WriteDataE

SrcAE

PCPlus4F

ResultW

CLK

AL
U

PCPlus8
R15

3:0

+

4

15
RA1D

RA2D

Extend

0

1

0

1

CLK CLK CLK CLK

Fetch Decode Execute Memory Writeback

In
strF

ALUOutM ALUOutW

WA3D

Single-Cycle

Pipelined

Pipeline Operation: Cycle 3

I3 I2 I1

q Is the pipeline fully utilized? NO

31

ExtImm

CLK

A RD

Instruction
Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

0

1

A RD

Data
Memory
WD

WE

1

0

PC1

0
PC'

In
str

19:16

15:12

23:0

SrcB

ALUResult ReadData

WriteData

SrcA

PCPlus4

Result

CLK

AL
U

PCPlus8
R15

3:0

+

4

15
RA1

RA2

Extend

0

1

0

1

ExtImmE

CLK

A RD

Instruction
Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

0

1

A RD

Data
Memory
WD

WE

1

0

PCF1

0
PC'

In
strD

19:16

15:12

23:0

SrcBE

ALUResultE ReadDataW

WriteDataE

SrcAE

PCPlus4F

ResultW

CLK

AL
U

PCPlus8
R15

3:0

+

4

15
RA1D

RA2D

Extend

0

1

0

1

CLK CLK CLK CLK

Fetch Decode Execute Memory Writeback

In
strF

ALUOutM ALUOutW

WA3D

Single-Cycle

Pipelined

Pipeline Operation: Cycle 4

I4 I3 I2 I1

q Is the pipeline fully utilized? NO

32

ExtImm

CLK

A RD

Instruction
Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

0

1

A RD

Data
Memory
WD

WE

1

0

PC1

0
PC'

In
str

19:16

15:12

23:0

SrcB

ALUResult ReadData

WriteData

SrcA

PCPlus4

Result

CLK

AL
U

PCPlus8
R15

3:0

+

4

15
RA1

RA2

Extend

0

1

0

1

ExtImmE

CLK

A RD

Instruction
Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

0

1

A RD

Data
Memory
WD

WE

1

0

PCF1

0
PC'

In
strD

19:16

15:12

23:0

SrcBE

ALUResultE ReadDataW

WriteDataE

SrcAE

PCPlus4F

ResultW

CLK

AL
U

PCPlus8
R15

3:0

+

4

15
RA1D

RA2D

Extend

0

1

0

1

CLK CLK CLK CLK

Fetch Decode Execute Memory Writeback

In
strF

ALUOutM ALUOutW

WA3D

Single-Cycle

Pipelined

Pipeline Operation: Cycle 5

I5 I4 I3 I2 I1

q Is the pipeline fully utilized? YES

33

ExtImm

CLK

A RD

Instruction
Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

0

1

A RD

Data
Memory
WD

WE

1

0

PC1

0
PC'

In
str

19:16

15:12

23:0

SrcB

ALUResult ReadData

WriteData

SrcA

PCPlus4

Result

CLK

AL
U

PCPlus8
R15

3:0

+

4

15
RA1

RA2

Extend

0

1

0

1

ExtImmE

CLK

A RD

Instruction
Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

0

1

A RD

Data
Memory
WD

WE

1

0

PCF1

0
PC'

In
strD

19:16

15:12

23:0

SrcBE

ALUResultE ReadDataW

WriteDataE

SrcAE

PCPlus4F

ResultW

CLK

AL
U

PCPlus8
R15

3:0

+

4

15
RA1D

RA2D

Extend

0

1

0

1

CLK CLK CLK CLK

Fetch Decode Execute Memory Writeback

In
strF

ALUOutM ALUOutW

WA3D

Single-Cycle

Pipelined

Pipeline Operation: Cycle 6

I6 I5 I4 I3 I2

q Is the pipeline fully utilized? YES

34

ExtImm

CLK

A RD

Instruction
Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

0

1

A RD

Data
Memory
WD

WE

1

0

PC1

0
PC'

In
str

19:16

15:12

23:0

SrcB

ALUResult ReadData

WriteData

SrcA

PCPlus4

Result

CLK

AL
U

PCPlus8
R15

3:0

+

4

15
RA1

RA2

Extend

0

1

0

1

ExtImmE

CLK

A RD

Instruction
Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

0

1

A RD

Data
Memory
WD

WE

1

0

PCF1

0
PC'

In
strD

19:16

15:12

23:0

SrcBE

ALUResultE ReadDataW

WriteDataE

SrcAE

PCPlus4F

ResultW

CLK

AL
U

PCPlus8
R15

3:0

+

4

15
RA1D

RA2D

Extend

0

1

0

1

CLK CLK CLK CLK

Fetch Decode Execute Memory Writeback

In
strF

ALUOutM ALUOutW

WA3D

Single-Cycle

Pipelined

Pipeline Operation: Cycle 7

I6 I5 I4 I3

q Is the pipeline fully utilized? NO

35

ExtImm

CLK

A RD

Instruction
Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

0

1

A RD

Data
Memory
WD

WE

1

0

PC1

0
PC'

In
str

19:16

15:12

23:0

SrcB

ALUResult ReadData

WriteData

SrcA

PCPlus4

Result

CLK

AL
U

PCPlus8
R15

3:0

+

4

15
RA1

RA2

Extend

0

1

0

1

ExtImmE

CLK

A RD

Instruction
Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

0

1

A RD

Data
Memory
WD

WE

1

0

PCF1

0
PC'

In
strD

19:16

15:12

23:0

SrcBE

ALUResultE ReadDataW

WriteDataE

SrcAE

PCPlus4F

ResultW

CLK

AL
U

PCPlus8
R15

3:0

+

4

15
RA1D

RA2D

Extend

0

1

0

1

CLK CLK CLK CLK

Fetch Decode Execute Memory Writeback

In
strF

ALUOutM ALUOutW

WA3D

Single-Cycle

Pipelined

Pipeline Operation: Cycle 8

I6 I5 I4

q Is the pipeline fully utilized? NO

36

ExtImm

CLK

A RD

Instruction
Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

0

1

A RD

Data
Memory
WD

WE

1

0

PC1

0
PC'

In
str

19:16

15:12

23:0

SrcB

ALUResult ReadData

WriteData

SrcA

PCPlus4

Result

CLK

AL
U

PCPlus8
R15

3:0

+

4

15
RA1

RA2

Extend

0

1

0

1

ExtImmE

CLK

A RD

Instruction
Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

0

1

A RD

Data
Memory
WD

WE

1

0

PCF1

0
PC'

In
strD

19:16

15:12

23:0

SrcBE

ALUResultE ReadDataW

WriteDataE

SrcAE

PCPlus4F

ResultW

CLK

AL
U

PCPlus8
R15

3:0

+

4

15
RA1D

RA2D

Extend

0

1

0

1

CLK CLK CLK CLK

Fetch Decode Execute Memory Writeback

In
strF

ALUOutM ALUOutW

WA3D

Single-Cycle

Pipelined

Pipeline Operation: Cycle 9

I6 I5

q Is the pipeline fully utilized? NO

37

ExtImm

CLK

A RD

Instruction
Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

0

1

A RD

Data
Memory
WD

WE

1

0

PC1

0
PC'

In
str

19:16

15:12

23:0

SrcB

ALUResult ReadData

WriteData

SrcA

PCPlus4

Result

CLK

AL
U

PCPlus8
R15

3:0

+

4

15
RA1

RA2

Extend

0

1

0

1

ExtImmE

CLK

A RD

Instruction
Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

0

1

A RD

Data
Memory
WD

WE

1

0

PCF1

0
PC'

In
strD

19:16

15:12

23:0

SrcBE

ALUResultE ReadDataW

WriteDataE

SrcAE

PCPlus4F

ResultW

CLK

AL
U

PCPlus8
R15

3:0

+

4

15
RA1D

RA2D

Extend

0

1

0

1

CLK CLK CLK CLK

Fetch Decode Execute Memory Writeback

In
strF

ALUOutM ALUOutW

WA3D

Single-Cycle

Pipelined

Pipeline Operation: Cycle 10

I6

q Is the pipeline fully utilized? NO

38

ExtImm

CLK

A RD

Instruction
Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

0

1

A RD

Data
Memory
WD

WE

1

0

PC1

0
PC'

In
str

19:16

15:12

23:0

SrcB

ALUResult ReadData

WriteData

SrcA

PCPlus4

Result

CLK

AL
U

PCPlus8
R15

3:0

+

4

15
RA1

RA2

Extend

0

1

0

1

ExtImmE

CLK

A RD

Instruction
Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

0

1

A RD

Data
Memory
WD

WE

1

0

PCF1

0
PC'

In
strD

19:16

15:12

23:0

SrcBE

ALUResultE ReadDataW

WriteDataE

SrcAE

PCPlus4F

ResultW

CLK

AL
U

PCPlus8
R15

3:0

+

4

15
RA1D

RA2D

Extend

0

1

0

1

CLK CLK CLK CLK

Fetch Decode Execute Memory Writeback

In
strF

ALUOutM ALUOutW

WA3D

Single-Cycle

Pipelined

Pipeline Operation

q No more instructions to execute

Instruction-Level Parallelism

What is Instruction-Level Parallelism?
§ Since 1985, all processors have used pipelining to overlap the execution of instructions to

improve performance
§ This overlap is termed as instruction-level parallelism (ILP)

§ The main limitation to exploiting high levels of ILP:
§ Data and control dependences in the program
§ Younger instructions “depend” on the results produced by older instructions

§ Historical (ongoing) debate: How best to exploit ILP?
§ Dynamically in hardware (dynamic = during execution)

§ No need to recompile code, portable, transparent, hardware has more knowledge of
program behavior: loop counters, inputs, branch behavior

§ Power, area, energy, security issues (end of Moore’s law, transition to multicore)
§ Statically in software (find parallelism at compile time)

§ Compiler can do whole-program optimizations, inspired innovations in compiler
technology, commercial failure

1 2

1. load $r2, #0($r6)

2. add $r3, $r4, $r5

Example Sequence 1

Two independent instructions

1. load $r2, #0($r6)

2. add $r3, $r2, $r5

Example Sequence 2

A single (dependent) instruction chain

1
2

Data or true dependence
i2 needs the result of i1

1. load $r2, #0($r6)

2. add $r3, $r2, $r5

3. load $r4, #0($r6)

4. add $r7, $r4, $r9

Example Sequence 3

Two independent instruction chains

1
2

Data or true dependence
i2 needs the result of i1
i4 needs the result of i3

3
4

1. load $r2, #0($r6)

2. add $r6, $r3, $r5

Example Sequence 4
False (anti) dependence

i2 needs to write what
i1 needs to read

1 2

Two independent instructions

Limitation of # registers, but ILP exists
Rename register r6 in i2 and execute in parallel

1. load $r2, #0($r6)

2. add $r3, $r2, $r5

3. add $r2, $r7, $r8

Example Sequence 5
Output dependence

i1 and i3 wants to write
to the same register

3

Instruction chain (i1ài2) + independent instruction (i3)

true dependence

1
2

Limitation of # registers, but ILP exists
Rename register r2 in i3 and execute in parallel with the chain

1. load $r2, #0($r6)

2. beq $r1, $r3, #BLAH

3. store $r2, #0($r9)

4. BLAH: store $r2, #0($r10)

Example Sequence 6
Control dependence

Need to wait for the
outcome of i2 to fetch
again

Limitation of control-flow architecture: branches
If we can guess the branch outcome, we can fetch from the
correct path without waiting for the branch to execute

(Note: Ignoring any other
dependences)

Pipeline Hazards
§ When multiple instructions are handled concurrently there is a danger

of hazard

§ Hazards are a part of real life

§ Some coping strategies: Get around, precaution, mitigate harm after

Pipeline Hazards (Three Types)
§ Structural hazard

§ When two instructions want to use the same resource
§ Memory for instructions (F) and data (M)
§ Register file is accessed in two different stages (what are

those?)
§ Data hazard

§ When a dependent instruction wants the result of an earlier
instruction

§ Control hazard
§ When a PC-changing instruction is in the pipeline (why is this a

hazard?)

Dependences and Hazards
§ Dependence is a program’s property
§ Hazard is a microarchitecture property

§ True dependence results in:
§ Read-after-write hazard (RAW)

§ (Name) Anti-dependence results in:
§ Write-after-read hazard (WAR)

§ (Name) Output dependence results in:
§ Write-after-write hazard (WAW)

§ Single-cycle CPU: Each instruction takes one cycle; one instruction at any time
§ None of the dependences result in a hazard

§ In-order pipeline: Multiple instructions in different stages (possibility of RAW)
§ Out-of-order: ALL BETS ARE OFF!

Exploiting ILP: A Taxonomy

Different Approaches, One Goal
§ Ultimate aim of ILP machine

§ Issue multiple instructions in a clock cycle

§ How can we do it?
§ Computer = hardware + software
§ Who can discover ILP more efficiently?

§ Qualified question: Who can find interesting instruction schedules more
efficiently?

§ Three competing approaches
§ Statically scheduled superscalar processors
§ VLIW (very long instruction word processors)
§ Dynamically scheduled superscalar processors

§ VLIW had success in embedded domain. Dynamic scheduling went BIG everywhere!

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

Instruction Scheduling
§ Statically scheduled superscalar processor

§ Compiler schedules instructions during program creation
§ Hardware does no reordering of instructions (sequential unless branch changes PC)
§ Compiler can create “interesting schedules” by doing deep program analysis
§ Schedule is static as it does not change dynamically based on different outcomes of a branch

§ VLIW (Very Long Instruction Word) processor
§ Static scheduling by compiler. Instruction words are very large. Up to 28 insts. in a bundle
§ Compiler does “smart” analysis to construct “interesting” schedules (interesting = high ILP)
§ Conceptually the same as above. “Some differences” in philosophy (smart compiler, dumb hw.)

§ Dynamically scheduled superscalar processor
§ Hardware does scheduling during program execution
§ Can reorder instructions to extract maximum ILP
§ Hardware can construct different “instruction schedules” based on different executions of the

same set of basic blocks (different branch outcomes)

VLIW Philosophy & Principles

53Fisher et al., “Parallel Processing: A Smart Compiler and a Dumb Machine,” CC 1984.

Commercial VLIW Machines
n Multiflow TRACE, Josh Fisher (7-wide, 28-wide)
n Cydrome Cydra 5, Bob Rau
n Transmeta Crusoe: x86 binary-translated into internal VLIW
n TI C6000, Trimedia, STMicro (DSP & embedded processors)

and some ATI/AMD GPUs
q Most successful commercially

n Intel IA-64
q Not fully VLIW, but based on VLIW principles
q EPIC (Explicitly Parallel Instruction Computing)
q Instruction bundles can have dependent instructions
q A few bits in the instruction format specify explicitly which

instructions in the bundle are dependent on which other ones
54

In-Order Pipeline: The Problem

Baseline In-Order Pipeline
§ Let’s first establish that the problem with in-order pipeline is not

resource limitation

§ The problem is in the issue policy

§ Let’s take an aggressive in-order pipeline
§ Non-blocking execute stage

§ Have as many functional units as required

§ In-order issue policy
§ If a younger instruction has a RAW hazard with an older instruction

(must stall and it’s ok!)

§ What about instructions after it?
§ Some of the younger instructions may be independent
§ This is where the problem lies

Baseline In-Order Pipeline

§ Out of order pipeline
§ An instruction stalls if it has a RAW hazard with a previous

instruction (that’s ok)

§ Independent instructions after it do not stall: they may
issue out of program order

§ Two alternatives for handling WAR and WAW

§ Stall the pipeline (in-order-style)

§ Register renaming (optional optimization)

Baseline In-Order Pipeline

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

Assumptions
Scalar:

§ fetch 1 inst/cycle
§ decode 1 inst/cycle
§ issue 1 inst/cycle to a function unit

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

Assumptions
Issue logic:

§ RAW hazard: Instruction stalls if its source registers
are not ready

§ WAW: Instruction stalls if its destination register is
“busy”

§ WAR hazard: Not a problem in in-order pipelines. In-
order issue ensures read by first instruction happens
before write by second instruction

Scenario 1: load miss followed by independent instructions

1 2 3 4 5 6 7 8 9 10 11 12 13
i1 FE
i2
i3
i4

Scenario 1: load miss followed by independent instructions

i1: load r2, #0(r1)

i2: add r4, r3, #1

i3: add r6, r5, #2

i4: add r7, r6, #3

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

i1

1 2 3 4 5 6 7 8 9 10 11 12 13
i1 FE DE
i2 FE
i3
i4

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

i2

i1 Scenario 1: load miss followed by independent instructions

i1: load r2, #0(r1)

i2: add r4, r3, #1

i3: add r6, r5, #2

i4: add r7, r6, #3

1 2 3 4 5 6 7 8 9 10 11 12 13
i1 FE DE RR
i2 FE DE
i3 FE
i4

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

i3

i2

i1

Scenario 1: load miss followed by independent instructions

i1: load r2, #0(r1)

i2: add r4, r3, #1

i3: add r6, r5, #2

i4: add r7, r6, #3

1 2 3 4 5 6 7 8 9 10 11 12 13
i1 FE DE RR EX@

i2 FE DE RR
i3 FE DE
i4 FE

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

i4

i3

i2

i1

Scenario 1: load miss followed by independent instructions

i1: load r2, #0(r1)

i2: add r4, r3, #1

i3: add r6, r5, #2

i4: add r7, r6, #3

1 2 3 4 5 6 7 8 9 10 11 12 13
i1 FE DE RR EX@ EXD$ …miss…
i2 FE DE RR EX
i3 FE DE RR
i4 FE DE

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

i5

i4

i3

i1
i2

miss

Scenario 1: load miss followed by independent instructions

i1: load r2, #0(r1)

i2: add r4, r3, #1

i3: add r6, r5, #2

i4: add r7, r6, #3

1 2 3 4 5 6 7 8 9 10 11 12 13
i1 FE DE RR EX@ EXD$ …miss…
i2 FE DE RR EX WB
i3 FE DE RR EX
i4 FE DE RR

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

i6

i5

i4

i1
i3

miss

i2

Scenario 1: load miss followed by independent instructions

i1: load r2, #0(r1)

i2: add r4, r3, #1

i3: add r6, r5, #2

i4: add r7, r6, #3

1 2 3 4 5 6 7 8 9 10 11 12 13
i1 FE DE RR EX@ EXD$ …miss…
i2 FE DE RR EX WB
i3 FE DE RR EX WB
i4 FE DE RR EX

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

i7

i6

i5

i1
i4

i3

miss

Scenario 1: load miss followed by independent instructions

i1: load r2, #0(r1)

i2: add r4, r3, #1

i3: add r6, r5, #2

i4: add r7, r6, #3

1 2 3 4 5 6 7 8 9 10 11 12 13
i1 FE DE RR EX@ EXD$ …miss…
i2 FE DE RR EX WB
i3 FE DE RR EX WB
i4 FE DE RR EX WB

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

i8

i7

i6

i1
i5

i4

miss

Scenario 1: load miss followed by independent instructions

i1: load r2, #0(r1)

i2: add r4, r3, #1

i3: add r6, r5, #2

i4: add r7, r6, #3

1 2 3 4 5 6 7 8 9 10 11 12 13
i1 FE DE RR EX@ EXD$ …miss… WB
i2 FE DE RR EX WB
i3 FE DE RR EX WB
i4 FE DE RR EX WB

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

i1

Scenario 1: load miss followed by independent instructions

i1: load r2, #0(r1)

i2: add r4, r3, #1

i3: add r6, r5, #2

i4: add r7, r6, #3

Scenario 2: Load miss followed by dependent instruction,
followed by independent instructions

1 2 3 4 5 6 7 8 9 10 11 12 13
i1 FE
i2
i3
i4

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

Scenario 2: load miss followed by dependent instruction, followed by
independent instructions

i1: load r2, #0(r1)

i2: add r4, r2, #1

i3: add r6, r5, #2

i4: add r7, r6, #3

i1

1 2 3 4 5 6 7 8 9 10 11 12 13
i1 FE DE
i2 FE
i3
i4

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

Scenario 2: load miss followed by dependent instruction, followed by
independent instructions

i1: load r2, #0(r1)

i2: add r4, r2, #1

i3: add r6, r5, #2

i4: add r7, r6, #3

i2

i1

1 2 3 4 5 6 7 8 9 10 11 12 13
i1 FE DE RR
i2 FE DE
i3 FE
i4

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

Scenario 2: load miss followed by dependent instruction, followed by
independent instructions

i1: load r2, #0(r1)

i2: add r4, r2, #1

i3: add r6, r5, #2

i4: add r7, r6, #3

i3

i2

i1

1 2 3 4 5 6 7 8 9 10 11 12 13
i1 FE DE RR EX@

i2 FE DE RR
i3 FE DE
i4 FE

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

Scenario 2: load miss followed by dependent instruction, followed by
independent instructions

i1: load r2, #0(r1)

i2: add r4, r2, #1

i3: add r6, r5, #2

i4: add r7, r6, #3

i4

i3

i2

i1

1 2 3 4 5 6 7 8 9 10 11 12 13
i1 FE DE RR EX@ EXD$ …miss…
i2 FE DE RR RR
i3 FE DE DE
i4 FE FE

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

Scenario 2: load miss followed by dependent instruction, followed by
independent instructions

i1: load r2, #0(r1)

i2: add r4, r2, #1

i3: add r6, r5, #2

i4: add r7, r6, #3

i4

i3

i2

i1

1 2 3 4 5 6 7 8 9 10 11 12 13
i1 FE DE RR EX@ EXD$ …miss…
i2 FE DE RR RR RR RR RR RR
i3 FE DE DE DE DE DE DE
i4 FE FE FE FE FE FE

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

Scenario 2: load miss followed by dependent instruction, followed by
independent instructions

i1: load r2, #0(r1)

i2: add r4, r2, #1

i3: add r6, r5, #2

i4: add r7, r6, #3

i4

i3

i2

i1

1 2 3 4 5 6 7 8 9 10 11 12 13
i1 FE DE RR EX@ EXD$ …miss… WB
i2 FE DE RR RR RR RR RR RR EX
i3 FE DE DE DE DE DE DE RR
i4 FE FE FE FE FE FE DE

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

Scenario 2: load miss followed by dependent instruction, followed by
independent instructions

i1: load r2, #0(r1)

i2: add r4, r2, #1

i3: add r6, r5, #2

i4: add r7, r6, #3

i5

i4

i3

i1

i2

1 2 3 4 5 6 7 8 9 10 11 12 13
i1 FE DE RR EX@ EXD$ …miss… WB
i2 FE DE RR RR RR RR RR RR EX WB
i3 FE DE DE DE DE DE DE RR EX
i4 FE FE FE FE FE FE DE RR

Scenario 2: load miss followed by dependent instruction, followed by
independent instructions

i1: load r2, #0(r1)

i2: add r4, r2, #1

i3: add r6, r5, #2

i4: add r7, r6, #3

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

i6

i5

i4

i2

i3

1 2 3 4 5 6 7 8 9 10 11 12 13
i1 FE DE RR EX@ EXD$ …miss… WB
i2 FE DE RR RR RR RR RR RR EX WB
i3 FE DE DE DE DE DE DE RR EX WB
i4 FE FE FE FE FE FE DE RR EX

Scenario 2: load miss followed by dependent instruction, followed by
independent instructions

i1: load r2, #0(r1)

i2: add r4, r2, #1

i3: add r6, r5, #2

i4: add r7, r6, #3

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

i7

i6

i5

i3

i4

1 2 3 4 5 6 7 8 9 10 11 12 13
i1 FE DE RR EX@ EXD$ …miss… WB
i2 FE DE RR RR RR RR RR RR EX WB
i3 FE DE DE DE DE DE DE RR EX WB
i4 FE FE FE FE FE FE DE RR EX WB

Scenario 2: load miss followed by dependent instruction, followed by
independent instructions

i1: load r2, #0(r1)

i2: add r4, r2, #1

i3: add r6, r5, #2

i4: add r7, r6, #3

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

i4

§ i2 must wait for i1
§ i2 depends on i1 (chain of dependent instructions)

§ i3, i4 need not wait for the i1-i2 chain
§ They are independent

§ But the i3-i4 chain stalls
§ Key insight: In-order issue translates into a structural hazard
§ RR stage (issue stage) blocked by the stalled i2

In-Order Issue Bottleneck

OOO pipeline unblocks RR (issue) using a new instruction buffer for stalled
data-dependent instructions

§ A structure with many names: “Reservation stations”, “issue buffer”,
“issue queue”, “scheduler”, “scheduling window”

From In-Order to Out-of-Order

§ Stalled instructions do not impede instruction fetch

§ Younger ready instructions issue and execute out of order with
respect to older non-ready instructions

§ Issue queue opens up the pipeline to future independent
instructions
§ Tolerate long latencies (cache misses, floating point)
§ Exploit ILP (critical for superscalar)

Issue Queue

Fetch

Decode

Register Read

Dispatch

Issue

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

Out-of-Order Scalar Pipeline (v.1)

In-order fetch/dispatch engine

OOO issue/execute engine

Issue Queue (IQ)

insert instructions in order

Remove instructions out
of order

Dynamic Scheduling

§ Issue queue enables dynamically scheduled processors

§ Dynamic scheduling: Deciding which instructions to execute next ,
possibly reordering them to avoid stalls.

§ In a dynamically scheduled pipeline, instructions are issued in-order
but can bypass each other and execute out of order

Issue Queue

Two Humps in a Modern Pipeline

n Hump 1: Reservation stations (scheduling window)
n Hump 2: Reordering (reorder buffer, aka instruction window

or active window)

89

F D

E

W
E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Load/store

R
E
O
R
D
E
R

S
C
H
E
D
U
L
E

TAG and VALUE Broadcast Bus

in order out of order in order

Photo credit: http://true-wildlife.blogspot.ch/2010/10/bactrian-camel.html

S
C
H
E
D
U
L
E

R
E
O
R
D
E
R

http://true-wildlife.blogspot.ch/2010/10/bactrian-camel.html

Fetch

Decode

Register Read

Dispatch

Issue

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

Out-of-Order Scalar Pipeline (v.1)

In-order fetch/dispatch engine

OOO issue/execute engine

Issue Queue (IQ)

insert instructions in order

Remove instructions out
of order

Register File
Fetch

Decode

Register Read

Dispatch

Issue

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$

value
r0 #10
r1 #44
r2 #11
r3 #33
r4 #7
r5 #15
r6 #-7
r7 #345

Scoreboard
v

r0 1
r1 1
r2 1
r3 1
r4 1
r5 1
r6 1
r7 1

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

data

tag (wakeup)

CDC 6600 style scoreboard:
§ When an instruction has register rN as

a destination (N=0-7), set the
corresponding bit to 0 (busy)

§ Instructions capture the tag if v=1
(busy) and value otherwise (from RF)

Instruction wakeup and select:
§ The wakeup logic in front of the issue

queue snoops for destination tags of
parent instructions. When the
destination tag appears, it wakes up all
instructions waiting for that tag.

§ X: tag, X+1: value, capture-tag-and-go
§ The selection logic in the issue stage

decides which of the “ready”
instructions to execute next.

Forwarding via the CDB
§ The values are broadcasted over the

common data bus bypassing register
file writes. This bus resembles the
forwarding/bypass network in the
MIPS pipeline

Dispatch stage:
§ Copy the instruction from the RR/DI

PPR to the issue queue (if there is an
empty slot in the queue)

§ Set v to 1 (means busy)

Issue stage:
§ If both operands are ready, the

selection logic sends the instruction
to the execution unit

§ Deallocate the issue queue entry by
setting v = 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: load r2, #0(r1)
i2: add r4, r2, #1
i3: add r6, r5, #2
i4: add r7, r6, #3

Register File
Fetch

Decode

Register Read

Dispatch

Issue

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$

value
r0 #10
r1 #44
r2 #11
r3 #33
r4 #7
r5 #15
r6 #-7
r7 #345

Scoreboard
v

r0 1
r1 1
r2 1
r3 1
r4 1
r5 1
r6 1
r7 1

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

data

tag (wakeup)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: load r2, #0(r1) FE
i2: add r4, r2, #1
i3: add r6, r5, #2
i4: add r7, r6, #3

Register File
Fetch

Decode

Register Read

Dispatch

Issue

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$

value
r0 #10
r1 #44
r2 #11
r3 #33
r4 #7
r5 #15
r6 #-7
r7 #345

Scoreboard
v

r0 1
r1 1
r2 1
r3 1
r4 1
r5 1
r6 1
r7 1

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0
0
0

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

data

i1

tag (wakeup)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: load r2, #0(r1) FE DE
i2: add r4, r2, #1 FE
i3: add r6, r5, #2
i4: add r7, r6, #3

Register File
Fetch

Decode

Register Read

Dispatch

Issue

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$

value
r0 #10
r1 #44
r2 #11
r3 #33
r4 #7
r5 #15
r6 #-7
r7 #345

Scoreboard
v

r0 1
r1 1
r2 1
r3 1
r4 1
r5 1
r6 1
r7 1

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0
0
0

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

data

i2

i1

tag (wakeup)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: load r2, #0(r1) FE DE RR
i2: add r4, r2, #1 FE DE
i3: add r6, r5, #2 FE
i4: add r7, r6, #3

Register File
Fetch

Decode

Register Read

Dispatch

Issue

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$

value
r0 #10
r1 #44
r2 -
r3 #33
r4 #7
r5 #15
r6 #-7
r7 #345

Scoreboard
v

r0 1
r1 1
r2 0
r3 1
r4 1
r5 1
r6 1
r7 1

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0
0
0

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

data

i3

i2

i1 r2, #0, #44
★

tag (wakeup)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: load r2, #0(r1) FE DE RR DI
i2: add r4, r2, #1 FE DE RR
i3: add r6, r5, #2 FE DE
i4: add r7, r6, #3 FE

Register File
Fetch

Decode

Register Read

Dispatch

Issue

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$

value
r0 #10
r1 #44
r2 -
r3 #33
r4 -
r5 #15
r6 #-7
r7 #345

Scoreboard
v

r0 1
r1 1
r2 0
r3 1
r4 0
r5 1
r6 1
r7 1

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0
0
0

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

data

i4

i3

i2

i1

r4, r2, #1
★

r2, #0, #44

tag (wakeup)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: load r2, #0(r1) FE DE RR DI IS
i2: add r4, r2, #1 FE DE RR DI
i3: add r6, r5, #2 FE DE RR
i4: add r7, r6, #3 FE DE

Register File
Fetch

Decode

Register Read

Dispatch

Issue

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$

value
r0 #10
r1 #44
r2 -
r3 #33
r4 -
r5 #15
r6 -
r7 #345

Scoreboard
v

r0 1
r1 1
r2 0
r3 1
r4 0
r5 1
r6 0
r7 1

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

1 r2 1 #0 1 #44
0
0

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

tag (wakeup)

data

i4

i3

i1

r6, #15, #2

★
r4, r2, #1

i2

i1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: load r2, #0(r1) FE DE RR DI IS EX@

i2: add r4, r2, #1 FE DE RR DI IS
i3: add r6, r5, #2 FE DE RR DI
i4: add r7, r6, #3 FE DE RR

Register File
Fetch

Decode

Register Read

Dispatch

Issue

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$

value
r0 #10
r1 #44
r2 -
r3 #33
r4 -
r5 #15
r6 -
r7 -

Scoreboard
v

r0 1
r1 1
r2 0
r3 1
r4 0
r5 1
r6 0
r7 0

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0 r2 1 #0 1 #44
1 r4 0 r2 1 #1
0

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

tag (wakeup)

data

i4

i2

r7, r6, #3

★r6, #15, #2

i3

i1 i2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: load r2, #0(r1) FE DE RR DI IS EX@ EXD$ … miss …
i2: add r4, r2, #1 FE DE RR DI IS IS
i3: add r6, r5, #2 FE DE RR DI IS
i4: add r7, r6, #3 FE DE RR DI

Register File
Fetch

Decode

Register Read

Dispatch

Issue

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$

value
r0 #10
r1 #44
r2 -
r3 #33
r4 -
r5 #15
r6 -
r7 -

Scoreboard
v

r0 1
r1 1
r2 0
r3 1
r4 0
r5 1
r6 0
r7 0

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0 r2 1 #0 1 #44
1 r4 0 r2 1 #1
1 r6 1 #15 1 #2

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

tag (wakeup)

data

i2 r7, r6, #3

i4

i1
i2

i3

💥

💥
cache miss

r2, @44

i3

Register File
Fetch

Decode

Register Read

Dispatch

Issue

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$

value
r0 #10
r1 #44
r2 -
r3 #33
r4 -
r5 #15
r6 -
r7 -

Scoreboard
v

r0 1
r1 1
r2 0
r3 1
r4 0
r5 1
r6 0
r7 0

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

1 r7 0>1 r6 1 #3
1 r4 0 r2 1 #1
0 r6 1 #15 1 #2

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

tag (wakeup)

data

i2

i1

i4

i4

💥

💥
cache miss

r2, @44

i2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: load r2, #0(r1) FE DE RR DI IS EX@ EXD$ … miss …
i2: add r4, r2, #1 FE DE RR DI IS IS IS
i3: add r6, r5, #2 FE DE RR DI IS EX
i4: add r7, r6, #3 FE DE RR DI IS

i3
r6,
#15,
2

★ r6 ★

Register File
Fetch

Decode

Register Read

Dispatch

Issue

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$

value
r0 #10
r1 #44
r2 -
r3 #33
r4 -
r5 #15
r6 #17
r7 -

Scoreboard
v

r0 1
r1 1
r2 0
r3 1
r4 0
r5 1
r6 1
r7 0

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0 r7 1 #17 1 #3
1 r4 0 r2 1 #1
0 r6 1 #15 1 #2

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

tag (wakeup)

data

i2

i1

💥

💥
cache miss

r2, @44

i2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: load r2, #0(r1) FE DE RR DI IS EX@ EXD$ … miss …
i2: add r4, r2, #1 FE DE RR DI IS IS IS IS
i3: add r6, r5, #2 FE DE RR DI IS EX WB
i4: add r7, r6, #3 FE DE RR DI IS EX

i4
r7,
#17,
3

★ r7

★

i3 r6, #17

★ ★

★ r6, #17

★

Register File
Fetch

Decode

Register Read

Dispatch

Issue

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$

value
r0 #10
r1 #44
r2 -
r3 #33
r4 -
r5 #15
r6 #17
r7 #20

Scoreboard
v

r0 1
r1 1
r2 0
r3 1
r4 0
r5 1
r6 1
r7 1

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0 r7 1 #17 1 #3
1 r4 0 r2 1 #1
0 r6 1 #15 1 #2

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

tag (wakeup)

data

i2

i1

💥

💥
cache miss

r2, @44

i2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: load r2, #0(r1) FE DE RR DI IS EX@ EXD$ … miss …
i2: add r4, r2, #1 FE DE RR DI IS IS IS IS IS
i3: add r6, r5, #2 FE DE RR DI IS EX WB
i4: add r7, r6, #3 FE DE RR DI IS EX WB

i4 r7, #20

★ ★

★ r7, #20

Register File
Fetch

Decode

Register Read

Dispatch

Issue

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$

value
r0 #10
r1 #44
r2 -
r3 #33
r4 -
r5 #15
r6 #17
r7 #20

Scoreboard
v

r0 1
r1 1
r2 0
r3 1
r4 0
r5 1
r6 1
r7 1

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0 r7 1 #17 1 #3
1 r4 0>1 r2 1 #1
0 r6 1 #15 1 #2

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

tag (wakeup)

data

i2

i1

💥

💥
cache miss

r2, @44

i2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: load r2, #0(r1) FE DE RR DI IS EX@ EXD$ … miss …
i2: add r4, r2, #1 FE DE RR DI IS IS IS IS IS IS
i3: add r6, r5, #2 FE DE RR DI IS EX WB
i4: add r7, r6, #3 FE DE RR DI IS EX WB

★ r2
★

Register File
Fetch

Decode

Register Read

Dispatch

Issue

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$

value
r0 #10
r1 #44
r2 #666
r3 #33
r4 -
r5 #15
r6 #17
r7 #20

Scoreboard
v

r0 1
r1 1
r2 1
r3 1
r4 0
r5 1
r6 1
r7 1

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0 r7 1 #17 1 #3
0 r4 1 #666 1 #1
0 r6 1 #15 1 #2

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

tag (wakeup)

data

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: load r2, #0(r1) FE DE RR DI IS EX@ EXD$ … miss … WB
i2: add r4, r2, #1 FE DE RR DI IS IS IS IS IS IS EX
i3: add r6, r5, #2 FE DE RR DI IS EX WB
i4: add r7, r6, #3 FE DE RR DI IS EX WB

★ r4

★ ★

★

★ r2, #666

i1 r2, #666

i2
r4,
#666,
#1

Register File
Fetch

Decode

Register Read

Dispatch

Issue

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$

value
r0 #10
r1 #44
r2 #666
r3 #33
r4 #667
r5 #15
r6 #17
r7 #20

Scoreboard
v

r0 1
r1 1
r2 1
r3 1
r4 1
r5 1
r6 1
r7 1

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0 r7 1 #17 1 #3
0 r4 1 #666 1 #1
0 r6 1 #15 1 #2

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

tag (wakeup)

data

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: load r2, #0(r1) FE DE RR DI IS EX@ EXD$ … miss … WB
i2: add r4, r2, #1 FE DE RR DI IS IS IS IS IS IS EX WB
i3: add r6, r5, #2 FE DE RR DI IS EX WB
i4: add r7, r6, #3 FE DE RR DI IS EX WB

★ ★

★ r4, #667

i2 r4, #667

Register File
Fetch

Decode

Register Read

Dispatch

Issue

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$

value
r0 #10
r1 #44
r2 #666
r3 #33
r4 #667
r5 #15
r6 #17
r7 #20

Scoreboard
v

r0 1
r1 1
r2 1
r3 1
r4 1
r5 1
r6 1
r7 1

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0 r7 1 #17 1 #3
0 r4 1 #666 1 #1
0 r6 1 #15 1 #2

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

tag (wakeup)

data

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: load r2, #0(r1) FE DE RR DI IS EX@ EXD$ … miss … WB
i2: add r4, r2, #1 FE DE RR DI IS IS IS IS IS IS EX WB
i3: add r6, r5, #2 FE DE RR DI IS EX WB
i4: add r7, r6, #3 FE DE RR DI IS EX WB

Two problems with OOO v.1
§ Cannot recover from misspeculation (cannot schedule past a basic block)

§ Younger instructions are speculative with respect to older instructions
§ Possible to have older predicted branches that have not executed yet
§ Older load instructions may have executed speculatively with respect to

prior unresolved stores

§ Exceptions are not precise, i.e., register file is being updated out of the
original program order

§ Reverts to in-order when two producers have the same destination register
§ WAR and WAW lead to stalls
§ Must stall younger producer in Register Read stage until older producer

executes

Register File
Fetch

Decode

Register Read

Dispatch

Issue

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$

value
r0 #10
r1 #44
r2 #666
r3 #33
r4 #7
r5 #15
r6 #17
r7 #20

Scoreboard
v

r0 1
r1 1
r2 1
r3 1
r4 1
r5 1
r6 1
r7 1

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0 r7 1 #17 1 #3
0 - 1 #666 1 #0
0 r6 1 #15 1 #2

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

tag (wakeup)

data

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: load r2, #0(r1) FE DE RR DI IS EX@ EXD$ … miss … WB
i2: bnez r2, i7 FE DE RR DI IS IS IS IS IS IS EX
i3: add r6, r5, #2 FE DE RR DI IS EX WB
i4: add r7, r6, #3 FE DE RR DI IS EX WB

Can’t recover
original values

of r6, r7

Misprediction
detected

Can’t squash i3,
i4: they are
“long gone”

i1 r2, #666

★ r2, #666

i2 #666 != #0
branch to i7
mispredict

Register File
Fetch

Decode

Register Read

Dispatch

Issue

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$

value
r0 #10
r1 #44
r2 -
r3 #33
r4 -
r5 #15
r6 #-7
r7 -

Scoreboard
v

r0 1
r1 1
r2 0
r3 1
r4 0
r5 1
r6 1
r7 0

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

1 r7 0>1 r2 1 #3
1 r4 0>1 r2 1 #1
0 r2 1 #15 1 #2

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

tag (wakeup)

data

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: load r2, #0(r1) FE DE RR DI IS EX@ EXD$ … miss …
i2: add r4, r2, #1 FE DE RR DI IS IS IS
i3: add r2, r5, #2 FE DE RR DI IS EX
i4: add r7, r2, #3 FE DE RR DI IS

Incorrect
handling of

WAW: i1 will
overwrite i3,

later

i3

what happens if we
do not stall i3 in RR
until i1 executes?

Correct
Wakeup: RAW

Incorrect
Wakeup: WAR

i2 i4

i1

💥

💥
cache miss

r2, @44

i4
i2

★ r2

r2,
#15,
2

Dynamic Branch Prediction

Dynamic Branch Prediction

§ Fork in the road in all cases
§ But, context is different

§ What will you do to go at full-
speed?
§ Static prediction: always-left,

always-right, return if wrong
§ Dynamic prediction: memorize

<context-direction> pair in
head: <cherry tree, right>,
<windmills, left>

Dynamic Branch Prediction
q Predict the outcome of a branch instruction (in fetch stage) based

on the recent behavior of the branch

§ What do we need?

§ Branch identification (PC uniquely identifies a branch)

§ Recent branch behavior (taken/untaken last time)

Branch Identification & Behavior
§ Branch identification

§ Use the branch address in instruction memory
§ Can grab it from PC

§ Branch behavior
§ Outcome of the condition test from ALU
§ Can also store the branch target the last time the branch

executed

One-Bit Predictor
§ Branch History Table (BHT) or Branch Prediction Buffer

§ A small amount of memory indexed by the low-order bits of
branch address

§ Key Idea: Store a single bit that says branch was recently taken
or not BHT

0

1

0

0

1

1

1

branch
address

1-bit
predictionm

Due to limited entries in the table, there are conflicts (aka. aliasing)

Smith Predictor
The state transitions show the bimodal behavior of Smith
predictor

Predict
Taken

Predict
Taken

Predict
Untaken

Predict
Untaken

Untaken

taken

Untaken

taken

takenUntaken

Untaken

taken

01

1011

00

Global Branch Correlation

if (aa == 2)
 aa = 0;
if (bb == 2)
 bb = 0
if (aa != bb)
 {…}

if (counter > 15)
{
 reset = 1;
}
…
…
if (reset == 1)
 {…}
if (counter < 2)
 {…}

B1

B2

B3

B1

B2

B3

o Can we predict the behavior of one branch based on the
direction of another branch?

(B1, B2, B3)
(T, T, ?)
(T, F, ?)

(B1, B2, B3)
(T, ?, ?)
(F, ?, ?)

A Lot More to Say on Branch Prediction!
§ Important component of a modern processor

§ Especially superscalar and out-of-order processors

§ We correlating local/global history predictors as well
§ Branches in programs are correlated

§ Prediction accuracy above 90%

§ State of art: Deep neural networks, machine learning approaches

§ Random branches are increasingly common (ML, NLP, GPT)

Two Humps in a Modern Pipeline

n Hump 1: Reservation stations (scheduling window)
n Hump 2: Reordering (reorder buffer, aka instruction window

or active window)

118

F D

E

W
E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Load/store

R
E
O
R
D
E
R

S
C
H
E
D
U
L
E

TAG and VALUE Broadcast Bus

in order out of order in order

Photo credit: http://true-wildlife.blogspot.ch/2010/10/bactrian-camel.html

S
C
H
E
D
U
L
E

R
E
O
R
D
E
R

http://true-wildlife.blogspot.ch/2010/10/bactrian-camel.html

Hardware Speculation

Out-of-Order Pipeline (v.2)
§ Solution: Reorder Buffer (ROB)

§ ROB enables OOO execution, while at the same time supports recovery
from mispredictions and exceptions

§ ROB also implements register renaming
§ Rename non-unique destination tags (architectural register

specifiers) to unique destination tags (ROB tags)

§ Source tags are renamed as well, linking without ambiguity
consumers to their producers

§ No reverting back to in-order due to WAR and WAW hazards, as they
are eliminated after renaming

Operation with ROB (1-Page Cheat sheet)
The “Register File” is replaced with an expanded set of registers split into two parts

§ Architectural Register File (ARF): Contains values of architectural registers as if produced by an in-order pipeline. That is, contains committed (non-
speculative) versions of architectural registers to which the pipeline may safely revert to if there is a misprediction or exception.

§ Reorder Buffer (ROB): Contains speculative versions of architectural registers. There may be multiple speculative versions for a given architectural register.
ROB is a circular FIFO with head and tail pointers

§ A list of oldest to youngest instructions in program order
§ Instruction at ROB Head is oldest instruction
§ Instruction at ROB Tail is youngest instruction

New Rename Stage (after Decode and before Register Read)
§ The new instruction is allocated to the ROB entry pointed to by ROB Tail. This is also its unique “ROB tag”.
§ Source register specifiers are renamed to the expanded set of registers, the ARF+ROB. Renaming pinpoints the location of the value: ARF or ROB, and where in

the ROB (ROB tag of producer). Thus, renaming unambiguously links consumers to their producers.
§ Destination register specifier is renamed to the instruction’s unique ROB tag.
§ Rename Map Table (RMT) contains the bookkeeping for renaming. (Intel calls it the Register Alias Table (RAT).)

Register Read Stage
§ Obtain source value from ARF or ROB (using renamed source)
§ If renamed to ROB, ROB may indicate value not ready yet

§ Producer hasn’t executed yet
§ Keep renamed source as proxy for value

§ A consumer instruction obtains its source values from ARF, ROB, and/or bypass, depending on situation:
§ ARF: if producer of value has retired from ROB
§ ROB: if producer of value has executed but not yet retired from ROB
§ Bypass: if producer of value has not yet executed

Writeback Stage
§ Instruction writes its speculative result OOO into ROB instead of ARF (at its ROB entry)

New Retire Stage safely commits results from ROB to ARF in program order
Misprediction/exception recovery

§ Offending instruction posts misprediction or exception bit in its ROB entry OOO
§ Wait until offending instruction reaches head of ROB (oldest unretired instruction)
§ Squash all instructions in pipeline and ROB, and restore RMT to be consistent with an empty pipeline

Expanded Registers
§ The “Register File” is replaced with an expanded set of registers split into two parts

§ Architectural Register File (ARF): Contains values of architectural registers as if
produced by an in-order pipeline. That is, contains committed (non-speculative)
versions of architectural registers to which the pipeline may safely revert to if there
is a misprediction or exception.

§ Reorder Buffer (ROB): Contains speculative versions of architectural registers. There
may be multiple speculative versions for a given architectural register.

Register Renaming
§ New Rename Stage (after Decode and before Register Read)

§ The new instruction is allocated to the ROB entry pointed to by ROB Tail. This is also
its unique “ROB tag”

§ Source register specifiers are renamed to the expanded set of registers, the
ARF+ROB. Renaming pinpoints the location of the value: ARF or ROB, and where in
the ROB (ROB tag of producer). Thus, renaming unambiguously links consumers to
their producers.

§ Destination register specifier is renamed to the instruction’s unique ROB tag.

§ Rename Map Table (RMT) contains the book-keeping for renaming. (Intel calls it the
Register Alias Table (RAT))

Register Renaming
§ Register Read Stage

§ Obtain source value from ARF or ROB (using renamed source)

§ If renamed to ROB, ROB may indicate value not ready yet
§ Producer hasn’t executed yet
§ Keep renamed source as proxy for value

§ A consumer instruction obtains its source values from ARF, ROB, and/or bypass,
depending on situation:
§ ARF: if producer of value has retired from ROB
§ ROB: if producer of value has executed but not yet retired from ROB
§ Bypass: if producer of value has not yet executed

Writeback, Retirement, and Recovery
§ Writeback Stage

§ Instruction writes its speculative result OOO into ROB instead of ARF (at
its ROB entry)

§ New Retire Stage safely commits results from ROB to ARF in program order

§ Misprediction/exception recovery
§ Offending instruction posts misprediction or exception bit in its ROB

entry OOO
§ Wait until offending instruction reaches head of ROB (oldest unretired

instruction)
§ Squash all instructions in pipeline and ROB, and restore RMT to be

consistent with an empty pipeline

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: load r2, #0(r1)
i2: bnez r2, i7
i3: add r2, r5, #2
i4: add r7, r2, #3

Architectural
Register File
(ARF)

Fetch

Decode

Rename

Register Read

Dispatch

Issue

Execute

Writeback

Retire

+ Big
ALUTiny

ALU

agen

D$

dst rdy exc misp PCvalue
rob0
rob1
rob2
rob3
rob4
rob5
rob6
rob7

…
rob31

value
r0 #10
r1 #44
r2 #11
r3 #33
r4 #7
r5 #15
r6 #-7
r7 #345

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

HT

Rename
Map Table
(RMT)

v
ROB
Tag

r0
r1
r2
r3
r4
r5
r6
r7

tag (wakeup)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: load r2, #0(r1) FE
i2: bnez r2, i7
i3: add r2, r5, #2
i4: add r7, r2, #3

Architectural
Register File
(ARF)

Fetch

Decode

Rename

Register Read

Dispatch

Issue

Execute

Writeback

Retire

+ Big
ALUTiny

ALU

agen

D$

dst rdy exc misp PCvalue
rob0
rob1
rob2
rob3
rob4
rob5
rob6
rob7

…
rob31

value
r0 #10
r1 #44
r2 #11
r3 #33
r4 #7
r5 #15
r6 #-7
r7 #345

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0
0
0

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

tag (wakeup) HT

i1

Rename
Map Table
(RMT)

v
ROB
Tag

r0 0 -
r1 0 -
r2 0 -
r3 0 -
r4 0 -
r5 0 -
r6 0 -
r7 0 -

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: load r2, #0(r1) FE DE
i2: bnez r2, i7 FE
i3: add r2, r5, #2
i4: add r7, r2, #3

Architectural
Register File
(ARF)

Fetch

Decode

Rename

Register Read

Dispatch

Issue

Execute

Writeback

Retire

+ Big
ALUTiny

ALU

agen

D$

dst rdy exc misp PCvalue
rob0
rob1
rob2
rob3
rob4
rob5
rob6
rob7

…
rob31

value
r0 #10
r1 #44
r2 #11
r3 #33
r4 #7
r5 #15
r6 #-7
r7 #345

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0
0
0

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

tag (wakeup) HT

i1

i2

Rename
Map Table
(RMT)

v
ROB
Tag

r0 0 -
r1 0 -
r2 0 -
r3 0 -
r4 0 -
r5 0 -
r6 0 -
r7 0 -

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: load r2, #0(r1) FE DE RN
i2: bnez r2, i7 FE DE
i3: add r2, r5, #2 FE
i4: add r7, r2, #3

Architectural
Register File
(ARF)

Fetch

Decode

Rename

Register Read

Dispatch

Issue

Execute

Writeback

Retire

+ Big
ALUTiny

ALU

agen

D$

dst rdy exc misp PC

r2 0 0 0 i1

value
rob0
rob1
rob2
rob3 -
rob4
rob5
rob6
rob7

…
rob31

value
r0 #10
r1 #44
r2 #11
r3 #33
r4 #7
r5 #15
r6 #-7
r7 #345

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0
0
0

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

i2

i3

i1

H
T

tag (wakeup)

★rob3, #0, r1 Rename
Map Table
(RMT)

v
ROB
Tag

r0 0 -
r1 0 -
r2 1 rob3
r3 0 -
r4 0 -
r5 0 -
r6 0 -
r7 0 -

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: load r2, #0(r1) FE DE RN RR
i2: bnez r2, i7 FE DE RN
i3: add r2, r5, #2 FE DE
i4: add r7, r2, #3 FE

Architectural
Register File
(ARF)

Fetch

Decode

Rename

Register Read

Dispatch

Issue

Execute

Writeback

Retire

+ Big
ALUTiny

ALU

agen

D$

dst rdy exc misp PC

r2 0 0 0 i1
- 0 0 0 i2

value
rob0
rob1
rob2
rob3 -
rob4 -
rob5
rob6
rob7

…
rob31

value
r0 #10
r1 #44
r2 #11
r3 #33
r4 #7
r5 #15
r6 #-7
r7 #345

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0
0
0

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

i1

H

T

tag (wakeup)

i3

i4

i2 Rename
Map Table
(RMT)

v
ROB
Tag

r0 0 -
r1 0 -
r2 1 rob3
r3 0 -
r4 0 -
r5 0 -
r6 0 -
r7 0 -

rob4, rob3, #0

rob3, #0, #44

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: load r2, #0(r1) FE DE RN RR DI
i2: bnez r2, i7 FE DE RN RR
i3: add r2, r5, #2 FE DE RN
i4: add r7, r2, #3 FE DE

Architectural
Register File
(ARF)

Fetch

Decode

Rename

Register Read

Dispatch

Issue

Execute

Writeback

Retire

+ Big
ALUTiny

ALU

agen

D$

dst rdy exc misp PC

r2 0 0 0 i1
- 0 0 0 i2

r2 0 0 0 i3

value
rob0
rob1
rob2
rob3 -
rob4 -
rob5 -
rob6
rob7

…
rob31

value
r0 #10
r1 #44
r2 #11
r3 #33
r4 #7
r5 #15
r6 #-7
r7 #345

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0
0
0

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

i1

H

T

tag (wakeup)

i3

i4

i2

Rename
Map Table
(RMT)

v
ROB
Tag

r0 0 -
r1 0 -
r2 1 rob5
r3 0 -
r4 0 -
r5 0 -
r6 0 -
r7 0 -

rob4, rob3, #0

rob3, #0, #44

★rob5, r5, #2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: load r2, #0(r1) FE DE RN RR DI IS
i2: bnez r2, i7 FE DE RN RR DI
i3: add r2, r5, #2 FE DE RN RR
i4: add r7, r2, #3 FE DE RN

Architectural
Register File
(ARF)

Fetch

Decode

Rename

Register Read

Dispatch

Issue

Execute

Writeback

Retire

+ Big
ALUTiny

ALU

agen

D$

dst rdy exc misp PC

r2 0 0 0 i1
- 0 0 0 i2

r2 0 0 0 i3
r7 0 0 0 i4

value
rob0
rob1
rob2
rob3 -
rob4 -
rob5 -
rob6 -
rob7

…
rob31

value
r0 #10
r1 #44
r2 #11
r3 #33
r4 #7
r5 #15
r6 #-7
r7 #345

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

1 rob3 1 #0 1 #44
0
0

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

i1

H

T

tag (wakeup)

i3

i4

i2

Rename
Map Table
(RMT)

v
ROB
Tag

r0 0 -
r1 0 -
r2 1 rob5
r3 0 -
r4 0 -
r5 0 -
r6 0 -
r7 1 rob6

rob4, rob3, #0

★

rob5, #15, #2

i1

rob6, rob5, #3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: load r2, #0(r1) FE DE RN RR DI IS EX@

i2: bnez r2, i7 FE DE RN RR DI IS
i3: add r2, r5, #2 FE DE RN RR DI
i4: add r7, r2, #3 FE DE RN RR

Architectural
Register File
(ARF)

Fetch

Decode

Rename

Register Read

Dispatch

Issue

Execute

Writeback

Retire

+ Big
ALUTiny

ALU

agen

D$

dst rdy exc misp PC

r2 0 0 0 i1
- 0 0 0 i2

r2 0 0 0 i3
r7 0 0 0 i4

value
rob0
rob1
rob2
rob3 -
rob4 -
rob5 -
rob6 -
rob7

…
rob31

value
r0 #10
r1 #44
r2 #11
r3 #33
r4 #7
r5 #15
r6 #-7
r7 #345

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0 rob3 1 #0 1 #44
1 rob4 0 rob3 1 #0
0

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

i2

H

T

tag (wakeup)

i4

i3

Rename
Map Table
(RMT)

v
ROB
Tag

r0 0 -
r1 0 -
r2 1 rob5
r3 0 -
r4 0 -
r5 0 -
r6 0 -
r7 1 rob6

rob5, #15, #2

rob6, rob5, #3

i2i1 rob3, #0, #44

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: load r2, #0(r1) FE DE RN RR DI IS EX@ EXD$ …miss…
i2: bnez r2, i7 FE DE RN RR DI IS IS
i3: add r2, r5, #2 FE DE RN RR DI IS
i4: add r7, r2, #3 FE DE RN RR DI

Architectural
Register File
(ARF)

Fetch

Decode

Rename

Register Read

Dispatch

Issue

Execute

Writeback

Retire

+ Big
ALUTiny

ALU

agen

D$

dst rdy exc misp PC

r2 0 0 0 i1
- 0 0 0 i2

r2 0 0 0 i3
r7 0 0 0 i4

value
rob0
rob1
rob2
rob3 -
rob4 -
rob5 -
rob6 -
rob7

…
rob31

value
r0 #10
r1 #44
r2 #11
r3 #33
r4 #7
r5 #15
r6 #-7
r7 #345

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0 rob3 1 #0 1 #44
1 rob4 0 rob3 1 #0
1 rob5 1 #15 1 #2

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

i2

H

T

tag (wakeup)

i4

Rename
Map Table
(RMT)

v
ROB
Tag

r0 0 -
r1 0 -
r2 1 rob5
r3 0 -
r4 0 -
r5 0 -
r6 0 -
r7 1 rob6

rob6, rob5, #3

i2
i1

i3

💥

💥
rob3,

@44 miss

i3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: load r2, #0(r1) FE DE RN RR DI IS EX@ EXD$ …miss…
i2: bnez r2, i7 FE DE RN RR DI IS IS IS
i3: add r2, r5, #2 FE DE RN RR DI IS EX
i4: add r7, r2, #3 FE DE RN RR DI IS

Architectural
Register File
(ARF)

Fetch

Decode

Rename

Register Read

Dispatch

Issue

Execute

Writeback

Retire

+ Big
ALUTiny

ALU

agen

D$

dst rdy exc misp PC

r2 0 0 0 i1
- 0 0 0 i2

r2 0 0 0 i3
r7 0 0 0 i4

value
rob0
rob1
rob2
rob3 -
rob4 -
rob5 -
rob6 -
rob7

…
rob31

value
r0 #10
r1 #44
r2 #11
r3 #33
r4 #7
r5 #15
r6 #-7
r7 #345

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

1 rob6 0>1 rob5 1 #3
1 rob4 0 rob3 1 #0
0 rob5 1 #15 1 #2

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

i2

H

T

tag (wakeup)

i5

Rename
Map Table
(RMT)

v
ROB
Tag

r0 0 -
r1 0 -
r2 1 rob5
r3 0 -
r4 0 -
r5 0 -
r6 0 -
r7 1 rob6

add r4, r2, r7

i1

i4

💥

i4
i2i3

★ rob5 ★

rob5, #15, #2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: load r2, #0(r1) FE DE RN RR DI IS EX@ EXD$ …miss…
i2: bnez r2, i7 FE DE RN RR DI IS IS IS IS
i3: add r2, r5, #2 FE DE RN RR DI IS EX WB
i4: add r7, r2, #3 FE DE RN RR DI IS EX

Architectural
Register File
(ARF)

Fetch

Decode

Rename

Register Read

Dispatch

Issue

Execute

Writeback

Retire

+ Big
ALUTiny

ALU

agen

D$

dst rdy exc misp PC

r2 0 0 0 i1
- 0 0 0 i2

r2 1 0 0 i3
r7 0 0 0 i4

value
rob0
rob1
rob2
rob3 -
rob4 -
rob5 #17
rob6 -
rob7

…
rob31

value
r0 #10
r1 #44
r2 #11
r3 #33
r4 #7
r5 #15
r6 #-7
r7 #345

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0 rob6 1 #17 1 #3
1 rob4 0 rob3 1 #0
0 rob5 1 #15 1 #2

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

i2

H

T

tag (wakeup)

i5
Rename
Map Table
(RMT)

v
ROB
Tag

r0 0 -
r1 0 -
r2 1 rob5
r3 0 -
r4 0 -
r5 0 -
r6 0 -
r7 1 rob6

add r4, r2, r7

i1
💥

i2i4
★ rob6 ★

rob6, #17, #3

i3
rob5, #17

★ rob5, #17

★
★

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: load r2, #0(r1) FE DE RN RR DI IS EX@ EXD$ …miss…
i2: bnez r2, i7 FE DE RN RR DI IS IS IS IS IS
i3: add r2, r5, #2 FE DE RN RR DI IS EX WB RT
i4: add r7, r2, #3 FE DE RN RR DI IS EX WB

Architectural
Register File
(ARF)

Fetch

Decode

Rename

Register Read

Dispatch

Issue

Execute

Writeback

Retire

+ Big
ALUTiny

ALU

agen

D$

dst rdy exc misp PC

r2 0 0 0 i1
- 0 0 0 i2

r2 1 0 0 i3
r7 1 0 0 i4
r4 0 0 0 i5

value
rob0
rob1
rob2
rob3 -
rob4 -
rob5 #17
rob6 #20
rob7 -

…
rob31

value
r0 #10
r1 #44
r2 #11
r3 #33
r4 #7
r5 #15
r6 #-7
r7 #345

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0 rob6 1 #17 1 #3
1 rob4 0 rob3 1 #0
0 rob5 1 #15 1 #2

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

i2

H

T

tag (wakeup)

i5 Rename
Map Table
(RMT)

v
ROB
Tag

r0 0 -
r1 0 -
r2 1 rob5
r3 0 -
r4 1 rob7
r5 0 -
r6 0 -
r7 1 rob6

add rob7, rob5,
rob6

i1
💥

i2
★ rob6

i4
rob6, #20

★ rob6, #20
★

★

i3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: load r2, #0(r1) FE DE RN RR DI IS EX@ EXD$ …miss…
i2: bnez r2, i7 FE DE RN RR DI IS IS IS IS IS IS
i3: add r2, r5, #2 FE DE RN RR DI IS EX WB RT RT
i4: add r7, r2, #3 FE DE RN RR DI IS EX WB RT

Architectural
Register File
(ARF)

Fetch

Decode

Rename

Register Read

Dispatch

Issue

Execute

Writeback

Retire

+ Big
ALUTiny

ALU

agen

D$

dst rdy exc misp PC

r2 0 0 0 i1
- 0 0 0 i2

r2 1 0 0 i3
r7 1 0 0 i4
r4 0 0 0 i5

value
rob0
rob1
rob2
rob3 -
rob4 -
rob5 #17
rob6 #20
rob7 -

…
rob31

value
r0 #10
r1 #44
r2 #11
r3 #33
r4 #7
r5 #15
r6 #-7
r7 #345

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0 rob6 1 #17 1 #3
1 rob4 0>1 rob3 1 #0
0 rob5 1 #15 1 #2

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

i2

H

T

tag (wakeup)

i5

Rename
Map Table
(RMT)

v
ROB
Tag

r0 0 -
r1 0 -
r2 1 rob5
r3 0 -
r4 1 rob7
r5 0 -
r6 0 -
r7 1 rob6

add rob7, #17,
#20

i1
💥

i2
★ rob3

i3 i4

★

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: load r2, #0(r1) FE DE RN RR DI IS EX@ EXD$ …miss… WB
i2: bnez r2, i7 FE DE RN RR DI IS IS IS IS IS IS EX
i3: add r2, r5, #2 FE DE RN RR DI IS EX WB RT RT RT
i4: add r7, r2, #3 FE DE RN RR DI IS EX WB RT RT

Architectural
Register File
(ARF)

Fetch

Decode

Rename

Register Read

Dispatch

Issue

Execute

Writeback

Retire

+ Big
ALUTiny

ALU

agen

D$

dst rdy exc misp PC

r2 1 0 0 i1
- 0 0 0 i2

r2 1 0 0 i3
r7 1 0 0 i4
r4 0 0 0 i5

value
rob0
rob1
rob2
rob3 #0
rob4 -
rob5 #17
rob6 #20
rob7 -

…
rob31

value
r0 #10
r1 #44
r2 #11
r3 #33
r4 #7
r5 #15
r6 #-7
r7 #345

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0 rob6 1 #17 1 #3
0 rob4 1 #0 1 #0
0 rob5 1 #15 1 #2

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

i2
H

T

tag (wakeup)

i5

Rename
Map Table
(RMT)

v
ROB
Tag

r0 0 -
r1 0 -
r2 1 rob5
r3 0 -
r4 1 rob7
r5 0 -
r6 0 -
r7 1 rob6

add rob7, #17,
#20

★

i1

★ rob3, #0

★

i3 i4

rob3, #0

#0!=#0 is false, not-taken, no misp
rob4, #0, #0

★
rob4, #0, #0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: load r2, #0(r1) FE DE RN RR DI IS EX@ EXD$ …miss… WB RT
i2: bnez r2, i7 FE DE RN RR DI IS IS IS IS IS IS EX WB
i3: add r2, r5, #2 FE DE RN RR DI IS EX WB RT RT RT RT
i4: add r7, r2, #3 FE DE RN RR DI IS EX WB RT RT RT

Architectural
Register File
(ARF)

Fetch

Decode

Rename

Register Read

Dispatch

Issue

Execute

Writeback

Retire

+ Big
ALUTiny

ALU

agen

D$

dst rdy exc misp PC

r2 1 0 0 i1
- 1 0 0 i2

r2 1 0 0 i3
r7 1 0 0 i4
r4 0 0 0 i5

value
rob0
rob1
rob2
rob3 #0
rob4 -
rob5 #17
rob6 #20
rob7 -

…
rob31

value
r0 #10
r1 #44
r2 #0
r3 #33
r4 #7
r5 #15
r6 #-7
r7 #345

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

1 rob7 1 #17 1 #20
0 rob4 1 #0 1 #0
0 rob5 1 #15 1 #2

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

H

T

tag (wakeup)

i5

Rename
Map Table
(RMT)

v
ROB
Tag

r0 0 -
r1 0 -
r2 1 rob5
r3 0 -
r4 1 rob7
r5 0 -
r6 0 -
r7 1 rob6

i2

★ rob4, no mispred

★

i3 i4

rob4, no misp

i1

★

i5

Don’t reset:
rob5 != rob3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: load r2, #0(r1) FE DE RN RR DI IS EX@ EXD$ …miss… WB RT
i2: bnez r2, i7 FE DE RN RR DI IS IS IS IS IS IS EX WB RT
i3: add r2, r5, #2 FE DE RN RR DI IS EX WB RT RT RT RT RT
i4: add r7, r2, #3 FE DE RN RR DI IS EX WB RT RT RT RT

Architectural
Register File
(ARF)

Fetch

Decode

Rename

Register Read

Dispatch

Issue

Execute

Writeback

Retire

+ Big
ALUTiny

ALU

agen

D$

dst rdy exc misp PC

r2 1 0 0 i1
- 1 0 0 i2

r2 1 0 0 i3
r7 1 0 0 i4
r4 0 0 0 i5

value
rob0
rob1
rob2
rob3 #0
rob4 -
rob5 #17
rob6 #20
rob7 -

…
rob31

value
r0 #10
r1 #44
r2 #0
r3 #33
r4 #7
r5 #15
r6 #-7
r7 #345

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0 rob7 1 #17 1 #20
0 rob4 1 #0 1 #0
0 rob5 1 #15 1 #2

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

H

T

tag (wakeup)

i5

Rename
Map Table
(RMT)

v
ROB
Tag

r0 0 -
r1 0 -
r2 1 rob5
r3 0 -
r4 1 rob7
r5 0 -
r6 0 -
r7 1 rob6

i3 i4i2

★ rob7

rob7, #17, #20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: load r2, #0(r1) FE DE RN RR DI IS EX@ EXD$ …miss… WB RT
i2: bnez r2, i7 FE DE RN RR DI IS IS IS IS IS IS EX WB RT
i3: add r2, r5, #2 FE DE RN RR DI IS EX WB RT RT RT RT RT RT
i4: add r7, r2, #3 FE DE RN RR DI IS EX WB RT RT RT RT RT

Architectural
Register File
(ARF)

Fetch

Decode

Rename

Register Read

Dispatch

Issue

Execute

Writeback

Retire

+ Big
ALUTiny

ALU

agen

D$

dst rdy exc misp PC

r2 1 0 0 i1
- 1 0 0 i2

r2 1 0 0 i3
r7 1 0 0 i4
r4 0 0 0 i5

value
rob0
rob1
rob2
rob3 #0
rob4 -
rob5 #17
rob6 #20
rob7 #37

…
rob31

value
r0 #10
r1 #44
r2 #17
r3 #33
r4 #7
r5 #15
r6 #-7
r7 #345

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0 rob7 1 #17 1 #20
0 rob4 1 #0 1 #0
0 rob5 1 #15 1 #2

Issue Queue (IQ)

Common Data Bus (CDB)

Mem H

T

tag (wakeup)

i5

Rename
Map Table
(RMT)

v
ROB
Tag

r0 0 -
r1 0 -
r2 0 rob5
r3 0 -
r4 1 rob7
r5 0 -
r6 0 -
r7 1 rob6

i3 i4

rob7, #37

★

★

Reset:
rob5 == rob5

★★ rob7, #37

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: load r2, #0(r1) FE DE RN RR DI IS EX@ EXD$ …miss… WB RT
i2: bnez r2, i7 FE DE RN RR DI IS IS IS IS IS IS EX WB RT
i3: add r2, r5, #2 FE DE RN RR DI IS EX WB RT RT RT RT RT RT
i4: add r7, r2, #3 FE DE RN RR DI IS EX WB RT RT RT RT RT RT

Architectural
Register File
(ARF)

Fetch

Decode

Rename

Register Read

Dispatch

Issue

Execute

Writeback

Retire

+ Big
ALUTiny

ALU

agen

D$

dst rdy exc misp PC

r2 1 0 0 i1
- 1 0 0 i2

r2 1 0 0 i3
r7 1 0 0 i4
r4 0 0 0 i5

value
rob0
rob1
rob2
rob3 #0
rob4 -
rob5 #17
rob6 #20
rob7 #37

…
rob31

value
r0 #10
r1 #44
r2 #17
r3 #33
r4 #37
r5 #15
r6 #-7
r7 #20

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0 rob7 1 #17 1 #20
0 rob4 1 #0 1 #0
0 rob5 1 #15 1 #2

Issue Queue (IQ)

Common Data Bus (CDB)

Mem H
T

tag (wakeup)

i5

Rename
Map Table
(RMT)

v
ROB
Tag

r0 0 -
r1 0 -
r2 0 -
r3 0 -
r4 0 rob7
r5 0 -
r6 0 -
r7 0 rob6

i4

★
★

Reset:
rob6 == rob6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: load r2, #0(r1) FE DE RN RR DI IS EX@ EXD$ …miss… WB RT
i2: bnez r2, i7 FE DE RN RR DI IS IS IS IS IS IS EX WB RT
i3: add r2, r5, #2 FE DE RN RR DI IS EX WB RT RT RT RT RT RT
i4: add r7, r2, #3 FE DE RN RR DI IS EX WB RT RT RT RT RT RT

Architectural
Register File
(ARF)

Fetch

Decode

Rename

Register Read

Dispatch

Issue

Execute

Writeback

Retire

+ Big
ALUTiny

ALU

agen

D$

dst rdy exc misp PC

r2 1 0 0 i1
- 1 0 0 i2

r2 1 0 0 i3
r7 1 0 0 i4
r4 0 0 0 i5

value
rob0
rob1
rob2
rob3 #0
rob4 -
rob5 #17
rob6 #20
rob7 #37

…
rob31

value
r0 #10
r1 #44
r2 #17
r3 #33
r4 #37
r5 #15
r6 #-7
r7 #20

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0 rob7 1 #17 1 #20
0 rob4 1 #0 1 #0
0 rob5 1 #15 1 #2

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

tag (wakeup)

i5

Rename
Map Table
(RMT)

v
ROB
Tag

r0 0 -
r1 0 -
r2 0 -
r3 0 -
r4 0 rob7
r5 0 -
r6 0 -
r7 0 -

★

★

Reset:
rob7 == rob7

HT

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: load r2, #0(r1) FE DE RN RR DI IS EX@ EXD$ …miss… WB RT
i2: bnez r2, i7 FE DE RN RR DI IS IS IS IS IS IS EX WB RT
i3: add r2, r5, #2 FE DE RN RR DI IS EX WB RT RT RT RT RT RT
i4: add r7, r2, #3 FE DE RN RR DI IS EX WB RT RT RT RT RT RT

Architectural
Register File
(ARF)

Fetch

Decode

Rename

Register Read

Dispatch

Issue

Execute

Writeback

Retire

+ Big
ALUTiny

ALU

agen

D$

dst rdy exc misp PC

r2 1 0 0 i1
- 1 0 0 i2

r2 1 0 0 i3
r7 1 0 0 i4
r4 1 0 0 i5

value
rob0
rob1
rob2
rob3 #0
rob4 -
rob5 #17
rob6 #20
rob7 #37

…
rob31

value
r0 #10
r1 #44
r2 #17
r3 #33
r4 #37
r5 #15
r6 #-7
r7 #20

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0 rob7 1 #17 1 #20
0 rob4 1 #0 1 #0
0 rob5 1 #15 1 #2

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

HT

tag (wakeup)

Rename
Map Table
(RMT)

v
ROB
Tag

r0 0 -
r1 0 -
r2 0 -
r3 0 -
r4 0 -
r5 0 -
r6 0 -
r7 0 -

v i1 (Fetch)

Cycle # 1

Cycle # 2
v i1 (Decode)
v i2 (Fetch)

Cycle # 3
v i1 (Rename)

1. Allocate entry for i1 in ROB at rob3
v Tail of ROB is at rob3

2. Rename the destination operand (r2) to rob3
3. Increment the tail pointer of ROB to rob4
4. Set v[r2]=1 in RMT
5. One source operand is a constant 0
6. Rename the second source operand r1 to ARF[r1] because

in RMT: v[r1]=0
v i2 (Decode)
v i3 (Fetch)

v The fetch is speculative as i2 is a branch and it may be taken
(our branch prediction strategy is always-untaken)

Cycle # 4
v i1 (Register Read)

1. Read the value of the second source operand from the
register file: ARF[r1] is 44

v i2 (Rename)
1. Allocate an entry for i2 in ROB at rob4
2. Rename the destination r2 to rob4
3. Move ROB tail to rob5
4. Rename the source operand r2 to rob3 because in RMT:

v[r2]=1
v Carry this tag to the issue queue (later) and wait for the

value to be produced by the producer (i1)
v i3 (Decode)
v i4 (Fetch)

Cycle # 5
v i1 (Dispatch)

1. Instruction is being copied into the issue queue
v There are free entries in the issue queue

v i2 (Register Read)
1. Nothing to read from register file (source operand is not ready)

v i3 (Rename)
1. Allocate an entry for i3 in ROB at rob5
2. Rename the destination r2 to rob5, keep v[r2]=1 in RMT
3. Move ROB tail to rob6
4. Rename the source operand r5 to ARF[r5] because in RMT:

v[r5]=0
v i4 (Decode)

Cycle # 6
v i1 (Issue)

1. Instruction is now inside the issue queue
v v=1 to indicate the slot in the issue queue has been occupied
v The scheduler will pick this instruction for execution (next cycle)
v Source operands ready (rs1 rdy=1 and rs2 rdy=1)

v i2 (Dispatch)
1. Instruction is being copied into the issue queue

v i3 (Register Read)
1. Read ARF[r5]=#15

v i4 (Rename)
1. Allocate an entry for i4 in ROB at rob6 (tail moves to r7)
2. Rename the destination r7 to rob6, set v[r7]=1 in RMT
3. Rename r2 to rob5 because in RMT: v[r2]=1

Cycle # 7
v i1 (Execute(Agen))

1. Instruction has been issued to the functional unit (agen) for address
calculation: source operands are #0 and #44

2. The corresponding issue queue slot has been freed (v=0)
v i2 (Issue)

1. Instruction is now inside the issue queue
v v=1 to indicate the slot in the issue queue has been occupied
v The scheduler will pick this instruction for execution when both

source operands are ready (rs1 rdy=0)
v i3 (Dispatch)

1. Instruction is being copied into the issue queue
v i4 (Register Read)

1. Nothing to read from register file (source operand is not ready)

Cycle # 8
v i1 (Execute(D$))

1. Instruction is checking the SRAM data cache for value
v i2 (Issue)

1. Instruction remains in the issue queue due to a RAW hazard
v i3 (Issue)

1. Instruction is now inside the issue queue
v v=1 to indicate the slot in the issue queue has been occupied
v The scheduler will pick this instruction for execution next cycle as

source operands are ready (rs1 rdy=1 and rs2 rdy=1)
v ALU is free for executing another instruction

v i4 (Dispatch)
1. Instruction is being copied into the issue queue

Cycle # 9
v i1 (Execute(...miss...))

1. Cache miss is being resolved (data being read from main memory)
v i2 (Issue)

1. Instruction remains in the issue queue due to a RAW hazard
v i3 (Execute)

1. Instruction is issued to the Tiny ALU (deallocated from issue queue)
2. At the end of the cycle, the instruction send its destination tag (rob5)

to the wakeup logic in front of the issue queue
v i4 (Issue)

1. Instruction is now inside the issue queue (will execute next cycle)
v v=1 to indicate the slot in the issue queue has been occupied
v rs1 rdy changes from 0 to 1 as the wakeup logic has been

notified of the availability of rob5; and rs2 rdy=1

Cycle # 10
v i1 (Execute(...miss...))

1. Cache miss is being resolved (data being read from main memory)
v i2 (Issue)

1. Instruction remains in the issue queue due to a RAW hazard
v i3 (Writeback)

1. Instruction writes the result to its destination entry in the ROB (rob5)
2. Broadcasts the tag/value over the CDB to forward it to waiting insts.

v i4 (Execute)
1. Instruction is issued to the Tiny ALU (deallocated from issue queue)
2. At the end of the cycle, the instruction sends its tag (rob6) to the

wakeup logic

Cycle # 11
v i1 (Execute(...miss...))

1. Cache miss is being resolved (data being read from main memory)
v i2 (Issue)

1. Instruction remains in the issue queue due to a RAW hazard
v i3 (Retire)

1. Instruction is waiting to reach the head of ROB to update the ARF with
the value it has computed for r2

2. Since older instructions haven’t executed yet, and head of ROB is
blocked, i3 will wait for its turn to reach the head of ROB

v i4 (Writeback)
1. Instruction writes the result to its destination entry in the ROB (rob6)
2. Broadcasts the tag/value (rob6, #20) over the CDB to forward it to

waiting insts.

Cycle # 12
v i1 (Execute(...miss...))

1. Cache miss is resolved and instruction sends its dst. tag (rob3) to the
issue queue waking up i2

v i2 (Issue)
1. Instruction wakes up as its rs1 rdy changes from 0 to 1

v i3 (Retire)
1. Instruction is waiting to reach the head of ROB

v i4 (Retire)
1. Instruction is waiting to reach the head of ROB to update the ARF with

the value it has computed for r7
2. Since older instructions haven’t executed yet, and head of ROB is

blocked, i4 will wait for its turn to reach the head of ROB

Cycle # 13
v i1 (Writeback)

1. Instruction writes its result (0) to the dst entry in ROB at rob3
v i2 (Execute)

1. The branch condition is evaluated and there is no misprediction as the
branch is (after execution) not taken

2. Instruction grabbed r2 (renamed to rob3) from the CDB (forwarding)
v i3 (Retire)

1. Instruction is waiting to reach the head of ROB
v i4 (Retire)

1. Instruction is waiting to reach the head of ROB

Cycle # 14
v i1 (Retire)

1. Instruction is at the head of ROB and in the retire stage
2. Updates ARF[r2] with the value it has in its entry on ROB
3. It checks the ROB tag in RMT and since tag corresponding to r2 in

RMT is not rob3, it leaves the v bit unchanged
4. Increment ROB head (moves to rob4)

v i2 (Writeback)
1. No value to writeback as the instruction is a branch
2. Branch instruction sets the misp bit in ROB to 0 as the branch is not

taken, and the prediction was that branch is not taken
v i3 and i4 (Retire)

1. Instructions are waiting to reach the head of ROB

Cycle # 15
v i1 (null)

v Instruction has retired (its gone!)
v i2 (Retire)

1. Nothing to write to ARF, so just retire from the pipeline
2. Move head of ROB to rob5

v i3 and i4 (Retire)
1. Instructions are waiting to reach the head of ROB

Cycle # 16
v i1 (null)

v Instruction has retired (its gone!)
v i2 (null)

v Instruction has retired (its gone!)
v i3 (Retire)

1. Head of ROB so writes value (#17) to ARF[r2]
2. It checks the ROB tag in RMT and since tag corresponding to r2 in

RMT is rob5, it resets the v bit to 0
3. Move head of ROB to rob6

v i4 (Retire)
1. Instruction is waiting to reach the head of ROB

Cycle # 17
v i1 (null)

v Instruction has retired (its gone!)
v i2 (null)

v Instruction has retired (its gone!)
v i3 (null)

v Instruction has retired (its gone!)
v i4 (Retire)

1. Head of ROB so writes value (#20) to ARF[r7]
2. It checks the ROB tag in RMT and since tag corresponding to r7 in

RMT is rob67, it resets the v bit to 0
3. Move head of ROB to rob7

Instruction i5
v Cycle #9 (Fetch)

v Fetch is not blocked due to a branch and RAW hazard in the pipeline
v Cycle #10 (Decode)
v Cycle #11 (Rename)

1. Allocate entry at rob7 in ROB (increment the tail)
2. Rename two source operands to rob5 and rob6 because v[r2]and

v[r7] in RMT are 1
v Cycle #12 (Register Read)

1. Both renamed src operands are available in the ROB. Capture the values
v Cycle #13 (Dispatch)
v Cycle # 14 (Issue)à Selected to execute next cycle
v Cycle # 15 (Execute)à Wakeup waiting instructions
v Cycle # 16 (Writeback)
v Cycle # 17-18 (Retire) à Head = Tail (Done!)

Observations
§ Compared to scoreboard only

§ ROB did not degrade performance
§ Fetch did not stall as before (tolerated D$ miss)
§ In-order retirement did not impede OOO, speculative execution

§ Recovery
§ ROB was not called upon for recovery

§ But can see the danger of misprediction without ROB

§ Only leverages ROB for renaming

Recovery
Revise the previous scenario assuming mispredicted branch

§ i1 (load instruction) gets the value #666 instead of #0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: load r2, #0(r1) FE DE RN RR DI IS EX@ EXD$ …miss… WB
i2: bnez r2, i7 FE DE RN RR DI IS IS IS IS IS IS EX
i3: add r2, r5, #2 FE DE RN RR DI IS EX WB RT RT RT
i4: add r7, r2, #3 FE DE RN RR DI IS EX WB RT RT

Architectural
Register File
(ARF)

Fetch

Decode

Rename

Register Read

Dispatch

Issue

Execute

Writeback

Retire

+ Big
ALUTiny

ALU

agen

D$

dst rdy exc misp PC

r2 1 0 0 i1
- 0 0 0 i2

r2 1 0 0 i3
r7 1 0 0 i4
r4 0 0 0 i5

value
rob0
rob1
rob2
rob3 #666
rob4 -
rob5 #17
rob6 #20
rob7 -

…
rob31

value
r0 #10
r1 #44
r2 #11
r3 #33
r4 #7
r5 #15
r6 #-7
r7 #345

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0 rob6 1 #17 1 #3
0 rob4 1 #666 1 #0
0 rob5 1 #15 1 #2

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

i2
H

T

tag (wakeup)

i5

Rename
Map Table
(RMT)

v
ROB
Tag

r0 0 -
r1 0 -
r2 1 rob5
r3 0 -
r4 1 rob7
r5 0 -
r6 0 -
r7 1 rob6

add rob7, #17,
#20

★

i1

★ rob3, #666

★

i3 i4

rob3, #666

#666!=#0 is true, taken, misp
rob4, #0, #0

★
rob4, #666, #0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: load r2, #0(r1) FE DE RN RR DI IS EX@ EXD$ …miss… WB RT
i2: bnez r2, i7 FE DE RN RR DI IS IS IS IS IS IS EX WB
i3: add r2, r5, #2 FE DE RN RR DI IS EX WB RT RT RT RT
i4: add r7, r2, #3 FE DE RN RR DI IS EX WB RT RT RT

Architectural
Register File
(ARF)

Fetch

Decode

Rename

Register Read

Dispatch

Issue

Execute

Writeback

Retire

+ Big
ALUTiny

ALU

agen

D$

dst rdy exc misp PC

r2 1 0 0 i1
- 0 0 1 i2

r2 1 0 0 i3
r7 1 0 0 i4
r4 0 0 0 i5

value
rob0
rob1
rob2
rob3 #666
rob4 -
rob5 #17
rob6 #20
rob7 -

…
rob31

value
r0 #10
r1 #44
r2 #11
r3 #33
r4 #7
r5 #15
r6 #-7
r7 #345

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

1 rob7 1 #17 1 #20
0 rob4 1 #666 1 #0
0 rob5 1 #15 1 #2

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

H

T

tag (wakeup)

Rename
Map Table
(RMT)

v
ROB
Tag

r0 0 -
r1 0 -
r2 1 rob5
r3 0 -
r4 1 rob7
r5 0 -
r6 0 -
r7 1 rob6

i2

★ rob4, misp.

★

rob4, misp.

i5

i5

i3 i4i1

★

Don’t reset:
rob5 != rob3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: load r2, #0(r1) FE DE RN RR DI IS EX@ EXD$ …miss… WB RT
i2: bnez r2, i7 FE DE RN RR DI IS IS IS IS IS IS EX WB RT
i3: add r2, r5, #2 FE DE RN RR DI IS EX WB RT RT RT RT RT
i4: add r7, r2, #3 FE DE RN RR DI IS EX WB RT RT RT RT

Architectural
Register File
(ARF)

Fetch

Decode

Rename

Register Read

Dispatch

Issue

Execute

Writeback

Retire

+ Big
ALUTiny

ALU

agen

D$

dst rdy exc misp PC

r2 1 0 0 i1
- 0 0 0 i2

r2 1 0 0 i3
r7 1 0 0 i4
r4 0 0 0 i5

value
rob0
rob1
rob2
rob3 #666
rob4 -
rob5 #17
rob6 #20
rob7 -

…
rob31

value
r0 #10
r1 #44
r2 #666
r3 #33
r4 #7
r5 #15
r6 #-7
r7 #345

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0 rob7 1 #17 1 #20
0 rob4 1 #666 1 #0
0 rob5 1 #15 1 #2

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

HT

tag (wakeup)

Rename
Map Table
(RMT)

v
ROB
Tag

r0 0 -
r1 0 -
r2 0 -
r3 0 -
r4 0 -
r5 0 -
r6 0 -
r7 0 -

i2

Recover RMT by
flash-clearning
all valid bits

★

Squash ROB
by setting T=H

★

Squash all pipeline stages. (i5) They
contain younger instructions than
the ROB head, i.e., branch

★

In-order to Out-of-Order
Fetch

Decode

RF Read/Issue

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

Fetch

Decode

Rename

Register Read

Dispatch

Issue

Execute

Writeback

Retire

+ Big
ALUTiny

ALU

agen

D$
Mem

Issue Queue (IQ)

Insert instructions in order

Expanded Register File:
ARF (committed state) + ROB (speculative state)
Provides for recovery and eliminated WAR/WAW

Remove instructions out of order

Commit instructions in-order from ROB to ARF

Architectural
Register File
(ARF)

Fetch

Decode

Rename

Register Read

Dispatch

Issue

Execute

Writeback

Retire

+ Big
ALUTiny

ALU

agen

D$

dst rdy exc misp PC

r2 1 0 0 i1
- 0 0 0 i2

r2 1 0 0 i3
r7 1 0 0 i4
r4 0 0 0 i5

value
rob0
rob1
rob2
rob3 #666
rob4 -
rob5 #17
rob6 #20
rob7 -

…
rob31

value
r0 #10
r1 #44
r2 #666
r3 #33
r4 #7
r5 #15
r6 #-7
r7 #345

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0 rob7 1 #17 1 #20
0 rob4 1 #666 1 #0
0 rob5 1 #15 1 #2

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

HT

tag (wakeup)

Rename
Map Table
(RMT)

v
ROB
Tag

r0 0 -
r1 0 -
r2 0 -
r3 0 -
r4 0 -
r5 0 -
r6 0 -
r7 0 -

i2

i7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: load r2, #0(r1) FE DE RN RR DI IS EX@ EXD$ …miss… WB RT
i2: bnez r2, i7 FE DE RN RR DI IS IS IS IS IS IS EX WB RT
i3: add r2, r5, #2 FE DE RN RR DI IS EX WB RT RT RT RT RT
i4: add r7, r2, #3 FE DE RN RR DI IS EX WB RT RT RT RT
i5: Can fetch more insts FE DE RN RR DI IS EX
i7: FE

IBM 360/91 Floating Point Unit
§ Due to Tomasulo’s Algorithm [1967]

§ Execute multiple floating-point
instructions concurrently

§ The original machine was imprecise (not
a problem for floating point)

§ Adding ROB is straightforward

§ Stall on branch (limited ILP)

Renaming with Reservation Stations in 360/91
§ Tomasulo’s Algorithm

[1967]
§ Reservation stations (RS)

are used to extend the
register file

§ Each RS entry has a
unique tag

§ Results are forwarded
over the CDB

§ Section 3.4: HP, A
Quantitative Approach

ARF + ROB Summary

Register
File

commit
r31

ROB values
rob127

rob87

rob31

r6

r5 =

r5 =

ßHead

ßTail

Rename
Map
Table
(RMT)

v ROB tag
r0

r31

r6

r0

ROB ready
bits

§ Physical register file = ARF + ROB
§ Committ values by moving ROB value at

head into ARF

Recovery
§ Wait until exception/misprediction

reaches head
§ T = H
§ Reset all “v” bits in RMT

Revision: Main Concepts
§ Register renaming

§ Rename logical registers to an extended set of physical registers
§ Avoid WAR and WAW hazards (main structure: ROB or RS/IQ)

§ Dynamic scheduling
§ Send instructions to the functional units out of the original program order (IQ)

§ Speculation
§ Predict branch outcomes and execute instructions before branches are resolved +

have the ability to recover from mis-speculation (main structure: BPU/BTB/ROB)
§ Hardware speculation

§ Dynamic branch prediction + dynamic scheduling + speculation
§ Precise interrupts

§ On an exception, the architectural state must correspond to the sequential
architectural model (main structure: ROB)

Drawbacks of ARF+ROB Design
§ Register Read stage before Issue stage

§ Can’t be after
§ If value is available at time of renaming, must grab it and “capture” it in

the issue queue

§ Issue queue (IQ) needs to store values while waiting for all operands to
be available

§ If IQ only kept pointer to value (ROB tag), value could move from ROB to
ARF before instruction issues and then pointer is stale

§ Committing register values requires data movement
§ Data movement (ROB to ARF) takes extra cycles and consumes energy

Architectural
Register File
(ARF)

Fetch

Decode

Rename

Register Read

Dispatch

Issue

Execute

Writeback

Retire

+ Big
ALUTiny

ALU

agen

D$

dst rdy exc misp PC

r2 1 0 0 i1
- 1 0 0 i2

r2 1 0 0 i3
r7 1 0 0 i4
r4 1 0 0 i5

value
rob0
rob1
rob2
rob3 #0
rob4 -
rob5 #17
rob6 #20
rob7 #37

…
rob31

value
r0 #10
r1 #44
r2 #17
r3 #33
r4 #37
r5 #15
r6 #-7
r7 #20

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0 rob7 1 #17 1 #20
0 rob4 1 #0 1 #0
0 rob5 1 #15 1 #2

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

HT

tag (wakeup)

Rename
Map Table
(RMT)

v
ROB
Tag

r0 0 -
r1 0 -
r2 0 -
r3 0 -
r4 0 -
r5 0 -
r6 0 -
r7 0 -

PRF Style
p0

p159
PRF values PRF ready bits

r0 p10
r1 p67
r2 p11
r3 p33
r4 p46
r5
…

r31 p2

Rename Map Table
Phys. Reg. Tag

Compared to ARF + ROB
§ A monolithic physical register file (PRF)

provides an extended set of registers for
renaming

§ A subset of registers represent the
architectural state

§ RMT provides the mapping between
architectural and physical registers

§ (pro) Committing & freeing registers does
not require data movement

§ (con) Restoring RMT is not a simple flash-
clear of bits (still conceptually similar)

Intel Sandy Bridge
https://www.anandtech.com/show/3922/intels-sandy-bridge-architecture-exposed/3

A Physical Register File (Copying from the link here for your benefit)
Just like AMD announced in its Bobcat and Bulldozer architectures, in Sandy Bridge Intel moves to a physical register
file. In Core 2 and Nehalem, every micro-op had a copy of every operand that it needed. This meant the out-of-order
execution hardware (scheduler/reorder buffer/associated queues) had to be much larger as it needed to accommodate
the micro-ops as well as their associated data. Back in the Core Duo days that was 80-bits of data. When Intel
implemented SSE, the burden grew to 128-bits. With AVX however we now have potentially 256-bit operands associated
with each instruction, and the amount that the scheduling/reordering hardware would have to grow to support the AVX
execution hardware Intel wanted to enable was too much.

A physical register file stores micro-op operands in the register file; as the micro-op travels down the OoO engine it only
carries pointers to its operands and not the data itself. This significantly reduces the power of the out of order execution
hardware (moving large amounts of data around a chip eats tons of power), it also reduces die area further down the
pipe. The die savings are translated into a larger out of order window.

The die area savings are key as they enable one of Sandy Bridge’s major innovations: AVX performance.

http://www.anandtech.com/show/3863/amd-discloses-bobcat-bulldozer-architectures-at-hot-chips-2010

Loads and Stores
§ Loads and stores also execute out of order

§ Store cancels all speculative (younger) loads with matching addresses

§ Load searches for all speculative (older) stores with matching addresses
§ It gets the best it can (cache, main memory, ROB, RF)

§ Once we have speculation support, we can predict other things

§ Speculating on register values (value prediction)!

Store Execution Datapath

0 @A ==

T=1 @? ==

@? ==
@? ==

@? ==

H=12 @A ==
13 @B ==

14 @A ==

15 @C ==

LQ CAM
(addresses)

Ag
e

lo
gi

c

LQ RAM
(payload)

load’s
AL_index

mispredict
STORE

T=1
LQ_tail

14

address
LQ_index

A
13

1
d
d
d
d
1
0
1
0

❌

✓

✓

CAM = Content Addressable Memory
RAM = Random Access Memory

(index based)

Store:
Dispatch: LQ_index = LQ_tail
Execute: Search b/w
LQ_index & LQ_tail

Load Execution Datapath

0 @A ==

T=1 @? ==

@? ==
@? ==

@? ==

H=12 @A ==
13 @B ==

14 @A ==

15 @C ==

SQ CAM
(addresses)

Ag
e

lo
gi

c

SQ RAM
(payload)

Store
Value

forward

LOAD

H=12
SQ_head

14

address
SQ_index

A
15

1
d
d
d
d
1
0
1
0

❌

✓ Data Cache

Mux Cached
Value

address

data

Store
Value

index

❌

Load:
Dispatch: SQ_index = SQ_tail-1
Execute: Search b/w SQ_head
and SQ_index

Compilation Techniques for
Exploiting ILP

VLIW Architectures
(Very Long Instruction Word)

VLIW Concept
n Superscalar

q Hardware fetches multiple instructions and checks
dependencies between them

n VLIW (Very Long Instruction Word)
q Software (compiler) packs independent instructions in a larger

“instruction bundle” to be fetched and executed concurrently
q Hardware fetches and executes the instructions in the bundle

concurrently

n No need for hardware dependency checking between
concurrently-fetched instructions in the VLIW model
q Simple hardware, complex compiler

184

VLIW Concept

n Fisher, “Very Long Instruction Word architectures and the
ELI-512,” ISCA 1983.
q ELI: Enormously longword instructions (512 bits)

185

VLIW (Very Long Instruction Word)
n A very long instruction word consists of multiple

independent instructions packed together by the compiler
q Packed instructions can be logically unrelated (contrast with

SIMD/vector processors, which we will see soon)

n Idea: Compiler finds independent instructions and statically
schedules (i.e. packs/bundles) them into a single VLIW
instruction

n Traditional VLIW Characteristics
1. Multiple instruction fetch/execute, multiple functional units
2. All instructions in a bundle are executed in lock step
3. Instructions in a bundle statically aligned to be directly
supplied into the functional units

186

Carnegie Mellon

187

VLIW Performance Example (2-wide bundles)

lw $t0, 40($s0) add $t1, $s1, $s2
sub $t2, $s1, $s3 and $t3, $s3, $s4
or $t4, $s1, $s5 sw $s5, 80($s0)

Time (cycles)

1 2 3 4 5 6 7 8

RF
40

$s0

RF

$t0
+

DMIM

lw

add

lw $t0, 40($s0)

add $t1, $s1, $s2

sub $t2, $s1, $s3

and $t3, $s3, $s4

or $t4, $s1, $s5

sw $s5, 80($s0)

$t1
$s2

$s1

+

RF
$s3

$s1

RF

$t2
-

DMIM

sub

and $t3
$s4

$s3

&

RF
$s5

$s1

RF

$t4
|

DMIM

or

sw
80

$s0
+ $s5

Ideal IPC = 2

Actual IPC = 2 (6 instructions issued in 3 cycles)

Bundle 1
Bundle 2
Bundle 3

VLIW Lock-Step Execution
n Lock-step (all or none) execution

q If any operation in a VLIW instruction stalls, all concurrent
operations stall

n In a truly VLIW machine:
q the compiler handles all dependency-related stalls
q hardware does not perform dependency checking
q What about variable latency operations? Memory stalls?

188

VLIW Philosophy & Principles

189Fisher et al., “Parallel Processing: A Smart Compiler and a Dumb Machine,” CC 1984.

VLIW Philosophy & Principles
n Philosophy similar to RISC (simple instructions and hardware)

q Except “multiple instructions in parallel: in VLIW

n RISC (John Cocke+, 1970s, IBM 801 minicomputer)
q Compiler does the hard work to translate high-level language

code to simple instructions (John Cocke: control signals)
n And, to reorder simple instructions for high performance

q Hardware does little translation/decoding à very simple

n VLIW (Josh Fisher, ISCA 1983)
q Compiler does the hard work to find instruction level parallelism
q Hardware stays as simple as possible

n Executes each instruction in a bundle in lock step
n Simple à higher frequency, easier to design, low power

190

VLIW Philosophy and Properties

191Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983.

Commercial VLIW Machines
n Multiflow TRACE, Josh Fisher (7-wide, 28-wide)
n Cydrome Cydra 5, Bob Rau
n Transmeta Crusoe: x86 binary-translated into internal VLIW
n TI C6000, Trimedia, STMicro (DSP & embedded processors)

and some ATI/AMD GPUs
q Most successful commercially

n Intel IA-64
q Not fully VLIW, but based on VLIW principles
q EPIC (Explicitly Parallel Instruction Computing)
q Instruction bundles can have dependent instructions
q A few bits in the instruction format specify explicitly which

instructions in the bundle are dependent on which other ones
192

VLIW Tradeoffs
n Advantages

+ No need for dynamic scheduling hardware à simple hardware
+ No need for dependency checking within a VLIW instruction à

simple hardware for multiple instruction issue + no renaming
+ No need for instruction alignment/distribution after fetch to

different functional units à simple hardware

n Disadvantages
-- Compiler needs to find N independent operations per cycle
 -- If it cannot, inserts NOPs in a VLIW instruction
 -- Parallelism loss AND code size increase
-- Recompilation required when execution width (N), instruction

latencies, functional units change (Unlike superscalar processing)

-- Lockstep execution causes independent operations to stall
 -- No instruction can progress until the longest-latency instruction completes

193

VLIW Summary
n VLIW simplifies hardware, but requires complex compiler

techniques
n Solely-compiler approach of VLIW has several downsides

that reduce performance
-- No tolerance for variable or long-latency operations (lock step)
-- Too many NOPs (not enough parallelism discovered)
-- Static schedule intimately tied to microarchitecture
 -- Code optimized for one generation performs poorly for next

++ Most compiler optimizations developed for VLIW employed
in optimizing compilers (for superscalar compilation)

q Enable code optimizations
++ VLIW very successful when parallelism is easier to find by
the compiler (traditionally embedded markets, DSPs, GPUs)

194

Example Work: Trace Scheduling

195Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983.

Recommended Paper

196Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983.

Recall: Basic Block Reordering
n Likely-taken branch instructions are a problem

q They hurt the accuracy of “always not taken” branch prediction
q They make static code reordering/scheduling difficult

n Idea: Convert likely-taken branch to a likely not-taken one
q i.e., reorder basic blocks (after profiling)
q Basic block: code with a single entry and single exit point

n Code Layout 1 leads to the fewest branch mispredictions
197

A

B C

D

T NT
A

99% 1%
B
D

Control Flow Graph Code Layout 1 Code Layout 2

A
C
D

C B

Pettis and Hansen, “Profile Guided Code Positioning,” PLDI 1990.

NT 99% NT 1%

Superblock: Can We Do Better?
n Idea: Combine frequently-executed basic blocks such that they form a

single-entry multiple exit larger block, which is likely executed as
straight-line code

+ Reduces branch mispredictions
+ Enables aggressive
 compiler optimizations
 and code reordering
 within the superblock

-- Increased code size
-- Requires recompilation
-- Profile dependent

n Hwu et al. “The Superblock: An effective technique for VLIW
 and superscalar compilation,” Journal of Supercomputing, 1993.

198

Superblock Formation (I)

199

Y

A
100

C
10

B
90

E
90

D
0

F
100

Z

1

90 10

900

0
90

10 99

1

Y

A
100

C
10

B
90

E
90

D
0

F
100

Z

1

90 10

900

0
90

10

99

1

This is a trace

Superblock Formation (II)

200

Y

A
100

C
10

B
90

E
90

D
0

F
90

Z

1

90 10

900

0

90

10

89.1

0.9

Tail duplication:
duplication of basic blocks
after a side entrance to
eliminate side entrances

à transforms a trace
 into a superblockF’

10

10

9.9

0.1

This is a superblock

(code with single entry point,
multiple exit points)

Superblock Code Optimization Example

201

opA: mul r1<-r2,3

opC: mul r3<-r2,3

opB: add r2<-r2,199

1

1

Original Code

opA: mul r1<-r2,3

opC: mul r3<-r2,3

opB: add r2<-r2,199

1

Code After Superblock Formation

opC’: mul r3<-r2,3

opA: mul r1<-r2,3

opC: mov r3<-r1

opB: add r2<-r2,199

1

Code After Common
Subexpression Elimination

opC’: mul r3<-r2,3

Paper on Superblock Formation

n Lecture Video on Static Instruction Scheduling
q https://www.youtube.com/watch?v=isBEVkIjgGA

202

Hwu et al., The superblock: An effective technique for VLIW and superscalar compilation.
The Journal of Supercomputing, 1993.

https://www.youtube.com/watch?v=isBEVkIjgGA

Another Example Work: IMPACT

203Chang et al., IMPACT: an architectural framework for multiple-instruction-issue processors. ISCA 1991.

Another Example Work: Hyperblock

n Lecture Video on Static Instruction Scheduling
q https://www.youtube.com/watch?v=isBEVkIjgGA

204Mahlke+, “Effective Compiler Support for Predicated Execution Using the Hyperblock,” MICRO 1992.

https://www.youtube.com/watch?v=isBEVkIjgGA

The Bulldog VLIW Compiler

205John Ellis, “Bulldog: A Compiler for VLIW Architectures,” PhD Thesis 1984.

It all helps software optimization

Honors thesis *best paper candidate at ISMM*

Summer RA *submission to top-tier database conference*

PhD student’s work *ASPLOS (super selective)*

PhD student’s work *Bioinformatics journal*

