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Introduction

= Von Neumann model is inherently a sequential programming
model

" High performance requires executing many instructions each
clock cycle

= Parallelism in modern machines
= Pipelining
= Spatial duplication

= Key problem: identifying independent instructions for concurrent
execution
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Fundamentals




Von Neumann Model

Stored program

Sequential instruction processing



Von Neumann vs. Dataflow

Consider a Von Neumann program
o What is the significance of the program order?
o What is the significance of the storage locations?

a b

v=a+b; I

w=b*2;

X=V-W

Yy=v+w

Zz=Xx*y

o

Sequential
a, b are the only inputs @ Dataflow
z is the only output

y4

Which model is more natural to you as a programmer?



The von Neumann Model

All major /nstruction set architectures today use this model
o x86, ARM, MIPS, SPARC, Alpha, POWER, RISC-V, ...

Underneath (at the microarchitecture level), the execution
model of almost all implementations (or, microarchitectures)
is very different

o Pipelined instruction execution

o Multiple instructions at a time

o Out-of-order execution

o Separate instruction and data caches

But, what happens underneath that is not consistent with
the von Neumann model is not exposed to software

o Difference between ISA and microarchitecture

Problem

Algorithm

Program/Language

System Software

SW/HW Interface

Micro-architecture

Logic

Devices

Electrons

10



Automotive Pipeline




Cookie Pipeline

10 15 20 25 30 35 40 45 50 55 60
I I I I I I I I I I [
Time (mins)
Ben 1 Ben 1
Ben 2 Ben 2
Ben 3 Ben 3
Ben 1 Ben 1
Ben 2 Ben 2
Ben 3 Ben 3

Ben 4




Sequential Laundry

= = _
?BWash Dry Fold Hang; Time ”

A new load begins every 2 hours




Pipelined Laundry

Time ——

1 120 mins divided by 4
up of 4!

] Speed-

J A new load begins every 30 mins




Recall: Cookie Parallelism

" Ben and Jon are making cookies. Let’s study the latency and
throughput of rolling and baking many cookie trays with

= No parallelism
= Spatial parallelism
= Pipelining

= Spatial parallelism + pipelining



Spatial Parallelism (Ben & Jon)

10 15 20 25 30 35 40 45 50 55 60
I I I I I I I I I I [
Time (mins)
Ben 1 Ben 1
Jon 1 Jon 1
Ben 2 Ben 2
Jon 2 Jon 2
Ben 3 Ben 3
Jon 3 Jon 3




Pipelining (Ben Only)

10
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20

55 60

Ben 1

Ben 1

Ben 2

Ben 2

Ben 3

Ben 3

Ben 4
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Spatial + Temporal Parallelism

10 15 20 25 30 35 40 45 50 55 60
I I I I I I I I I I [
Time (mins)
Ben 1 Ben 1
Jon 1 Jon 1
Ben 2 Ben 2
Jon 2 Jon 2
Ben 3 Ben 3
Jon 3 Jon 3
Ben 4

Jon 4




Recall: Pipelining

" |f a task of latency L is broken into N stages, and all stages are
of equal length, then the throughput is N/L

Arbitrary Aé’bitgra ry
Circuit Circuit:
<€ TC > <Tc)

" The challenge of pipelining is to find stages of equal length

" Let’s go back to baking cookies



Recall: Pipelining Circuits
= Divide a large combinational circuit into shorter stages

" |nsert registers between the stages

"= The outputs of one stage are copied into a register and communicated
to the next stage

= Run the pipelined circuit at a higher clock frequency

= Each clock cycle, data flows through the pipeline from left to the right

=  Multiple tasks can be spread across the pipeline



Single-Cycle Processor

A

Instruction
Memory

RD

Single-Cycle

CLK I

]
N WE3
A1 RD1

A2 RD2

A3 Register

R15

23:0

‘ SrcA

ALUResult

2
<C

4 — wD3 File
-D PCPlus8
r

| Extend

0] srcB|

WriteData

[ Extlmm

ReadData

Result




Pipelined Processor
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Superscalar: Idea and Datapath

= Multiple copies of datapath hardware to execute instructions simultaneously
= Example: 2-way superscalar fetches and executes 2 instructions per cycle

9 9 9 s
CLK
PC RDp— A1
A2
| ’ A = A3 RD1 |—| ~ | |_
Ad RD4 8 A1 RD1 ||
Instruction |: A5 Register =" A2 RD2[] =
memory A6 file Egg [ < Data
WB% — memory
WD1
WD2

= Requires 6-ported register file (4 reads, 2 writes), 2 ALUs, 2-ported data memory
= |deal CPI=0.5andIPC=2

= Dependencies and hazards inhibit ideal IPC

= Above figure does not show forwarding and hazard detection logic



Superscalar: Impact of Dependencies

= Example of program with data dependences

1

LDR R8, [RO, #40] DR
\\
\

P
ADD R9Y, (R8), R1

SUB R8, R2, R3
Yo

Time (cycles)

-
AND R10, R4, (R8)
e

ORR R11, R5, R6

R6 |; .
\,,, M R 1 M =1 M
STR R7, [R1), #80] I oo [ i
M i|| RF ; D'V' RF
i

" The program requires 5 cycles to issue six instructions with an IPC
of 1.2



Superscalar: Important Features

Forwarding logic to steer results to ALU early (bypassing register file)

Hazard detection logic to stall pipeline to respect true dependences

Compiler can do “static scheduling” by analyzing code (simple machine)

Trace scheduling

Superblock, hyperblock

VLIW

Compiler can add fix-up code when scheduling past a basic block or have
support from ISA

" |nstructions that trigger recovery from misspeculation



Pipelining: Simplified View

Cl C2 C3 C4 C5 C6 C7 C8

1T lF|D|E|[M|W

12 F|D|E|[M]|W

13 FI{D|E|M|W

14 F|(D|E|M|W
v FID|E|M]|W
7 F|[D|E|M




Pipeline Operation

" Consider the example instruction sequence

Il:
I2:
I3:
I4:
I5:
I6:

ADD
ADD
ADD
STR
STR
STR

RO,
R1,
R2,
RO,
R1,
R2,

R5,
R5,
R5,
[R7,
[R7,
[R7,

#10
#10
#10
#41
#81
#121

27



Pipeline Operation: Cycle 1

Cik Cik CLK CLK
¥ o X alll
5115 ) H H H
glileg ol ram| 7 wes __ ||l [ we] [
A RDMHIPFE— 1541 ; E :
H ' ALUResultE : : | ReadDataW
. H 3:0 0 H : A RDPM:
Instruction : RA2D L] i :
- : ) A2 RD2 : : Data :
emory : H : H
H ' H H M H
: e [ wagp A3 Register : WriteDataE___| emen 1 |
: J - i HH wo -
: 4 — wD3  File i 5 5
: -DPCPIUSS R15 : : :
PCPlus4F | | l|'/*| : | LaLuoutv 5
L] s p— s s
e 1 Extend [ ExtlmmE
: : : i | Resuttw
Fetch - Decode - Execute -— Memory “- Writeback

11

 Is the pipeline fully utilized? NO



Pipeline Operation: Cycle 2

Cik Cik CLK CLK
¥ o X alll
5115 ) H H H
glileg ol ram| 7 wes __ ||l [ we] [
A RDMHIPFE— 1541 ; E :
H ' ALUResultE : : | ReadDataW
. H 3:0 0 H : A RDPM:
Instruction : RA2D L] i :
- : ) A2 RD2 : : Data :
emory : H : H
H ' H H M H
: e [ wagp A3 Register : WriteDataE___| emen 1 |
: J - i HH wo -
: 4 — wD3  File i 5 5
: -DPCPIUSS R15 : : :
PCPlus4F | | l|'/*| : | LaLuoutv 5
L] s p— s s
e 1 Extend [ ExtlmmE
: : : i | Resuttw
Fetch - Decode - Execute -— Memory “- Writeback

12

11

 Is the pipeline fully utilized? NO



Pipeline Operation: Cycle 3

CiK CiK CLK CLK
N o X el
S5 ' H H H
glileg ol ram| 7 wes __ ||l [ we] [
A RDMHIPFE— 1541 ; E :
H ' ALUResultE : : | ReadDataW
. H 3:0 0 H : A RDPM:
Instruction : RA2D L] i :
- ! ) A2 RD2 ! ! Data !
emory ! ' H H
H ' H H M H
: e [waso A3 Register : WriteDataE : emen |
: J - i HH wo -
: 4 — wD3  File i 5 5
: -DPCPIUSS R15 : : :
PCPlus4F | | l|'/*| : | LaLuoutv 5
L] z p— z z
e 1 Extend [ ExtlmmE
: : : i | Resuttw
Fetch - Decode - Execute -— Memory “- Writeback

13

12

11

 Is the pipeline fully utilized? NO



Pipeline Operation: Cycle 4

CiK CiK CLK CLK
N o X el
S5 ' H H H
glileg ol ram| 7 wes __ ||l [ we] [
A RDMHIPFE— 1541 ; E :
H ' ALUResultE : : | ReadDataW
. H 3:0 0 H : A RDPM:
Instruction : RA2D L] i :
- ! ) A2 RD2 ! ! Data !
emory ! ' H H
H ' H H M H
: e [waso A3 Register : WriteDataE : emen |
: J - i HH wo -
: 4 — wD3  File i 5 5
: -DPCPIUSS R15 : : :
PCPlus4F | | l|'/*| : | LaLuoutv 5
L] z p— z z
e 1 Extend [ ExtlmmE
: : : i | Resuttw
Fetch - Decode - Execute -— Memory “- Writeback

14

13

12

 Is the pipeline fully utilized? NO

11



Pipeline Operation: Cycle 5

CiK CiK CLK CLK
N o X el
S5 ' H H H
glileg ol ram| 7 wes __ ||l [ we] [
A RDMHIPFE— 1541 ; E :
H ' ALUResultE : : | ReadDataW
. H 3:0 0 H : A RDPM:
Instruction : RA2D L] i :
- ! ) A2 RD2 ! ! Data !
emory ! ' H H
H ' H H M H
: e [waso A3 Register : WriteDataE : emen |
: J - i HH wo -
: 4 — wD3  File i 5 5
: -DPCPIUSS R15 : : :
PCPlus4F | | l|'/*| : | LaLuoutv 5
L] z p— z z
e 1 Extend [ ExtlmmE
: : : i | Resuttw
Fetch - Decode - Execute -— Memory “- Writeback

15

14

13

 Is the pipeline fully utilized? YES

12

11



Pipeline Operation: Cycle 6

CiK CiK CLK CLK
N o X el
S5 ' H H H
glileg ol ram| 7 wes __ ||l [ we] [
A RDMHIPFE— 1541 ; E :
H ' ALUResultE : : | ReadDataW
. H 3:0 0 H : A RDPM:
Instruction : RA2D L] i :
- ! ) A2 RD2 ! ! Data !
emory ! ' H H
H ' H H M H
: e [waso A3 Register : WriteDataE : emen |
: J - i HH wo -
: 4 — wD3  File i 5 5
: -DPCPIUSS R15 : : :
PCPlus4F | | l|'/*| : | LaLuoutv 5
L] z p— z z
e 1 Extend [ ExtlmmE
: : : i | Resuttw
Fetch - Decode - Execute -— Memory “- Writeback

16

15

14

 Is the pipeline fully utilized? YES

13

12



Pipeline Operation: Cycle 7

CiK CiK CLK CLK
N o X el
S5 ' H H H
glileg ol ram| 7 wes __ ||l [ we] [
A RDMHIPFE— 1541 ; E :
H ' ALUResultE : : | ReadDataW
. H 3:0 0 H : A RDPM:
Instruction : RA2D L] i :
- ! ) A2 RD2 ! ! Data !
emory ! ' H H
H ' H H M H
: e [waso A3 Register : WriteDataE : emen |
: J - i HH wo -
: 4 — wD3  File i 5 5
: -DPCPIUSS R15 : : :
PCPlus4F | | l|'/*| : | LaLuoutv 5
L] z p— z z
e 1 Extend [ ExtlmmE
: : : i | Resuttw
Fetch - Decode - Execute -— Memory “- Writeback

16

15

 Is the pipeline fully utilized? NO

14

13



Pipeline Operation: Cycle 8

CEK cik CLK CLK
d7 CLK d7 CLK |
S5 ' H H H
glile ™ ratD| Y WE3 : oY wel |
ul IS A1 RD1 [ : : :
A RD 1 15 : ALUResuItE : i | ReadDataw,
. : 30 0 : ! A RDI:
Instruction : RA2D L] i :
- ! ) A2 RD2 ! ! Data !
emory ! ' H H
H ' H H M H
; 1512 WASDY A3 Register ; WiriteDataE ; emory | |
H g H H WD H
: 4 — wD3 File : : :
: -DPCPIUSS R15 : : :
PCPlus4F | | l|'/*| ; i | LALUOutM ;
«{ ] : — | z z
230 1 Extend ] ExtlmmE
: : : i | Resultw
Fetch - Decode - Execute -— Memory “- Writeback

16

 Is the pipeline fully utilized? NO

15

14



Pipeline Operation: Cycle 9

Cik Cik CLK CLK
¥ o X alll
5115 ) H H H
glileg ol ram| 7 wes __ ||l [ we] [
A RDMHIPFE— 1541 ; E :
H ' ALUResultE : : | ReadDataW
. H 3:0 0 H : A RDPM:
Instruction : RA2D L] i :
- : ) A2 RD2 : : Data :
emory : H : H
H ' H H M H
: e [ wagp A3 Register : WriteDataE___| emen 1 |
: J - i HH wo -
: 4 — wD3  File i 5 5
: -DPCPIUSS R15 : : :
PCPlus4F | | l|'/*| : | LaLuoutv 5
L] s p— s s
e 1 Extend [ ExtlmmE
: : : i | Resuttw
Fetch - Decode - Execute -— Memory “- Writeback

 Is the pipeline fully utilized? NO

16

15



Pipeline Operation: Cycle 10

Cik Cik CLK CLK
¥ o X alll
5115 ) H H H
glileg ol ram| 7 wes __ ||l [ we] [
A RDMHIPFE— 1541 ; E :
H ' ALUResultE : : | ReadDataW
. H 3:0 0 H : A RDPM:
Instruction : RA2D L] i :
- : ) A2 RD2 : : Data :
emory : H : H
H ' H H M H
: e [ wagp A3 Register : WriteDataE___| emen 1 |
: J - i HH wo -
: 4 — wD3  File i 5 5
: -DPCPIUSS R15 : : :
PCPlus4F | | l|'/*| : | LaLuoutv 5
L] s p— s s
e 1 Extend [ ExtlmmE
: : : i | Resuttw
Fetch - Decode - Execute -— Memory “- Writeback

 Is the pipeline fully utilized? NO

16



Pipeline Operation

CLK Cik CLK clk
CILK C{.K |
> > 19:16 '
24 I A 01! rato] ¥ WE3 : VOWE
=4 A1 RD1 HH ! H
A RD 1 15 -1 : ALUResuUltE ! | ReadDataw,
. : 30 0 : A RDI:
Instruction H RA2D |11
" H 1 A2 RD2 : Data
emory ! H
: , M
! 15:12 r WA3D A3  Register : WiiteDataE emory
9 : WD
4 — WD3 File :
-DPCPIUSS R15 :
| PCPlus4F l|'/*| : ALUOutM
L — |
= 1 Extend [ ExtlmmE
: ResultW
Fetch - Decode - Execute -— Memory “- Writeback

(d No more instructions to execute



Instruction-Level Parallelism




What is Instruction-Level Parallelism?

= Since 1985, all processors have used pipelining to overlap the execution of instructions to
improve performance

= This overlap is termed as instruction-level parallelism (ILP)

= The main limitation to exploiting high levels of ILP:
= Data and control dependences in the program
=  Younger instructions “depend” on the results produced by older instructions

= Historical (ongoing) debate: How best to exploit ILP?
= Dynamically in hardware (dynamic = during execution)
= No need to recompile code, portable, transparent, hardware has more knowledge of
program behavior: loop counters, inputs, branch behavior
= Power, area, energy, security issues (end of Moore’s law, transition to multicore)
= Statically in software (find parallelism at compile time)
=  Compiler can do whole-program optimizations, inspired innovations in compiler
technology, commercial failure ....



Example Sequence 1

1. load $r2, #O(%r6)
2. add  $r3, $r4, %15

Two independent instructions

@] |@




Example Sequence 2

1. load $r2, #0O(%r6) Data or true dependence

N i2 needs the result of il
2. add  $r3,  Pr2, 5

A single (dependent) instruction chain

g




Example Sequence 3

1. load $r2, #0O(%r6) Data or true dependence

N i2 needs the result of il
2. add  %r3,  %r2,  %r5 i4 needs the result of i3
3. load $r4, #O(%ro6)

~

4. add  $r7, $r4,  $r9

Two independent instruction chains

glc




Example Sequence 4

1. load $r2, #0($r6) False (anti) dependence
e i2 needs to write what

2. add  $r6,  $r3, 5 i1 needs to read

Two independent instructions

@] |@

Limitation of # registers, but ILP exists
Rename register r6 in i2 and execute in parallel




Example Sequence 5

1. load $r2,  #O(%r 3 Output dependence
lrue deloen ence il and i3 wants to write
2. add \ $r3, $r2 $r5 to the same register

3. add  $r2, $r7, $r8
Instruction chain (i1 2i2) + independent instruction (i3)

Limitation of # registers, but ILP exists
Rename register r2 in i3 and execute in parallel with the chain




Example Sequence 6

1. load $r2, #0O(%r6) Control dependence
Need to wait for the
2. beq  %rt, %r3, #BLAH outcome of i2 to fetch
3. store $r2,  #O0(%r9) again
Note: | ' th
4. BLAH: store $r2,  #0($r10) (Note: Ignoring any other

dependences)

Limitation of control-flow architecture: branches
If we can guess the branch outcome, we can fetch from the
correct path without waiting for the branch to execute



Pipeline Hazards

* When multiple instructions are handled concurrently there is a danger
of hazard

CAUTIQ

" Hazards are a part of real life

FIRE
HAZARD

= Some coping strategies: Get around, precaution, mitigate harm after
[ NOTICE )

WEAR
FACE
MASK

% AVOID
% CONTACT
MAINTAIN

DISTANCE
1.5 METRES )

LX)




Pipeline Hazards (Three Types)

= Structural hazard
= When two instructions want to use the same resource
= Memory for instructions (F) and data (M)
= Register file is accessed in two different stages (what are
those?)
= Data hazard
» When a dependent instruction wants the result of an earlier
instruction
= Control hazard

= When a PC-changing instruction is in the pipeline (why is this a
hazard?)



Dependences and Hazards

= Dependence is a program’s property
= Hazard is a microarchitecture property

= True dependence results in:
= Read-after-write hazard (RAW)

= (Name) Anti-dependence results in:
=  Write-after-read hazard (WAR)

= (Name) Output dependence results in:
=  Write-after-write hazard (WAW)

= Single-cycle CPU: Each instruction takes one cycle; one instruction at any time
= None of the dependences result in a hazard

= |In-order pipeline: Multiple instructions in different stages (possibility of RAW)

= Qut-of-order: ALL BETS ARE OFF!



Exploiting ILP: A Taxonomy




Different Approaches, One Goal

= Ultimate aim of ILP machine Problem

Algorithm

= [ssue multiple instructions in a clock cycle Program/Language

System Software

= How can we doit?

SW/HW Interface
=  Computer = hardware + software

Micro-architecture

=  Who can discover ILP more efficiently?

Logic

= Qualified question: Who can find interesting instruction schedules

.. Device
efficiently? oS

Electrons

"= Three competing approaches
= Statically scheduled superscalar processors
= VLIW (very long instruction word processors)
= Dynamically scheduled superscalar processors

= VLIW had success in embedded domain. Dynamic scheduling went BIG everywhere!



Instruction Scheduling

Statically scheduled superscalar processor

=  Compiler schedules instructions during program creation

= Hardware does no reordering of instructions (sequential unless branch changes PC)

= Compiler can create “interesting schedules” by doing deep program analysis

= Schedule is static as it does not change dynamically based on different outcomes of a branch

VLIW (Very Long Instruction Word) processor

= Static scheduling by compiler. Instruction words are very large. Up to 28 insts. in a bundle

=  Compiler does “smart” analysis to construct “interesting” schedules (interesting = high ILP)

= Conceptually the same as above. “Some differences” in philosophy (smart compiler, dumb hw.)

Dynamically scheduled superscalar processor

= Hardware does scheduling during program execution

= Can reorder instructions to extract maximum ILP

= Hardware can construct different “instruction schedules” based on different executions of the
same set of basic blocks (different branch outcomes)



_IW Philosophy & Principles

Proceedings of the ACM SIGPLAN '84 Symposium on Compiler Construction

o4

SIGPLAN Notices Vol. 19, No. 6, June 1984

Parallel Processing;: | ]
A Smart Compiler and a Dumb Machine

Joseph A. Fisher, John R. Ellis,
John C. Ruttenberg, and Alexandru Nicolau

Department of Computer Science, Yale University
New Haven, CT 06520

Abstract

Multiprocessors and vector machines, the only success-
ful parallel architectures, have coarse-grained paralielism
that is hard for compilers to take advantage of. We've

developed a new fine-grained parallel architecture and a
compiler that together offer order-of-magnitude speedups
for ordinary scientific code.

future, and we're building a VLIW machine, the ELI
{Enormously Long Instructions) to prove it.

In this paper we'll describe some of the compilation
techniques used by the Bulldog compiler. The ELI
project and the details of Bulldog are described
elsewhere [4, 8, 7, 15, 17)].

Fisher et al., “Parallel Processing: A Smart Compiler and a Dumb Machine,” CC 1984.

53



Commercial VLLIW Machines

Multiflow TRACE, Josh Fisher (7-wide, 28-wide)

Cydrome Cydra 5, Bob Rau

Transmeta Crusoe: x86 binary-translated into internal VLIW
TI C6000, Trimedia, STMicro (DSP & embedded processors)
and some ATI/AMD GPUs

o Most successful commercially

Intel IA-64

o Not fully VLIW, but based on VLIW principles

o EPIC (Explicitly Parallel Instruction Computing)

o Instruction bundles can have dependent instructions

o A few bits in the instruction format specify explicitly which
instructions in the bundle are dependent on which other ones
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In-Order Pipeline: The Problem




Baseline In-Order Pipeline

= Let’s first establish that the problem with in-order pipeline is not
resource limitation

= The problem isin the issue policy

= |Let’s take an aggressive in-order pipeline
=  Non-blocking execute stage

= Have as many functional units as required



Baseline In-Order Pipeline

= |In-order issue policy

= |f a younger instruction has a RAW hazard with an older instruction
(must stall and it’s ok!)

= What about instructions after it?
= Some of the younger instructions may be independent
= This is where the problem lies



Baseline In-Order Pipeline

= Qut of order pipeline
= Aninstruction stalls if it has a RAW hazard with a previous
instruction (that’s ok)

= |ndependent instructions after it do not stall: they may
issue out of program order

= Two alternatives for handling WAR and WAW
= Stall the pipeline (in-order-style)

= Register renaming (optional optimization)
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Execute
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Tiny, ALU
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=
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Fetch

Decode

Register Read

\

Execute

Big

agen

Tiny, ALU

>
=
C

DS

Mem

Writeback

Assumptions

Scalar:

fetch 1 inst/cycle
decode 1 inst/cycle
issue 1 inst/cycle to a function unit



Register Read }

Execute

+

Tiny,
ALU

Big
ALU

agen

DS

Mem

Assumptions
Issue logic:

RAW hazard: Instruction stalls if its source registers
are not ready

WAW: Instruction stalls if its destination register is
“busy”

WAR hazard: Not a problem in in-order pipelines. In-
order issue ensures read by first instruction happens
before write by second instruction



load miss followed by independent instructions



Fetch

Decode

Register Read

Execute

Big
ALU

> -
>
c2|t

agen

DS

Mem

Writeback

O,

Scenario 1: load miss followed by independent instructions
i1:load r2, #0(r1)
i2:add r4, r3, #1
i3:add r6, r5, #2
i4:add r7, r6, #3

112 /3/4]/5]/6]7]8]9]10]11]12]13]

i1
i2
i3
i4

FE



Fetch

Decode

Register Read

Execute

Big
ALU

> -
>
c2|t

agen

DS

Mem

Writeback

i1
i2
i3
i4

Scenario 1: load miss followed by independent instructions
i1:load r2, #0(r1)
i2:add r4, r3, #1
i3:add r6, r5, #2
i4:add r7, r6, #3

112 13/4/5]/6]7]8]9]10]11]12]13]
DE

FE
FE



Decode Scenario 1: load miss followed by independent instructions

i1:load r2, #0(r1)

Register Read

Execute i2: add I’4, |’3,#1
+ | Big | asen i3:add 6, r5, #2
L
oy e et 4:add 17 16, #3

112 ]3/4/5]/6]7]8]9]10]11]12]13]
DE RR

i1 FE
i2 FE DE
i3 FE

i4



Register Read

+ | Big | ase
Tinyl ALU | DS
ALU Mem

i1
i2
i3
i4

Scenario 1: load miss followed by independent instructions
i1:load r2, #0(r1)
i2:add r4, r3, #1
i3:add r6, 5, #2
. \
i4:add 7, r6, #3

112 ]3/4]/5]/6]7]8]9]10]11]12]13]
DE

FE RR EXg
FE DE RR
FE DE

FE



Decode

Scenario 1: load miss followed by independent instructions

Register Read i1:load r2, #0(r1)

Execute i2: add r4, |’3,#1
@ Big | agen i3: add r6,\‘r5, H2
Al A | D211 ) miss 4:add 17, 16, #3

i1 FE RR EXe@ EXpsg ..Miss..
i2 FE DE RR EX
i3 FE DE RR

i4 FE DE



Scenario 1: load miss followed by independent instructions

i1:load r2, #0(r1)
i2:add r4, r3, #1

@Big agen i3: add r6,\‘r5,#2
ALY MDfn i1 ) miss 4:add 17, 6, #3

T )

i1 FE RR EXe@ EXpsg ..Miss..
i2 FE DE RR EX WB
i3 FE DE RR EX

i4 FE DE RR



Scenario 1: load miss followed by independent instructions

i1:load r2, #0(r1)
i2:add r4, r3, #1

@Big agen i3: add r6,\‘r5,#2
ALY MDfn i1 ) miss 4:add 17, 6, #3

T )

i1 FE RR EXe@ EXpsg ..Miss..
i2 FE DE RR EX WB
i3 FE DE RR EX WB

i4 FE DE RR EX



Scenario 1: load miss followed by independent instructions

i1:load r2, #0(r1)
i2:add r4, r3, #1

i5 )| Big |asen i3:add r6, r5, #2

AOLALU | Do il ) miss 4:add 17, 6, #3

Mem

i1 FE RR EXe@ EXpsg ..Miss..
i2 FE DE RR EX WB
i3 FE DE RR EX WB

i4 FE DE RR EX WB



Fetch
Decode

Register Read

Execute

+ | Big | agen
Tinvf ALU | D$

Mem

Writeback

Scenario 1: load miss followed by independent instructions

i1: load
i2: add
i3: add
i4: add

r2, #0(r1)
r4, r3, #1
ro, rb, #2
r7, r6, #3

O,

112 13/4]/5]/6]7]8]9]10]11]12]13]

i1 FE DE RR EXp EXps ...miss... WB
i2 FE DE RR EX WB

i3 FE DE RR EX WB

i4 FE DE RR EX WB



Load miss followed by dependent instruction,
followed by independent instructions



Fetch

Decode

Register Read

Execute

Big
ALU

> -
>
c2|t

agen

DS

Mem

Writeback

O,

Scenario 2: load miss followed by dependent instruction, followed by
independent instructions

i1:load r2, #0(r1)
N\
i2:add r4, r2, #1
i3:add ro, r5, #2
N\
i4:add 7, ro, #3

112 /3/4]/5]/6]7]8]9]10]11]12]13]

i1
i2
i3
i4

FE



Fetch

Decode

Register Read

Execute

Big
ALU

> -
>
c2|t

agen

DS

Mem

Writeback

i1
i2
i3
i4

Scenario 2: load miss followed by dependent instruction, followed by
independent instructions

i1:load r2, #0(r1)
N\
i2:add r4, r2, #1
i3:add ro, r5, #2
N\
i4:add 7, ro, #3

112 13/4/5]/6]7]8]9]10]11]12]13]
DE

FE
FE



Decode Scenario 2: load miss followed by dependent instruction, followed by

independent instructions

i1:load r2, #0(r1)
N

Register Read

Execute i2:add r4, r2, #1
Ti:y itgu agDesn i3:add 6, 5, #2
ALU -

Mem i4: add r7, I’6, #3

112 ]3/4/5]/6]7]8]9]10]11]12]13]
DE RR

i1 FE
i2 FE DE
i3 FE

i4



Register Read

+ | Big | ase
Tinyl ALU | DS
ALU Mem

i1
i2
i3
i4

Scenario 2: load miss followed by dependent instruction, followed by
independent instructions

i1:load r2, #0(r1)
AW
i2:add r4, r2, #1
i3:add ro, r5, #2
N\
i4:add 7, ro, #3

112 13/4/5]/6]7]8]9]10]11]12]13
DE

FE RR EXg
FE DE RR
FE DE

FE



e (@)

Decode e Scenario 2: load miss followed by dependent instruction, followed by

_ independent instructions
@ i1:load r2, #0(r1)
2200 12,8
Ti:y itgu agDeSn(. i3: add r6,\‘r5, H2
ALU Mem@ i4:add 17, r6, #3

i1 RR EXe@ EXpsg ..Miss..
i2 FE DE RR RR
i3 FE DE DE

i4 FE FE



= rech (@)

e Scenario 2: load miss followed by dependent instruction, followed by
independent instructions
@ i1: load rZ\#O(r1)
2:add 4, 12, #1
Ti:y Big | oeen i3:add r6, 5, #2
w2 MDS@ i4: add 7\ 6, #3
em 4. d r/, ro,

i1 FE RR EXe@ EXpsg ..Miss..
i2 FE DE RR RR RR RR RR RR
i3 FE DE DE DE DE DE DE

i4 FE FE FE FE FE FE



Scenario 2: load miss followed by dependent instruction, followed by
independent instructions
i1: load rZ\#O(r1)
2:add 4, 12, #1
@ Big | agen i3:add r6, 5, #2
™ ALU | D$ N
ALU Mem i4: add r7, r6, #3

weechaci (@)

i1 FE RR EXe@ EXpsg ..Miss..
i2 FE DE RR RR RR RR RR RR EX
i3 FE DE DE DE DE DE DE RR

i4 FE FE FE FE FE FE DE



Scenario 2: load miss followed by dependent instruction, followed by
independent instructions
i1: load rZ\#O(r1)
2:add 4, 12, #1
@ Big | agen i3:add r6, 5, #2
™ ALU | D$ N
ALU Mem i4: add r7, r6, #3

weechaci (@)

i1 FE RR EXe@ EXpsg ..Miss..
i2 FE DE RR RR RR RR RR RR EX WB
i3 FE DE DE DE DE DE DE RR EX

i4 FE FE FE FE FE FE DE RR



Scenario 2: load miss followed by dependent instruction, followed by
independent instructions
i1:load r2, #0(r1)

N\
2ot 4

@ Big | agen 3:add 6, r5, #2
| ALU | DS &
A Mem 4:add 17, 16, #3

wiiteback (@)

i1 RR EXe@ EXpsg ..Miss..
i2 FE DE RR RR RR RR RR RR EX WB
i3 FE DE DE DE DE DE DE RR EX WB

i4 FE FE FE FE FE FE DE RR EX



Fetch

Decode

Register Read

Execute

Big

Tiny, ALU

agen

Writeback

i1
i2
i3
i4

Scenario 2: load miss followed by dependent instruction, followed by
independent instructions

i1:load r2, #0(r1)
AW
i2:add r4, r2, #1
i3:add ro, r5, #2
N\
i4:add 7, ro, #3

112 13/4]/5]/6]7]8]9]10]11]12]13]
DE

FE RR EXe EXos ...miss... WB
FE DE RR RR RR RR RR RR EX WB
FE DE DE DE DE DE DE RR EX WB

FE FE FE FE FE FE DE RR EX WB



In-Order Issue Bottleneck

= 2 must wait foril
= j2 dependsonil (chain of dependent instructions)
= i3, i4 need not wait for the i1-i2 chain
= They are independent
= But the i3-i4 chain stalls
m  Key insight: In-order issue translates into a structural hazard
" RR stage (issue stage) blocked by the stalled i2

OO0O pipeline unblocks RR (issue) using a new instruction buffer for stalled
data-dependent instructions
= A structure with many names: “Reservation stations”, “issue buffer’,

VN4

“issue queue”, “scheduler”, “scheduling window”




From In-Order to Out-of-Order




Issue Queue

= Stalled instructions do not impede instruction fetch

" Younger ready instructions issue and execute out of order with
respect to older non-ready instructions

" |ssue queue opens up the pipeline to future independent
instructions
= Tolerate long latencies (cache misses, floating point)
= Exploit ILP (critical for superscalar)



Out-of-Order Scalar Pipeline (v.1)

Decode

. insert instructions in order
Register Read

Issue
Execute

+ | Big
Tiny, ALU

agen

DS

ALU

Mem

— In-order fetch/dispatch engine

\Is‘sue Queue (1Q) _

Remove instructions out —
of order

— 00O issue/execute engine




Dynamic Scheduling




Issue Queue

= |ssue queue enables dynamically scheduled processors

=  Dynamic scheduling: Deciding which instructions to execute next,
possibly reordering them to avoid stalls.

= |n adynamically scheduled pipeline, instructions are issued in-order
but can bypass each other and execute out of order



Two Humps in a Modern Pipeline
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Photo credit: http://true-wildlife.blogspot.ch/2010/10/bactrian-camel.html
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Out-of-Order Scalar Pipeline (v.1)

Decode

. insert instructions in order
Register Read

Issue
Execute

+ | Big
Tiny, ALU

agen

DS

ALU

Mem

— In-order fetch/dispatch engine

\Is‘sue Queue (1Q) _

Remove instructions out —
of order

— 00O issue/execute engine




Fetch

Decode

Register Read

Dispatch

+ Big agen
Tinvf ALU | D$
ALU Mem

Writeback

->

Scoreboard Register File
v value
rof 1 rO| #10
rli] 1 rl #44
r2( 1 r2 #11
r3] 1 r3| #33 |
rd| 1 r4 #7
r51 1 r5 #15
re| 1 ré H#-7
r7] 1 r7| #345
Issue Queue (1Q)
dst |rsl rsl rs2 rs2
tag |rdy|tag/value |rdy|tag/value

data

Dispatch stage:
Copy the instruction from the RR/DI
PPR to the issue queue (if there is an

empty slot in the queue)
Set v to 1 (means busy)

Common Data Bus (CDB)

Issue stage:
= |f both operands are ready, the

selection logic sends the instruction
to the execution unit

= Deallocate the issue queue entry by

settingv=0

CDC 6600 style scoreboard:

When an instruction has register rN as
a destination (N=0-7), set the
corresponding bit to 0 (busy)
Instructions capture the tag if v=1
(busy) and value otherwise (from RF)

Instruction wakeup and select:

The wakeup logic in front of the issue
gueue snoops for destination tags of
parent instructions. When the
destination tag appears, it wakes up all
instructions waiting for that tag.

X: tag, X+1: value, capture-tag-and-go
The selection logic in the issue stage
decides which of the “ready”
instructions to execute next.

Forwarding via the CDB

The values are broadcasted over the
common data bus bypassing register
file writes. This bus resembles the
forwarding/bypass network in the
MIPS pipeline



Scoreboard Register File

rof 1 rO| #10
r2( 1 r2 #11
Register Read r3| 1 r3| #33 |
rd| 1 r4 #7
Dispatch 5 1 (5  #15
re| 1 ré H#-7
r7] 1 r7| #345
sue Queve (10
tag (wakeup) v | dst [rs1 rsl rs2 rs2
-------------- > tag |rdy|tag/value |rdy|tag/value
+ | Big | agen
Tinyl ALU | DS
ALU Vo
Writeback
data Common Data Bus (CDB)

. |1]2]3]l4/5]6]7]8]09]10][11[12[13]14]15]16]17]
i1: load r2, #0(r1)
i2: add r4, r2, #i
i3: add r6, r5, #2
i4: add r7, ro, #3



Scoreboard Register File

() v
ro] 1 ro #10
1 1 gy —_
r2] 1 r2 #11

3 1 3|33 |
rd| 1 r4 #7
5| 1 r5|_#15
re|] 1 ré #-7
r7] 1 r7| #345

ssue Queue 1)

v | dst |rsl rsl rs2 rs2

tag (Wakeup)
-------------- tag |rdy|tag/value |rdy|tag/value

+ | Big | agen 8
Tinyl ALU | DS 0
ALU o
data Common Data Bus (CDB)

—---n-n-nn
: load r2, #0(r1) FE

|2. add r4, r2, #i

i3: add r6, r5, #2

i4: add r7, ro, #3



Scoreboard Register File

()

v value
rof 1 rO| #10
r2( 1 r2 #11
rd| 1 r4 #7
re| 1 ré H#-7
r7] 1 r7| #345

ssue Queue 1)

v | dst |rsl rsl rs2 rs2

tag (Wakeup)
-------------- tag |rdy|tag/value |rdy|tag/value

+ | Big | agen 8
Tinyl ALU | DS 0
ALU o
data Common Data Bus (CDB)

—---n-n-nn
: load r2, #0(r1) FE DE

|2. add r4, r2, #1 FE

i3: add r6, r5, #2

i4: add r7, ro, #3



Scoreboard Register File

e (O

v value
ro| 1 r0] #10
r2| 0 |k r2 -
G r2, #0, #44 3 1 3 #33 |
rd| 1 r4 #7
re| 1 re|  #7
7 1 r7[_#345

ssue Queue 1)

v | dst |rsl rsl rs2 rs2

tag (Wakeup)
-------------- tag |rdy|tag/value |rdy|tag/value

+ | Big | agen 8
Tinyl ALU | DS 0
ALU o
data Common Data Bus (CDB)

—---n-n-nn

: load r2, #0(r1) FE DE RR
|2. add r4, r2, #1 FE DE
i3: add r6, r5, #2 FE
i4: add r7, ro, #3



Scoreboard Register File

e ()

v value
ro] 1 rO| #10
r2| O r2 -
Q rd, r2, #1 13| 1 3 #33 |
rd| 0 |k r4 -
re| 1 ré #-7
r2, #0, #44 r7[ 1 r7|_#345

ssue Queue 1)

v | dst |rsl rsl rs2 rs2

tag (Wakeup)
-------------- tag |rdy|tag/value |rdy|tag/value

+ | Big | agen 8
Tinyl ALU | DS 0
ALU o
data Common Data Bus (CDB)

—---n-n-nn

: load r2, #0(r1) FE DE RR DI
|2. add r4, r2, #1 FE DE RR
i3: add r6, r5, #2 FE DE
i4: add r7, ro, #3 FE



Scoreboard Register File

ro| 1 ro| #10
r2| 0 r2 -

e r6, #15, #2 3| 1 3 #33 |
rd| O r4 -
Iy 6| 0 |% ré -
@,’ rd, r2, #1 (7] 1 7| #345

ssue Queue 10
tag (wakeup) v | dst [rsl rsl rs2 rs2
"""""" @ tag |rdy|tag/value |rdy|tag/value

. 1 r2 1 #0 1 HA44
+ B|g agen 0
Tinvf ALU | D$ 0
ALU Mem

data Common Data Bus (CDB)

—---n-n-nn

: load r2, #0(r1) FE DE RR DI
|2. add r4, r2, #i FE DE RR DI
i3: add r6, r5, #2 FE DE RR
i4: add r7, ro, #3 FE DE



Scoreboard Register File
value

Fetch v
ro] 1 ro #10
Decode rli] 1 rl #44
r2 O r2 -
Reglster Read r7, r6, #3 r3| 1 r3| #33 |
rd| O r4 -
Dispatch r5| 1 r5| #15
re| O ré -
r7| 0 |% r7 -

Issue Queue (1Q)

v | dst [rsl rsl rs2 rs2
tag |rdy|tag/value |rdy|tag/value

ol r2 [1 #0 1 #44
2 1| r4 1 #1
0

data Common Data Bus (CDB)

+

Tiny, ALU
ALU

Mem

Writeback

—---n-n-nn
:load r2, #0(r1) FE DE RR DI IS EX@

|2. add r4, r2, #1 FE DE RR DI IS

i3: add r6, r5, #2 FE DE RR DI

i4: add r7, ro, #3 FE DE RR



Scoreboard Register File
value

:
rof 1 rO| #10
r2 O r2 -
rd| O r4 -

—— 6| 0 ré -
’*ﬁ_\.{ r7, ré, #3 70 0 (7 }

Issue Queue (1Q)

tag (wakeup) v | dst [rsl rsl rs2 rs2
-------------- > tag |rdy|tag/value |rdy|tag/value
. 0 r2 1 #O 1 H44
+ | Big | asen i2 J 1| ra 1| #
Tyl ALU | o3 T =) 1] 6 |1| #15 |1]| #
ALU
Me <%
Writeback
data Common Data Bus (CDB)
3< cache miss
r2, @44 . ]1]2]3]4]5(6]7]8]9]10]11]12[13]14]15]16]17
’ il: load r2, #0(r1) FE DE RR DI IS EXe EXps ... Miss ...
i2: add r4, r2, #i FE DE RR DI IS IS

i3: add r6, r5, #2 FE DE RR DI IS
i4: add r7, re, #3 FE DE RR DI



Scoreboard Register File

rol 1 rO| #10
r2| O r2 -
Register Read r3| 1 r3| #33 |
' r4| 0 r4 -
Dispatch 5| 1 r5|  #15
‘%’_\a r6| 0 6| -
F S r71 0 7L -
sue Quee (19
tag (wakeup) v | dst rs2 rs2
--:;--6----- . tag |rdy|tag/value |rdy|tag/value
T - f 4 1] 1] #3
|:P% Blg agen |2 1 r4 1 #1
6, AL”J ALU D$f 1 0| r6 1 #2
#15, Me
2 Writeback
data Common Data Bus (CDB)
3< cache miss
. ]1]2]3]4]5(6]7]8]9]10]11]12[13]14]15]16]17
r2, @44 : .
i1: load r2, #0(r1) FE DE RR DI IS EXe EXps ... Miss ...
i2: add r4, r2, #1 FE DE RR DI IS IS IS

i3: add r6, r5, #2 FE DE RR DI IS EX
i4: add r7, ro, #3 FE DE RR DI IS



Scoreboard Register File

rof 1 rO| #10

r2 O r2 -

rd| O r4 -
_ 6| 1 [% 6| #17 | %k
12 r7] O r7 -

Issue Queue (1Q)

_ tag (wakeup) |V | dst |rsl| rs1  |rs2}  rs2

Execute — SEEEEETEEEEEEE - tag |rdy|tag/value |rdy|tag/value

Issue

: 7 |1 #17k | 1 #3
(43| Big |zeen @ 4 1]
7 1yl ALU D$f 1 o| 6 | 1| #15 |1 #2

o —
3 % r6, #17

=

#17,

3 Writeback
data Common Data Bus (CDB)

@ r6, #17
3< cache miss

| 112/3]4]/5]617]8]9]10[11]12]13]14]15]16]17]

r2, @44 : .
i1: load r2, #0(r1) FE DE RR DI IS EXe EXps ... Miss ...
i2: add r4, r2, #1 FE DE RR DI IS IS IS IS

i3: add r6, r5, #2 FE DE RR DI IS EX WB
i4: add r7, re, #3 FE DE RR DI IS EX



Scoreboard Register File
value

:
rof 1 ro #10
r2 O r2 -
rd| O r4 -
s 1 rs|_#15
re| 1 ré #17
(7| 1 |K r7| #20 |k

Issue Queue (IQ)
tag (wakeup) v | dst |rsl rsl rs2 rs2

Issue

Execute — CEEEEEEEEEEEES -> tag |rdy|tag/value |rdy|tag/value
+ | Bi agen 0 r7 1 #17 1 #3
_ g @ 1| rd 1 #1
Ty ALU 0314 0 6 [ 1] #15 [1]
Mem—¢ * r7, #20
Writeback

data Common Data Bus (CDB)
r7, #20
3< cache miss

| 112/3]4]/5]617]8]9]10[11]12]13]14]15]16]17]

r2, @44 : .
i1: load r2, #0(r1) FE DE RR DI IS EXe EXps ... Miss ...
i2: add r4, r2, #1 FE DE RR DI IS IS IS IS IS

i3: add r6, r5, #2 FE DE RR DI IS EX WB
i4: add r7, re, #3 FE DE RR DI IS EX WB



Scoreboard Register File
value

:
rof 1 ro #10
r2 O r2 -
rd| O r4 -

5[ 1 rs|_#1s
re| 1 ré #17
r7( 1 r7 #20

Issue Queue (1Q)

tag (wakeup) v | dst [rsl rsl rs2 rs2
--;—-2- ------- -> tag |rdy|tag/value |rdy|tag/value
) r o 7 [ 1] w17 1] #3
+ | Big | asen @ 1| r4 1| #
Ty ALU | D$(] 1 0| r6 [ 1| #15 |1] #2
ALU e %
Writeback
data Common Data Bus (CDB)
< cache miss
r2, @44 . ]1]2]3]4]5(6]7]8]9]10]11]12[13]14]15]16]17
’ il: load r2, #0(r1) FE DE RR DI IS EXe EXps ... Miss ...
i2: add r4, r2, #1 FE DE RR DI IS IS IS IS IS IS

i3: add r6, r5, #2 FE DE RR DI IS EX WB
i4: add r7, re, #3 FE DE RR DI IS EX WB



Fetch

Decode

Register Read

Dispatch

Issue

tag (wakeup)

@

4, \Lu

#666,
#1

agen

Big

ALU | DS

Mem

Writeback

@

->

Scoreboard Register File
v value
rof 1 rO| #10
rli] 1 rl #44
r2| 1 |X% r2| #666 |K
r3] 1 r3| #33 |
rd| O r4 -
r51 1 r5 #15
re| 1 re| #17
r7( 1 r7 #20
Issue Queue (1Q)
v | dst [rs1 rsl rs2 rs2
tag |rdy|tag/value |rdy|tag/value
0 r7 1 #17 1 #3
0| r4 |1 k#666 | 1 #1
0 ré 1 #15 1 #2
% r2, #666

data

r2, #666

Common Data Bus (CDB)

il: load r2, #0(r1) FE DE RR DI IS EXe EXps ... Miss ...
i2: add r4, r2, #1 FE DE RR DI IS IS IS IS IS
i3: add r6, r5, #2 FE DE RR DI IS EX WB

i4: add r7, re, #3 FE DE RR DI IS EX WB

IS

1112 /3]4]/5]617]8]9]10[11]12]13]14]15]16]17]
WB

EX



Scoreboard Register File
value

:
rof 1 ro #10
r2( 1 r2| #666
rdl 1 |% r4| H667
re| 1 ré #17
r7( 1 r7 #20
Issue Queue (1Q)

tag (wakeup) v | dst |rsl rsl rs2 rs2
-------------- > tag |rdy|tag/value |rdy|tag/value

Bi Jeen 0 r7 1 #17 1 #3
+|blg |28 0| ra | 1| #666 | 1|
Tinyl ALU | D$ o| 6 | 1| #15 |1 #2
ALU o
* r4, #667
Writeback
data Common Data Bus (CDB)
®r4,#667
. ]1]2]3]4]5(6]7]8]9]10]11]12[13]14]15]16]17
il: load r2, #0(r1) FE DE RR DI IS EXe EXps ... Miss ... WB
i2: add r4, r2, #1 FE DE RR DI IS IS IS IS IS IS EX WB

i3: add r6, r5, #2 FE DE RR DI IS EX WB
i4: add r7, re, #3 FE DE RR DI IS EX WB



Scoreboard Register File
value

:
rof 1 ro #10
r2( 1 r2| #666
rd| 1 r4| #667
re| 1 ré #17
r7( 1 r7 #20
Issue Queue (1Q)

tag (wakeup) v | dst |rsl rsl rs2 rs2
-------------- > tag |rdy|tag/value |rdy|tag/value

+ | Bi Jeen 0 r7 1 #17 1 #3
r|blg | 0| 4 |1 | #e66 | 1| #1
Tinyl ALU | D$ o r6 | 1| #15 1 #2
ALU
Mem
Writeback
data Common Data Bus (CDB)

1112 /3]4]/5]617]8]9]10[11]12]13]14]15]16]17]
WB

il: load r2, #0(r1) FE DE RR DI IS EXe EXps ... Miss ...
i2: add r4, r2, #1 FE DE RR DI IS IS IS IS IS IS EX WB

i3: add r6, r5, #2 FE DE RR DI IS EX WB
i4: add r7, re, #3 FE DE RR DI IS EX WB



Two problems with OO0 v.1

= Cannot recover from misspeculation (cannot schedule past a basic block)
= Younger instructions are speculative with respect to older instructions
= Possible to have older predicted branches that have not executed yet
= QOlder load instructions may have executed speculatively with respect to
prior unresolved stores

= Exceptions are not precise, i.e., register file is being updated out of the
original program order

= Reverts to in-order when two producers have the same destination register
= WAR and WAW lead to stalls

=  Must stall younger producer in Register Read stage until older producer
executes



Scoreboard Register File
value

:
ro] 1 ro #10
r2( 1 r2| #666
ral 1 Al #7 Can’t recover
51 1 51 #15 original values
re| 1 ré6 of r6, r7
r7] 1 r7
Issue Queue (1Q)

tag (wakeup) v | dst [rsl rsl rs2 rs2
Execute oty - tag |rdy|tag/value |rdy|tag/value

< i£ #666 1= 0 8 - 1 ##61676 1 i(g)
br,anCh t_o 7 0| 6 | 1] #15 |1 #2
A mispredict

* r2, #666 Misprediction

Writeback

@

data Common Data Bus (CDB) detected
r2, #666

Cantsquashi3, @ [ 1123 /4]5/6/7]81[9 10]11]12
i4: they are il: load r2, #0(r1) FE DE RR DI IS EXe EXps ... Miss ... WB
i2: bnez r2, i7 FE DE RR DI IS IS IS IS IS IS EX

long gone i3: add r6, r5 #2 e e e

i4: add r7, re, #3 FE DE RR DI IS EX WB



Scoreboard Register File

rof 1 rO|  #10 Incorrect
: r2| O 2 - 7 WAW: i1 will
3] 1 r3|#33 overwrite i3,
r4| 0 r4 -
5[ 1 5|15 ter
re| 1 ré #-7
r7] O r7 -
Issue Queue (1Q)
tag (wakeup) v | dst rs2 rs2
“-‘A-'-FZ-““ ) tag |rdy|tag/value|rdy|tag/value
. % Bi agen a1 7 1 #3 — Wakeup: RAW
i3 8 > ) 1] ra 1] w1
r2, oy ALU D$f 1 0| r2 1 #2 Incorrect
#15- Me Wakeup: WAR
:
data Common Data Bus (CDB)
3< cache miss
r2, @44
. ]1]2]3]4]5(6]7]8]9]10]11]12[13]14]15]16]17
what happens if we i1: load r2, #0(r1) FE DE RR DI IS EXe EXps ... miss ...
do not stall i3 in RR  i2: add r4, r2, #i FE DE RR DI IS IS IS
until il executes? i3 add 12, 5, #2 FE DE RR DI IS EX

i4: add r7, r2, #3 FE DE RR DI IS



Dynamic Branch Prediction




Dyam Branch Prediction

= Forkintheroad in all cases
= But, context is different
= What will you do to go at full-
speed?
= Static prediction: always-left,
always-right, return if wrong
=  Dynamic prediction: memorize
<context-direction> pair in
head: <cherry tree, right>,
<windmills, left>




Dynamic Branch Prediction

a Predict the outcome of a branch instruction (in fetch stage) based
on the recent behavior of the branch

= What do we need?

= Branch identification (PC uniquely identifies a branch)

= Recent branch behavior (taken/untaken last time)



Branch Identification & Behavior

= Branch identification
= Use the branch address in instruction memory
= Cangrabitfrom PC

= Branch behavior
= Qutcome of the condition test from ALU
= Can also store the branch target the last time the branch
executed



One-Bit Predictor

"= Branch History Table (BHT) or Branch Prediction Buffer
" A small amount of memory indexed by the low-order bits of
branch address
= Key Ildea: Store a single bit that says branch was recently taken
or not T

1-bit

branch ™M ‘ predictior]

address

R B PR O O L, O

Due to limited entries in the table, there are conflicts (aka. aliasing)




Smith Predictor

The state transitions show the bimodal behavior of Smith
predictor

taken
‘_ Untaken :
Taken ) ken IELG

Untaken ‘taken

. Untaken
00 Predict ! ‘ 01
Untaken roken '
N4

Untaken




Global Branch Correlation

o Can we predict the behavior of one branch based on the
direction of another branch?

if @a==2) | B1 if (counter > 15) Bl
aa =0 {
if (bb==2) | B2 reset = 1;
bb = 0 \
if (aa!=Dbb) | B3
() »
(81, B2, B3) et B2
(T.7.%) f (counter < 2) (BL, B2, B3)
(T, F ?) (. B3 (T, 2,7

(F 2,72



A Lot More to Say on Branch Prediction!

Important component of a modern processor
" Especially superscalar and out-of-order processors

We correlating local/global history predictors as well
= Branches in programs are correlated

Prediction accuracy above 90%
State of art: Deep neural networks, machine learning approaches

Random branches are increasingly common (ML, NLP, GPT)



Two Humps in a Modern Pipeline
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Photo credit: http://true-wildlife.blogspot.ch/2010/10/bactrian-camel.html 1 18
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Hardware Speculation




Out-of-Order Pipeline (v.2)

= Solution: Reorder Buffer (ROB)
= ROB enables OO0 execution, while at the same time supports recovery
from mispredictions and exceptions

= ROB also implements register renaming
= Rename non-unique destination tags (architectural register
specifiers) to unique destination tags (ROB tags)

= Source tags are renamed as well, linking without ambiguity
consumers to their producers

= No reverting back to in-order due to WAR and WAW hazards, as they
are eliminated after renaming



Operation with ROB (1-Page Cheat sheet)

The “Register File” is replaced with an expanded set of registers split into two parts
= Architectural Register File (ARF): Contains values of architectural registers as if produced by an in-order pipeline. That is, contains committed (non-
speculative) versions of architectural registers to which the pipeline may safely revert to if there is a misprediction or exception.
= Reorder Buffer (ROB): Contains speculative versions of architectural registers. There may be multiple speculative versions for a given architectural register.
ROB is a circular FIFO with head and tail pointers
= A list of oldest to youngest instructions in program order
= |nstruction at ROB Head is oldest instruction
= |nstruction at ROB Tail is youngest instruction
New Rename Stage (after Decode and before Register Read)
= The new instruction is allocated to the ROB entry pointed to by ROB Tail. This is also its unique “ROB tag”.
= Source register specifiers are renamed to the expanded set of registers, the ARF+ROB. Renaming pinpoints the location of the value: ARF or ROB, and where in
the ROB (ROB tag of producer). Thus, renaming unambiguously links consumers to their producers.
= Destination register specifier is renamed to the instruction’s unique ROB tag.
= Rename Map Table (RMT) contains the bookkeeping for renaming. (Intel calls it the Register Alias Table (RAT).)
Register Read Stage
= Obtain source value from ARF or ROB (using renamed source)
= |f renamed to ROB, ROB may indicate value not ready yet
= Producer hasn’t executed yet
= Keep renamed source as proxy for value
= A consumer instruction obtains its source values from ARF, ROB, and/or bypass, depending on situation:
= ARF: if producer of value has retired from ROB
= ROB: if producer of value has executed but not yet retired from ROB
= Bypass: if producer of value has not yet executed
Writeback Stage
= |nstruction writes its speculative result OO0 into ROB instead of ARF (at its ROB entry)
New Retire Stage safely commits results from ROB to ARF in program order
Misprediction/exception recovery
= Offending instruction posts misprediction or exception bit in its ROB entry 000
= Wait until offending instruction reaches head of ROB (oldest unretired instruction)
= Squash all instructions in pipeline and ROB, and restore RMT to be consistent with an empty pipeline



Expanded Registers

= The “Register File” is replaced with an expanded set of registers split into two parts

= Architectural Register File (ARF): Contains values of architectural registers as if
produced by an in-order pipeline. That is, contains committed (non-speculative)

versions of architectural registers to which the pipeline may safely revert to if there
is @ misprediction or exception.

= Reorder Buffer (ROB): Contains speculative versions of architectural registers. There
may be multiple speculative versions for a given architectural register.



Register Renaming

= New Rename Stage (after Decode and before Register Read)

= The new instruction is allocated to the ROB entry pointed to by ROB Tail. This is also
its unique “ROB tag”

= Source register specifiers are renamed to the expanded set of registers, the
ARF+ROB. Renaming pinpoints the location of the value: ARF or ROB, and where in
the ROB (ROB tag of producer). Thus, renaming unambiguously links consumers to
their producers.

= Destination register specifier is renamed to the instruction’s unique ROB tag.

= Rename Map Table (RMT) contains the book-keeping for renaming. (Intel calls it the
Register Alias Table (RAT))



Register Renaming

= Register Read Stage
= (Obtain source value from ARF or ROB (using renamed source)

= |f renamed to ROB, ROB may indicate value not ready yet
= Producer hasn’t executed yet
= Keep renamed source as proxy for value

= A consumer instruction obtains its source values from ARF, ROB, and/or bypass,
depending on situation:
= ARF: if producer of value has retired from ROB
= ROB: if producer of value has executed but not yet retired from ROB
= Bypass: if producer of value has not yet executed



Writeback, Retirement, and Recovery

= Writeback Stage

= |nstruction writes its speculative result OOO into ROB instead of ARF (at
its ROB entry)

= New Retire Stage safely commits results from ROB to ARF in program order

= Misprediction/exception recovery
= Offending instruction posts misprediction or exception bit in its ROB
entry OO0
= Wait until offending instruction reaches head of ROB (oldest unretired
instruction)
= Squash all instructions in pipeline and ROB, and restore RMT to be
consistent with an empty pipeline



value

v __ Tag 1l #aa Architectural
r0 2l #11 Register File
; a3 ()

3 Map Table rd| #7
Register Read " (RMT) 5[ #15
c ré H#-7
Dispatch :6 7| #345
r7 i i
value dst rdy exc misp PC
sve Quete () o
v | dst [rsl rsl rs2 rs2 robz
---------- > tag [rdy|tag/value |rdy|tag/value ro
tag (wakeup) 8 [Ty e yi<e HT rob3
+ | Big | agen rob4
Tinyl ALU | DS rob5
ALU v rob6
em
- rob7
Writeback >
Common Data Bus (CDB)
rob31

1112 /3]4/5]6]7[18]9110]11]12]113]14]15]16]17

i1: load r2, #0(r1)
i2: bnez 12, i7
i3: add r2, r5, #2
i4: add r7, r2, #3

Retire



value
_ rech (@) ROB o[ _#10 _
v __ Tag 1l #aa Architectural
2l #11 Register File
o] nename a3 ()
I - Map Table rd| #7
Register Read al o - (RMT) r5( #15
ré H#-7
Dispatch :2 8 - 7| #345
r7| O - i i
value dst rdy exc misp PC
sue Queue () o
v | dst [rsl rsl rs2 rs2 robz
---------- > tag [rdy|tag/value |rdy|tag/value ro
tag (wakeup) 0 g y17ag AL HT rob3
+ [ Big | agen 0 rob4
Tinyl ALU | DS 0 rob5
ALU v rob6
em
- rob7
Writeback >
Common Data Bus (CDB)
rob31

1112 /3]4/5]6]7[18]9110]11]12]113]14]15]16]17

i1: load r2, #0(r1) FE
i2: bnez 12, i7
i3: add r2, r5, #2
i4: add r7, r2, #3

Retire



value
@ ROB o[ #10

v Tag 1 #aa Architectural
@ 0 8 - r2[ _#11 | Register File
rl -
15 - Rename r3| #33 (ARF)
Y - Map Table rd|  #7
Register Read al o - (RMT) o
ré #-7
Dispatch 5 0 - 7| #345
ré| O - G
r7] O -
value dst rdy exc misp PC

Issue Queue (1Q) rob0
robl

v | dst |rsl rsl rs2 rs2

ta_g_(-mjc;l;e_u-p;)’ tag |rdy|tag/value |rdy|tag/value rob2

0 HT rob3
¥ Big agen 0 rob4
Tyl ALU | DS 0 rob5
ALU rob6
Mem o

ro

;

Common Data Bus (CDB)

rob31

. ]|1]2]3|4]/5/6]7[8]9]10]/11[12[13[14][15]16]17
i1: load r2, #0(r1) FE DE

i2: bnez 12, i7 FE

i3: add r2, r5, #2

i4: add r7, r2, #3



value
@ ROB o[ #10

v Tag 1l #aa Architectural
_ Decode (@) [rO 8 — r2[_#11_| Register File
rl -
@ rob3, #0,r1 % 2| 1 —3 Rename r3| #33 (ARF)
I - Map Table rd| #7
Register Read 2o - (RMT) 5[ #15
ré H#-7
ol e
r7| O - G
value dst rdy exc misp PC
e Queve (19 o
v | dst [rsl rsl rs2 rs2 robz
---------- > tag [rdy|tag/value |rdy|tag/value ro
tag (wakeup) 0 B TV 06 Y188 H rob3 - r2 | 0 0 0| i1
+ | Big | asen 0 T rob4
Tinyl ALU | DS 0 rob5
ALU v rob6
em
: rob7
=
Common Data Bus (CDB)
rob31

. ]|1]2]3|4]/5/6]7[8]9]10]/11[12[13[14][15]16]17
il: load r2, #0(r1) FE DE RN

i2: bnez 12, i7 FE DE

i3: add r2, r5, #2 FE

i4: add r7, r2, #3



value

v Tag 1 #aa Architectural
_ Decode (@) 0 8 - r2[_#11_| Register File
rl -
@ robd, rob3, #0 (12| 1 | vob3 ] Rename r3| #33 (ARF)
310 - Map Table rd| #7
Register Read @robS’, #0, #44 al o - (RMT) 5[ #15
ré H#-7
Lol T
r7| O - i i
value dst rdy exc misp PC
sue Quee (10 o
v | dst [rsl rsl rs2 rs2 robz
---------- > tag [rdy|tag/value |rdy|tag/value ro
tag (wakeup) =5 e e Y1k H rob3 - ol ol o]i
+ | Big | agen 0 robd| - -lofJofoi2
Tinyl ALU | DS 0 T robs
ALU v rob6
em
- rob7
=
Common Data Bus (CDB)
rob31

. ]|1]2]3|4]/5/6]7[8]9]10]/11[12[13[14][15]16]17
i1: load r2, #0(r1) FE DE RN RR

i2: bnez 12, i7 FE DE RN

i3: add r2, r5, #2 FE DE

i4: add r7, r2, #3 FE



value

v Tag Architectural
rl #44
r0 8 ' 2l #11 Register File
rl -
Rename r3| #33 (ARF)
BTN GS) o5, 5, 2
robo, >, *:g Cl) ro_bS Map Table rd #7
Register Read @ rob4, rob3, #0410 - (RMT) r5|  #15
ré #-7
T (i) robs, #o, #44 [:Z 1 ) r7[_#345
r7{ O - ﬁ
value dst rdy exc misp PC
sve Quete () o
v | dst |rs1 rsl rs2 rs2 robz
---------- tag |rdy|tag/value |rdy|tag/value ro
tag (wakeup) 0 e v Hlrob3| - 2 0]lo]o]il
+ [ Big [agen 5 robd| - - lofoJoli
Tinyl ALU | DS 0 rob5 - r2 | O 0 0 | i3
ALU Ve T rob6
- rob7
=
Common Data Bus (CDB)
rob31

—nnnnnﬂ-nnmmmmmmm
i1: load r2, #0(r1) FE DE RN RR

i2: bnez re, i7 FE DE RN RR

i3: add r2, r5, #2 FE DE RN

i4: add r7, r2, #3 FE DE



value

v Tag 1 #aa Architectural
‘ rob6, rob5s, #3 Rename r3[  #33 (ARF)
@ [:g Cl) ro_bS ] Map Table rd|  #7
Register Read @ rob5, #15, #2 al o - (RMT) [r5 #15 ]
ré #-7
" Dispatch (DR M 7w
ré| O -
il * r7| 1 | rob6 | |
value dst rdy exc misp PC
Issue Queue (1Q) rob0
tag (wakeup)| V dst [rsl rsl rs2 rs2 robl
---------- > tag |rdy|tag/value |rdy|tag/value rob2 .
: @ 1 |rob3]| 1 #0 1| #44 H rob3 . 21041010110
+ | Big |2a8en 0 rob4 - - O[O0 0] 2
Tinyl ALU | DS 0 rob5 - r2 | O 0 0 | i3
ALU Ve rob6 - r7 0 0 0 i4
: T rob7
=
Common Data Bus (CDB)
rob31

. ]|1]2]3|4]/5/6]7[8]9]10]/11[12[13[14][15]16]17
i1: load r2, #0(r1) FE DE RN RR DI IS

i2: bnez 12, i7 FE DE RN RR DI

i3: add r2, r5, #2 FE DE RN RR

i4: add r7, r2, #3 FE DE RN



value
v Tag 1 #aa Architectural
0] 0 h 2 #11 Register File
rif 0 - Rename r3| #33 (ARF)
r2| 1 rob5
. - Map Table rd|  #7
Register Read rob6, robs, #3 - (RMT) ol #15
r4] O 6| #7
eI (3) robs, #15, 82 21— r7[_#345
ré| O - G
i2 r7] 1 rob6
value dst rdy exc misp PC

Issue Queue (1Q) rob0
robl

v | dst |rsl rsl rs2 rs2
tg_g_(_micllie_u_e)’ tag |rdy|tag/value |rdy|tag/value rob2 .
: —~rop3, #0, #44__| 0 |rob3 | 1 #0 1| #aa H rob3 - 210101011l
+ Blg @ @ 1 | rob4 1 #0 rob4 - - 0 0 0 i2
Tinyl ALU | DS 0 ‘ ‘q rob5 - 2ol o]]o]i3
ALU Ve rob6 - r7 0 0 0 i4

T rob7
~

A

Common Data Bus (CDB) b31
ro

. ]|1]2]3|4]/5/6]7[8]9]10]/11[12[13[14][15]16]17
i1: load r2, #0(1) FE DE RN RR DI IS EXg
2, i7 FE DE RN RR DI IS

i2: bnez
i3: add r2, r5, #2 FE DE RN RR DI

i4: add r7, r2, #3 FE DE RN RR




3<rob3,

0 0
Fetc @44 miss ROB ro| #10

v Tag 1 #aa Architectural
A 2l #11 Register File
rl -
N - Map Table rd| #7
Register Read al o - (RMT) 5[ #15
ré H#-7
Dispatch rob6, rob5, #3 :2 8 r7| #345
@-3: r7] 1 rob6 i i
[ value dst rdy exc misp PC
sue Quee (10 o
tag (wakeup)| V dst |[rs1 rsl rs2 rs2 ob2
---------- > tag |rdy|tag/value|rdy|tag/value .
0 |rob3| 1| #0 | 1| #44 Hrob3| - 2| 0101071l
Tyl ALU |(i1 3) 1 robS‘l‘ #15 \1 #2 rob5| - 2101010383
ALU o rob6 - r7 0 0 0 i4
em
- T rob7
Writeback >
Common Data Bus (CDB)
rob31
. ]|1]2/3|4]/5]/6]7]|8[9[10]11]12]13]|14]15]16] 17
. il: load r2, #0(r1) FE DE RN RR DI IS EXe EXps ...miss...
Retire
i2: bnez re, i/ FE DE RN RR DI IS IS
i3: add r2, r5, #2 FE DE RN RR DI IS

i4: add r7, r2, #3 FE DE RN RR DI



value
@ addrd, r2, r7 ROB o #10

v __ Tag 1l #aa Architectural
r0f O . 2l #11 Register File
o] rename o] (e
:3 5 ro_ Map Table rd| #7
Register Read (RMT) 5[ #15
410 L - 6| #7
Dispatch 5 0 - 7| #345
ré| O -
@Zp r7] 1 rob6 i i
[ value dst rdy exc misp PC
sste Quese (0
> robl
tag (wakeup)| V rs b2
---------- » gl -
: * rob5 (4 1 "3 H rob3 - r2 | 0 0 0 | il
@ Blg agenvy iz 1 #0 r0b4 = = 0 0 O |2
Tiny ﬂ@ 5 ) robs| - 2] o] o] o0]i3
bgLU#IS 72 Mem rob6 - r7 0 0 0 i4
ro i i ‘ T rob7
Common Data Bus (CDB)
rob31
. l1]/2/3[4a/5[6]7[8]9[10]/11[12]13[14]15]16]17]
il: load r2, #0(r1) FE DE RN RR DI IS EXe EXps ...miss...

i2: bnez  r2, i7 FE DE RN RR DI IS IS IS
i3: add re, r5, #2 FE DE RN RR DI IS EX
i4: add r7, r2, #3 FE DE RN RR DI IS



value

v Tag 1l #aa Architectural
@ add rd, r2, r7 :2 8 - 2 #11 Register File
. e Rename r3| #33 (ARF)
N - Map Table rd| #7
Register Read (RMT) 5[ #15
4l 01 - 6] #7
Dispatch 5 0 - 7| #345
re| O -
i2 r7] 1 | rob6 | |
value dst rdy exc misp PC
sve Quete ()
robl
tag (wakeup)| V dst |[rs1 rsl rs2 rs2 ob2
;(--ra-b-6----> tag |rdy|tag/value|rdy|tag/value .
@ : 0 [rob6] 1 [x#17 | 1| #3 Hrob3] - 21010410141
| Big |asen @ 1 {roba 1 H0 rob4 - - |o0Jojo]|i2
Tinyl ALU |(i1 0 |rob5| 1| #15 |1| # *rob5| #17 211104101/
ALU Narm rob6 - r7 0 0 0 i4
rob6, #17, #3 * rob5, #17 T rob7
Writeback >
Common Data Bus (CDB)
rob31
robs, #17 . |1]2[3]4]/5]/6/78]9]10/11/12]/13]14]15]16]17
il: load r2, #0(r1) FE DE RN RR DI IS EXe EXps ...miss...
i2: bnez re, i/ FE DE RN RR DI IS IS IS IS
i3: add r2, r5, #2 FE DE RN RR DI IS EX WB

i4: add r7, r2, #3 FE DE RN RR DI IS EX



value

v Tag 1l #aa Architectural
Decode :2 8 ' 2 #11 Register File
ISR ®) oo rob7, robs, (1o 5 | ans ) K" s | (ake
rob6 310 - Map Table rd| #7
Register Read *ra| 1 b7 (RMT) r5( #15
<o ré H#-7
Dispatch r - 7| #345
ré| O -
i2 r7] 1 | robe |] | |
value dst rdy exc misp PC
ssue Queue (19 a1
tag (wakeup)| V dst |[rs1 rsl rs2 rs2 ob2
;(--ra-b-6----> tag |rdy|tag/value|rdy|tag/value .
: 0 |rob6| 1| #17 | 1] #3 Hrob3| - 210101011
+ | Big | agen | @ 1 {roba 11 #0 rob4| - - |o0Jojo]|i2
ALU Narm *rob6| #20 r7 1 0 0 i4
: % rob6, #20 rob7 - rd | O 0 0 i5
Writeback > T
Common Data Bus (CDB)
rob31
robé, #20 . ]1]2(3]/4]5[6]7|8]9]10[11]12[13 14151617
il: load r2, #0(r1) FE DE RN RR DI IS EXe EXps ...miss...
i2: bnez re, i/ FE DE RN RR DI IS IS IS IS IS
@ i3: add r2, r5, #2 FE DE RN RR DI IS EX WB RT

i4: add r7, r2, #3 FE DE RN RR DI IS EX WB



value

v __ Tag 1l #aa Architectural
rl -
N - Map Table rd| #7
Register Read @addrobl #17, (RMT) r5| #15
r4| 1 rob7
#20 =0 - 6| #7
Dispatch r7| #345
ré| O -
i2 r7| 1 | rob6 | |
value dst rdy exc misp PC
sue Quee (10
robl
tag (wakeup)| V dst [rsl rsl rs2 rs2 ob2
;(--ra-b-3----> tag |rdy|tag/value|rdy|tag/value .
- 0 |rob6| 1| #17 | 1] #3 Hrob3| - 2101010111
+ | Big | agen | @ 1 {roba 11 #0 rob4| - - 0o o]
Tmyﬂ@ 0 [robs 1 1 #15 1 ) [robS #17 r2 1 0 0 !3
ALU o rob6| #20 r7 1 0 0 i4
em
- rob7 - rd | O 0 0 i5
Writeback > T
Common Data Bus (CDB)
rob31
. l1]/2/3[4a/5[6]7[8]9[10]/11[12]13[14]15]16]17]
il: load r2, #0(r1) FE DE RN RR DI IS EXe EXps ...miss...
i2: bnez re, i/ FE DE RN RR DI IS IS IS IS IS IS

i3: add re, r5, #2 FE DE RN RR DI IS EX WB RT RT

i4: add r7, r2, #3 FE DE RN RR DI IS EX WB RT



#0!=#0 is false, not-taken, no misp

value

robd, #0, #0 o #o0 |
v d5 1l #44a rchitectura
r0 8 ' 2l #11 Register File
rl -
N - Map Table rd| #7
Register Read al 1 b7 (RMT) r5( #15
ré H#-7
Dispatch @ add rob7, #17, :2 8 r7]_#345
#20 r7] 1 rob6 i i
value dst rdy exc misp PC
ssue Queue (19 a1
tag (wakeup)| V dst |[rs1 rsl rs2 rs2 ob2
---------- > tag |rdy|tag/value|rdy|tag/value .
- 0 |rob6| 1| #17 | 1] #3 Herob3|  #0 2| 1101011
@2) | Big |aeen 0 [roba| 1| #0 *[ 1] #0 g — - 10101002
ALU Ve rob6| #20 r7 1 0 0 i4
rob4_#0.#0 * rob3, #0 rob7[ - 4| 0] o0]o0]i5
Writeback > T
Common Data Bus (CDB)
@ rob31
CLEACUNN 0 (12 [3]4a]5[6]7]8]9 ] 10/11]12[13[14][15]16]17]
il: load r2, #0(r1) FE DE RN RR DI IS EXe EXps ...miss... WB
i2: bnez re, i/ FE DE RN RR DI IS IS IS IS IS IS EX

i3: add re, r5, #2 FE DE RN RR DI IS EX WB RT RT RT

i4: add r7, r2, #3 FE DE RN RR DI IS EX WB RT RT



(&)

v rob5 !=rob3 1 #aa Architectural
I - Map Table rd| | #7
Register Read al 1 b7 MT) r5( | #15
ré H#-7
Dispatch :2 8 - r7[ | #345
r7] 1 rob6 G
[ value dst rdy exc misp PC
ssue Queue (19 a1
tag (wakeup)| V dst |[rs1 rsl rs2 rs2 rob2
---------- > tag |rdy|tag/value|rdy|tag/value .
, i5) 1 [rob7| 1| #17 | 1| #20 rob3|  #0 21 11010111
+ | Big |agen 0 [roba[ 1| #0 [1| #0 Herobd| - -~ | 11010 ]®
ALU Ve rob6| #20 r7 1 0 0 i4
. % rob4, no mispred rob7 - rd | 0 0 0 i5
Writeback > T
Common Data Bus (CDB)
@ rob31
CLo Al [ 1] 2]3/4l5]6]7[8]9[10][11[12[13[14[15]16]17]
il: load r2, #0(r1) FE DE RN RR DI IS EXe EXps ...Miss... WB RT
i2: bnez re, i/ FE DE RN RR DI IS IS IS IS IS IS EX WB

@ i3: add re, r5, #2 FE DE RN RR DI IS EX WB RT RT RT RT

i4: add r7, r2, #3 FE DE RN RR DI IS EX WB RT RT RT



value
v __ Tag 1l #aa Architectural
A 2l #0 Register File
rl -
N Map Table rd| #7
- - 5| #15
Register Read MERETS, (RMT) :6 =
Dispatch 5 0 - 7| #345
ré| O -
r7] 1 rob6 i i
value dst rdy exc misp PC
sue Queue ()
robl
tag (wakeup)| V dst [rsl rsl rs2 rs2 ob2
;(--ra-b-7----> tag |rdy|tag/value |rdy|tag/value _
—— 0 |rob7| 1| #17 | 1] #20 rob3| #0 2] 11010110
Tinyl ALU | DS 0 [robs| 1| w5 [1] # HrobS| #17 11r2 1 1101010
ﬁ}u#17 420 Mem rob6| #20 r7 1 0 0 i4
roRz rob7| - ral o[ o] o]is
Writeback > T
Common Data Bus (CDB)
rob31
. 11]/2/3/4|5[/6]7 /8|9 [10]/11]12]13]14]15]16]17
il: load r2, #0(r1) FE DE RN RR DI IS EXe EXps ...miss... WB RT
i2: bnez re, i7 FE DE RN RR DI IS IS IS IS IS IS EX WB RT

@ i3: add r2, r5, #2 FE DE RN RR DI IS EX WB RT RT RT RT RT

i4: add r7, r2, #3 FE DE RN RR DI IS EX WB RT RT RT RT



v rob5 == 1 #aa Architectural
o7 *r21 1 #17 Register File
rl -
I —N. Map Table rd| | #7
Register Read MRS, RMT) r5( | #15
ré #-7
Dispatch :2 8 - r7[ | #345
r7] 1 rob6 i i
value dst rdy exc misp PC
ssue Queue (19 a1
tag (wakeup)| V dst |[rs1 rsl rs2 rs2 rob2
---------- > tag |rdy|tag/value |rdy|tag/value _
0 lrob7 1 1 #17 1 470 rob3 #O r2 1 0 0 i1
ALU Vo H rob6| #20 r7 | 1 0 0 | i4
: % rob7, #37 *rob7| #37 rd | O 0 0 i5
Writeback > T
Common Data Bus (CDB)
rob31

®

s 22020202020 0 1121345167819 [10[11]12]133[14[15]16]17]
il: load r2, #0(r1) FE DE RN RR DI IS EXe EXps ...miss... WB RT
i2: bnez 2, i7 FE DE RN RR DI IS IS IS IS IS IS EX WB RT
i3: add r2, r5, #2 FE DE RN RR DI IS EX WB RT RT RT RT RT RT
i4: add r7, r2, #3 FE DE RN RR DI IS EX WB RT RT RT RT RT



Y Tag rob6 == 1 #aa Architectural
r0] 0 ' Register File
1o - r2 #17 g
oA rename a3 ()
I 7 Map Table r4| #37
Register Read al o T 27 (RMT) 5] #15
ré #-7
Dispatch 510 |/ - *r7{ ¢ #20
6l 0 Y -
*r7| 0/ rob6 W i i
\ value dst rdy exc misp PC
sve Quete () o
tag (wakeup)| V dst |rsl rsl rs2 rs2 N ob2
---------- > tag |rdy|tag/value |rdy|tag/value _
+ Big agen 0 lroba | 1 #0 1 #0 rob4 - - 1 0 0 i2
Tinyl ALU | DS 0 |robs| 1| #15 | 1| # rob5| | #17 2 | 1100183
ALU v rob6 #20 r7 1 0 0 i4
em
: H rob7| #37 r4 ] 0] 0] O | i5
Writeback > T
Common Data Bus (CDB)
rob31
. |l1]2/3|a|5[6[7[8 ]9 10 1122 13]14]15]16] 17|
il: load r2, #0(r1) FE DE RN RR DI IS EXe EXps ...miss... WB RT
i2: bnez re, i/ FE DE RN RR DI IS IS IS IS IS IS EX WB RT
@ i3: add r2, r5, #2 FE DE RN RR DI IS EX WB RT RT RT RT RT RT

i4: add r7, r2, #3 FE DE RN RR DI IS EX WB RT RT RT RT RT RT



v Tag rob7 == rob7 1™ #aza Architectural
:2 8 ' ~ 2 #17 Register File
Fe ] o s ] ann
Map Table *rd| 4 #37
Register Read 3 0// - (RMT) 5[] #15
*rlsl 8 rob7% 6 #.7
Dispatch r - r7| | #20
ré| O -
r7{ O - ﬁ
value dst rdy exc misp PC
sue Queve (0 o0
tag (wakeup)| V dst |[rs1 rsl rs2 rs2 ob2
---------- > tag |rdy|tag/value |rdy|tag/value _
0 [rob7| 1| #17 | 1| #20 rob3 [} #0 21 11040141
+ Big agen 0 lroba | 1 #0 1 #0 rob4 - - 1 0 0 i2
ALU Mem rob6 #20 r7 1 0 0 i4
- rob7| ' #37 rd | O 0 0 i5
Writeback > HT
Common Data Bus (CDB)
rob31
. |1]2[3[4]5]/6]7|8]9]10][11[12]13]|14]15]16]17]
il: load r2, #0(r1) FE DE RN RR DI IS EXe EXps ...Miss... WB RT
i2: bnez re, i/ FE DE RN RR DI IS IS IS IS IS IS EX WB RT
@ i3: add r2, r5, #2 FE DE RN RR DI IS EX WB RT RT RT RT RT RT

i4: add r7, r2, #3 FE DE RN RR DI IS EX WB RT RT RT RT RT RT



v __ Tag 1l #aa Architectural
r0f O ' Register File
1o - r2 #17 g
I - Map Table r4| #37
Register Read al o - (RMT) 5[ #15
<o ré #-7
Dispatch r - r7|  #20
ré| O -
r7] O - i i
value dst rdy exc misp PC
sve Quete () o
tag (wakeup)| V dst [rsl rsl rs2 rs2 ob2
---------- > tag |rdy|tag/value |rdy|tag/value _
+| Big |[2sen R T T T robd| - -1 lololi2
Tinyl ALU | D$ 0 [rob5| 1| #15 | 1| robS| #17 21 110410408
ALU v, rob6 #20 r7 1 0 0 i4
em
- rob7 #37 r4 1 0 0 i5
Writeback > HT
Common Data Bus (CDB)
rob31
. ]|1]2/3|4]/5]/6]7]|8[9[10]11]12]13]|14]15]16] 17
il: load r2, #0(r1) FE DE RN RR DI IS EXe EXps ...miss... WB RT
i2: bnez re, i7 FE DE RN RR DI IS IS IS IS IS IS EX WB RT
i3: add r2, r5, #2 FE DE RN RR DI IS EX WB RT RT RT RT RT RT

i4: add r7, r2, #3 FE DE RN RR DI IS EX WB RT RT RT RT RT RT



Cycle# 1

4

L)

» 11 (Fetch)



Cycle # 2

o '

»* 11 (Decode)
% 12 (Fetch)



Cycle #3

2 11 (Rename)
1. Allocate entry for 11 in ROB at rob3
** Tail of ROBis at rob3
Rename the destination operand (r2) to rob3
Increment the tail pointer of ROB to rob4
Setv[r2]=1in RMT
One source operand is a constant O
Rename the second source operand r1 to ARF[r1l] because
iNnRMT: v[rl]=0
* 12 (Decode)
* 13 (Fetch)

** The fetch is speculative as 12 is a branch and it may be taken
(our branch prediction strategy is always-untaken)

oOu e WwN

4

L)

(R )

L)

L)



Cycle # 4

11 (Regilister Read)
1. Read the value of the second source operand from the
register file: ARF [r1l] is 44
% 12 (Rename)
Allocate an entry for 12 in ROB at rob4
Rename the destination r2 to rob4
Move ROB tail to rob5
Rename the source operand r2 to rob3 because in RMT:
vir2]=1
¢ Carry this tag to the issue queue (later) and wait for the
value to be produced by the producer (11)
% i3 (Decode)
® 14 (Fetch)

0’0

W N e



Cycle #5

4

<

4

L)

11
1.

12

(Dispatch)

Instruction is being copied into the issue queue

\/

** There are free entries in the issue queue
(Register Read)

1. Nothing to read from register file (source operand is not ready)

13
1.

W

14

(Rename)
Allocate an entry for 13 in ROB at rob5

Rename the destination r2 to rob5, keep v[r2]=1 in RMT

Move ROB tail to rob6
Rename the source operand r5to ARF [r5]
v[r5]=0

(Decode)

because in RMT:



Cycle #6

4

L)

11 (Issue)
1. Instruction is now inside the issue queue

\/

** v=1 to indicate the slot in the issue queue has been occupied
¢ The scheduler will pick this instruction for execution (next cycle)
¢ Source operands ready (rsl rdy=1 andrs2 rdy=1)

12 (Dispatch)

1. Instruction is being copied into the issue queue

13 (Reglster Read)

1. Read ARF[r5]=#15

14 (Rename)

1. Allocate an entry for 14 in ROB at rob6 (tail moves to r7)

2. Rename the destination r7 to rob6, setv[r7]=1 in RMT

3. Rename r2 to rob5 becausein RMT: v[r2]=1



Cycle #7

L)

11 (Execute (Agen))
1. Instruction has been issued to the functional unit (agen) for address
calculation: source operands are #0 and #44
2. The corresponding issue queue slot has been freed (v=0)
* 12 (Issue)
1. Instruction is now inside the issue queue

\/

** v=1 to indicate the slot in the issue queue has been occupied

¢ The scheduler will pick this instruction for execution when both
source operands are ready (rs1 rdy=0)
* 13 (Dispatch)
1. Instruction is being copied into the issue queue
* 14 (Register Read)
1. Nothing to read from register file (source operand is not ready)

o0

L)

o0



Cycle #8

4

4

<

4

11
1.
12
1.
13
1.

14
1.

(Execute (DS))

Instruction is checking the SRAM data cache for value
(Issue)

Instruction remains in the issue queue due to a RAW hazard
(Issue)

Instruction is now inside the issue queue

\/

** v=1 to indicate the slot in the issue queue has been occupied

¢ The scheduler will pick this instruction for execution next cycle as
source operands are ready (rs1 rdy=1 and rs2 rdy=1)

¢ ALU is free for executing another instruction
(Dispatch)

Instruction is being copied into the issue queue



Cycle #9

» 11 (Execute(...miss...))
1. Cache miss is being resolved (data being read from main memory)
12 (Issue)
1. Instruction remains in the issue queue due to a RAW hazard
» 13 (Execute)
1. Instruction is issued to the Tiny ALU (deallocated from issue queue)
2. At the end of the cycle, the instruction send its destination tag (rob?5)
to the wakeup logic in front of the issue queue
* 14 (Issue)
1. Instruction is now inside the issue queue (will execute next cycle)

\/

** v=1 to indicate the slot in the issue queue has been occupied
* rsl rdy changesfrom 0 to 1 as the wakeup logic has been
notified of the availability of rob5; and rs2 rdy=1

o0



Cycle # 10

4

4

11 (Execute(...miss...))

1. Cache miss is being resolved (data being read from main memory)

12 (Issue)

1. Instruction remains in the issue queue due to a RAW hazard

13 (Writeback)

1. Instruction writes the result to its destination entry in the ROB (rob5)

2. Broadcasts the tag/value over the CDB to forward it to waiting insts.

14 (Execute)

1. Instruction is issued to the Tiny ALU (deallocated from issue queue)

2. Atthe end of the cycle, the instruction sends its tag (rob6) to the
wakeup logic



Cycle # 11

» 11 (Execute(...miss...))
1. Cache miss is being resolved (data being read from main memory)
12 (Issue)
1. Instruction remains in the issue queue due to a RAW hazard
» 13 (Retire)
1. Instruction is waiting to reach the head of ROB to update the ARF with
the value it has computed for r2
2. Since older instructions haven’t executed yet, and head of ROB is
blocked, i3 will wait for its turn to reach the head of ROB
o 14 (Writeback)
1. Instruction writes the result to its destination entry in the ROB (rob6)
2. Broadcasts the tag/value (rob6, #20) over the CDB to forward it to
waiting insts.

L)



Cycle #12

4

11 (Execute(...miss...))

1. Cache miss is resolved and instruction sends its dst. tag (rob3) to the
issue queue waking up i2

12 (Issue)

1. Instruction wakesup asits rs1l rdy changesfromOto 1

13 (Retire)

1. Instruction is waiting to reach the head of ROB

14 (Retire)

1. Instruction is waiting to reach the head of ROB to update the ARF with
the value it has computed for r7

2. Since older instructions haven’t executed yet, and head of ROB is
blocked, i4 will wait for its turn to reach the head of ROB



Cycle # 13

4

4

4

L)

11
1.
12

(Writeback)

Instruction writes its result (0) to the dst entry in ROB at rob3
(Execute)

1. The branch condition is evaluated and there is no misprediction as the

2.
13
1.
14
1.

branch is (after execution) not taken

Instruction grabbed r2 (renamed to rob3) from the CDB (forwarding)
(Retire)

Instruction is waiting to reach the head of ROB
(Retire)

Instruction is waiting to reach the head of ROB



Cycle # 14

@ 11 (Retire)
1. Instruction is at the head of ROB and in the retire stage
2. Updates ARF [r2] with the value it hasinits entry on ROB
3. Itchecksthe ROB tagin RMT and since tag corresponding to r2 in
RMT is not rob3, it leaves the v bit unchanged
4. Increment ROB head (moves to rob4)
o 12 (Writeback)
1. No value to writeback as the instruction is a branch
2. Branch instruction sets the mi sp bit in ROB to 0 as the branch is not
taken, and the prediction was that branch is not taken
13 and 14 (Retire)
1. Instructions are waiting to reach the head of ROB



Cycle # 15

% 11 (null)
¢ Instruction has retired (its gone!)

% 12 (Retire)
1. Nothing to write to ARF, so just retire from the pipeline
2. Move head of ROB to rob5

\/

% 13 and i4 (Retire)
1. Instructions are waiting to reach the head of ROB



Cycle # 16

\/
0’0

4

L)

4

4

L)

4

L)

11

\/
0‘0

12

\/
0‘0

13
1.
2.

3.
14
1.

(null)
Instruction has retired (its gone!)
(null)
Instruction has retired (its gonel!)
(Retire)
Head of ROB so writes value (#17) to ARF [r2]
It checks the ROB tag in RMT and since tag corresponding to r2 in
RMT is rob5, it resets the v bitto 0
Move head of ROB to rob6
(Retire)
Instruction is waiting to reach the head of ROB



Cycle # 17

\/
0’0

4

11

\/
0‘0

12

\/
0‘0

13

\/
0‘0

14
1.
2.

(null)
Instruction has retired (its gone!)
(null)
Instruction has retired (its gonel!)
(null)
Instruction has retired (its gonel!)
(Retire)
Head of ROB so writes value (#20) to ARF [r7]
It checks the ROB tag in RMT and since tag corresponding to r7 in
RMT is rob67, it resets the v bitto 0
Move head of ROB to rob7



Instruction 15

L)

\/

4

L)

(R )

L)

L)

* Cycle #9

(Fetch)

** Fetch is not blocked due to a branch and RAW hazard in the pipeline
* Cycle #10 (Decode)

* Cycle #11 (Rename)

1. Allocate entry at rob7 in ROB (increment the tail)
2. Rename two source operands to rob5 and rob 6 because v[r2]and
v[r7] in RMTare 1

4

L)

L)

* Cycle #12 (Register Read)

1. Both renamed src operands are available in the ROB. Capture the values
#13 (Dispatch)

e

*

Cycle
Cycle
Cycle
Cycle
Cycle

e

*

e

*

\/
’0

L)

e

*

i

i
i
i

14 (Issue)=2> Selected to execute next cycle
15 (Execute) > Wakeup walting instructions
16 (Writeback)

17-18 (Retire) =2 Head = Tail (Done!)



Observations

= Compared to scoreboard only
= ROB did not degrade performance
= Fetch did not stall as before (tolerated DS miss)
" |n-order retirement did not impede OOO, speculative execution

= Recovery
= ROB was not called upon for recovery

= But can see the danger of misprediction without ROB

" Only leverages ROB for renaming



Recovery

Revise the previous scenario assuming mispredicted branch
= il (load instruction) gets the value #666 instead of #0



#666!=#0 is , taken, misp

value

robd, #0, #0 o #o0 |
v s 1l #44a rchitectura
r0 8 . 2l #11 Register File
rl -
N - Map Table rd| #7
Register Read al 1 b7 (RMT) r5( #15
ré H#-7
Dispatch @ add rob7, #17, :2 8 r7]_#345
#20 r7] 1 rob6 i i
value dst rdy exc misp PC
ssue Queue (19 a1
tag (wakeup)| V dst |[rs1 rsl rs2 rs2 ob2
---------- > tag |rdy|tag/value|rdy|tag/value .
. 0 | ob6 | 1 #17 1 #3 Hxrob3| #666 r2 1 0 0 i1
Qzl Big | agen 0 [rob4| 1| #666%| 1| #0 robd| - - | 01010 }i2
ALU Ve rob6| #20 r7 1 0 0 i4
robd #666,4#0 * rob3, #666 rob7[__- 4|00 o]’
Writeback > T
Common Data Bus (CDB)
@ rob31
CLEACCNN 0 0 (12 [3[4a]5[6]7]8]9 ] 10/11/12[13[14][15]16]17]
il: load r2, #0(r1) FE DE RN RR DI IS EXe EXps ...miss... WB
i2: bnez re, i/ FE DE RN RR DI IS IS IS IS IS IS EX

i3: add re, r5, #2 FE DE RN RR DI IS EX WB RT RT RT

i4: add r7, r2, #3 FE DE RN RR DI IS EX WB RT RT



(&)

v rob5 !=rob3 1 #aa Architectural
I - Map Table rd| | #7
Register Read al 1 b7 MT) r5( | #15
ré #-7
Dispatch :2 8 - r7[ | #345
r7] 1 rob6 G
[ value dst rdy exc misp PC
ssue Queue (19 a1
tag (wakeup)| V dst |[rs1 rsl rs2 rs2 rob2
---------- > tag |rdy|tag/value |rdy|tag/value .
i5] 1 [rob7[ 1| #17 [ 1] #20 rob3| #666 || 21 1101010
+|Big | een 0 [rob4| 1| #666 | 1| #0 Herobd] - - | 0101102
ALU Ve rob6| #20 r7 1 0 0 i4
: % rob4, misp. rob7 - r4 | 0 0 0 | i5
Writeback > T
Common Data Bus (CDB)
@ rob31
CORUTAN 0 12 ]3]4a]5[6]7 ]899 10[11]12/13]/14]15]16][17]
il: load r2, #0(r1) FE DE RN RR DI IS EXe EXps ...Miss... WB RT
i2: bnez re, i/ FE DE RN RR DI IS IS IS IS IS IS EX WB

@ i3: add re, r5, #2 FE DE RN RR DI IS EX WB RT RT RT RT

i4: add r7, r2, #3 FE DE RN RR DI IS EX WB RT RT RT



Fetch

Decode
Rename
Register Read

Dispatch

Issue

Execute

agen

+ | Big
ALU

t

by setting T=H

ROB
Vv Tag
* rof O -
ri] O -
Recover RMT by [ - Rename
flash-clearning 3| 0 - Map Table
all valid bits ~ ra[ 0 | - (RMT)
r51 0 - <
6l 0 : Squash ROB
r7] O -
Issue Queue (1Q)
ag (wakeup)| Vv dst [rsl rsl rs2 rs2
""""" g tag |rdy|tag/value |rdy|tag/value
0 |rob7] 1 #17 1 #20
0 |robd] 1 #666 1 #O
0 |rob5] 1 #15 1 #2

* Squash all pipeline stages. (i5) They
contain younger instructions than
the ROB head, i.e., branch

1 1]2/3]4/5]6]7[18]9]10]11]12]113]14]15]16]17

i1: load r2, #0(r1)

i2: bnez
i3: add r2
i4: add r7

re, i/
, 15, #2
, 2, #3

FE

DE RN
FE DE
FE

RR
RN
DE
FE

DI IS
RR DI
RN RR
DE RN

EXe EXos
IS IS
DI IS

RR DI

value
ro| #10
1l #aa Architectural
2| #666 Register File
r3| #33 (ARF)
r4 H#7
r5 #15
ré H#-7
o
value dst rdy exc misp PC
rob0
robl
rob2
rob3| #666 r2 1 0 0 il
rob4 - - 0 0 0 i2
HTrobs| #17 2]l 1ol olfli3
rob6 #20 r7 1 0 0 i4
rob7 - r4 0 0 0 i5
rob31
...Mmiss... WB RT
IS IS IS IS EX WB RT

EX WB RT RT RT RT RT

IS EX WB RT

RT RT

RT




In-order to Out-of-Order

Fetch

mEEEEEEEEEEN - Ll
-----.--.----.---
"EEmag
LT
"

Decode

‘e
-
.
LY -
---------------------

Decode
Rename

Execute

+

Big

agen

Tiny, ALU

ALU

DS

Mem

Writeback

Issue

Expanded Register File:
ARF (committed state) + ROB (speculative state)
L Provides for recovery and eliminated WAR/WAW

~ Insert instructions in order

Issue Queue (1Q)

Remove instructions out of order

Tiny,

ALU

Big
ALU

agen

DS

Commit instructions in-order from ROB to ARF



value
"~ rech (@) o

v Tag 1 #aa Architectural
rl -
15 - Rename r3| #33 (ARF)
Y - Map Table rd|  #7
Register Read al o - (RMT) r5( #15
ré H#-7
Dispatch 5 0 - 7| #345
re| O - G
r7| O -
value dst rdy exc misp PC

Issue Queue (1Q) rob0
robl

tag (wakeup) v | dst |rsl rsl rs2 rs2
---------- tag |rdy|tag/value |rdy|tag/value rob2 _
0 lrob7 1 1 #17 1 #20 rob3 #H666 r2 1 0 0 i1
+|Big | een 0 [rob4| 1| #666 | 1| #0 robd| - 1 01010 "
ALU v, rob6 #20 r7 1 0 0 i4
em
0 0 0 i5

rob7 - r4
—nnnnnn-nnmmmmmmm

il: load r2, #0(r1) FE DE RN RR DI IS EXe EXps ..miss.. WB RT
i2: bnez 12, i7 FE DE RN RR DI IS IS IS IS IS IS EX WB RT
i3: add r2, 15, #2 FE DE RN RR DI IS EX WB RT RT RT RT RT
i4: add r7, r2, #3 FE DE RN RR DI IS EX WB RT RT RT RT
@ i5: Can fetch moreinsts FE DE RN RR DI IS EX

i7: FE



IBM 360/91 Floating Point Unit

= Due to Tomasulo’s Algorithm [1967]

= Execute multiple floating-point
instructions concurrently

a problem for floating point)

= The original machine was imprecise (not g é

= Adding ROB is straightforward

= Stall on branch (limited ILP)



Renaming with Reservation Stations in 360/91

= Tomasulo’s Algorithm
[1967] Instruction status

Instruction Issue Execute Write result
= Reservation stations (RS)  Le—>20 y g Y
fmul.d f0,f2,f4 Vv
are used to extend the Foub 4 75,7216 v
. . fdiv.d f0.f0.f6 y
register file fcd s e Yy
o EaCh RS entry haS a Reservation stations
. Name Busy Op Vj Vk Qj Qk A
unique tag Loadl o
Load?2 Yes Load 44 + Regs[x3]
[ | ReSUItS ar‘e forwa rded Addl \:o SUB Mem[32 + Regs[x2]] Load2
Add2 Yes ADD Addl Load2
over the CDB TR C— TERIT
Mult2 Yes DIV Mem[32 + Regs[x2]] Multl

= Section 3.4: HP, A
Quantitative Approach Regiter staus

Field fo f2 f4 f6 8 f10 f12 . f30
Qi Multl Load2 Add2 Addl Muli2




ARF + ROB Summary

v ROB tag
ro r0
Rename
ré Register ré Map = Physical register file = ARF + ROB
File Table = Committ values by moving ROB value at
(RMT) head into ARF
r31 r31
{}commit
— Recovery
— <Head = Wait until exception/misprediction
rob31 D= reaches head
= T=H
r5= = Reset all “v” bits in RMT
rob87
< Tail
ROB ready
rob127 | | bits

ROB values



Revision: Main Concepts

Register renaming
= Rename logical registers to an extended set of physical registers
= Avoid WAR and WAW hazards (main structure: ROB or RS/1Q)
= Dynamic scheduling
= Send instructions to the functional units out of the original program order (1Q)
Speculation
= Predict branch outcomes and execute instructions before branches are resolved +
have the ability to recover from mis-speculation (main structure: BPU/BTB/ROB)
Hardware speculation
= Dynamic branch prediction + dynamic scheduling + speculation
Precise interrupts
= On an exception, the architectural state must correspond to the sequential
architectural model (main structure: ROB)



Drawbacks of ARF+ROB Design

= Register Read stage before Issue stage
= Can’t be after

= |f value is available at time of renaming, must grab it and “capture” it in
the issue queue

= |ssue queue (IQ) needs to store values while waiting for all operands to
be available

= |f 1Q only kept pointer to value (ROB tag), value could move from ROB to
ARF before instruction issues and then pointer is stale

= Committing register values requires data movement
= Data movement (ROB to ARF) takes extra cycles and consumes energy



Fetch ROB #10
v Tag #a4 Architectural
rl -

— 3l o - Map Table #37

Register Read al o - (RMT) IS5
#-7

Dispatch > 9 - #20

—— r6| O ‘ {}
r7| O -
value d rdy exc misp
Issue /Eb’e Queue (/@\ //
tag (wakeup) dst [rsl rsl rs2 rs2 p

""""" " \| tag |rdy|tag/value|rdy|tag/val e r— :

- 0 |ropt] 417 0 #0 2] 1101011
* | Big | aeen 0 [roba| 1] #0_ [1] #0 : 1110101
Tiny| ALU | D$ 0 [rob5| 1| #15 | 1| 17 21 1101018
ALU Mem #20 r7 1 0 0 i4

: #37 r4 1 0 0 i5
Writeback >

Common Data Bus (CDB)




PRF Style

PO Rename Map Table
Phys. Reg. T
o pro v TeE. T8
rll p67
2| pil Compared to ARF + ROB
r3|_ p33 = A monolithic physical register file (PRF)
:: p4b provides an extended set of registers for
renaming
r31] p2 = A subset of registers represent the

architectural state

= RMT provides the mapping between
architectural and physical registers

= (pro) Committing & freeing registers does
not require data movement

= (con) Restoring RMT is not a simple flash-

p159 clear of bits (still conceptually similar)
PRF values PRF ready bits




Intel Sandy Bridge

https://www.anandtech.com/show/3922/intels-sandy-bridge-architecture-exposed/3

A Physical Register File (Copying from the link here for your benefit)

Just like AMD announced in its Bobcat and Bulldozer architectures, in Sandy Bridge Intel moves to a physical register
file. In Core 2 and Nehalem, every micro-op had a copy of every operand that it needed. This meant the out-of-order
execution hardware (scheduler/reorder buffer/associated queues) had to be much larger as it needed to accommodate
the micro-ops as well as their associated data. Back in the Core Duo days that was 80-bits of data. When Intel
implemented SSE, the burden grew to 128-bits. With AVX however we now have potentially 256-bit operands associated
with each instruction, and the amount that the scheduling/reordering hardware would have to grow to support the AVX
execution hardware Intel wanted to enable was too much.

A physical register file stores micro-op operands in the register file; as the micro-op travels down the 000 engine it only
carries pointers to its operands and not the data itself. This significantly reduces the power of the out of order execution
hardware (moving large amounts of data around a chip eats tons of power), it also reduces die area further down the
pipe. The die savings are translated into a larger out of order window.

The die area savings are key as they enable one of Sandy Bridge’s major innovations: AVX performance.


http://www.anandtech.com/show/3863/amd-discloses-bobcat-bulldozer-architectures-at-hot-chips-2010

Loads and Stores

= Loads and stores also execute out of order
= Store cancels all speculative (younger) loads with matching addresses

= Load searches for all speculative (older) stores with matching addresses
= |t gets the best it can (cache, main memory, ROB, RF)

= Once we have speculation support, we can predict other things

=  Speculating on register values (value prediction)!



Store Execution Datapath

CAM = Content Addressable Memory T=1
RAM = Random Access Memory LQ CAM LQ tail LQ RAM
index based 1
( ) (addresses) 1 (payload)
. 1 ( A Store:
0 @A==1 v Dispatch: LQ_index = LQ_tail
T=1 @°? == d Execute: Search b/w
@7 == d LQ_index & LQ_tail
4] €
@7 == (e70)
d O 14
@? == — pr— —
H=12 == L fx g)o loads
- @A == 0 < AL index
13 @B ==
14|  @A-== 1/
0
15 @C== \ J
STORE
mispredict
address i

LQ_index 13



Load Execution Datapath

H=12
SQ CAM SQ_head SQ RAM — \S/tTre
(addresses) 1 (payload) e
0 @A == lr 1 (x )
_ __ d I -
Load: =1 @7 == 4 Store Mux I Cached
Dispatch: SQ_index = SQ_tail-1 @7 == O ValueL__ Value
Execute: Search b/w SQ_head @7 == d o0
and SQ_index d @) 14 | . data
@? == ?) ——! index
H=12 @A == L Ix &g
13 @ == 0 <
- 1
41 @A== 0 4 Data Cache
15 @C == N
LOAD
4d »laddress
address
SQ_index 15 forward




Compilation Techniques for
Exploiting ILP




VLIW Architectures
(Very Long Instruction Word)




LIW Concept

Superscalar

o Hardware fetches multiple instructions and checks
dependencies between them

VLIW (Very Long Instruction Word)

o Software (compiler) packs independent instructions in a larger
“instruction bundle” to be fetched and executed concurrently

o Hardware fetches and executes the instructions in the bundle
concurrently

No need for hardware dependency checking between
concurrently-fetched instructions in the VLIW model

o Simple hardware, complex compiler
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VLIW Concept

Memory

Program| \
add r1.,r2.r3 load r4,r5+4 mov r6,r2 mul r7,r8,r9 I
ounter

Instruction

Execution . |:| |___| |:|
PE PE PE PE

= Fisher, “Very Long Instruction Word architectures and the
ELI-512,” ISCA 1983.

o ELI: Enormously longword instructions (512 bits)
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\

LIW (Very Long Instruction Word)

A very long instruction word consists of multiple
independent instructions packed together by the compiler

o Packed instructions can be logically unrelated (contrast with
SIMD/vector processors, which we will see soon)

Idea: Compiler finds independent instructions and statically
schedules (i.e. packs/bundles) them into a single VLIW
instruction

Traditional VLIW Characteristics
1. Multiple instruction fetch/execute, multiple functional units
2. All instructions in a bundle are executed in lock step

3. Instructions in a bundle statically aligned to be directly

supplied into the functional units
186



VLIW Performance Example (2-wide bundles)

lw $t0, 40($s0 add $t1, $s1, $s2 |Bundlel Ideal IPC = 2
sub $t2, $s1, $s3 and $t3, $s3, $s4 Bundle 2

or $t4, $s1, $s5 sw $s5, 80($s9) Bundle 3

4 5 6 7 8
>

Time (cycles)

el
<l

1w $t0, 40($s0) M

add $tl, $sl1, $s2

r=—m—r——w
EN
m

BESE

[} o |n

N o

! 2
==

w

[}

v
7]
w

sub $t2, $sl1, $s3

and $t3, $s3, $s4
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or $t4, S$sl, $s5

sw $s5, 80($s0)

M Msta
DM RF
$s5

Actual IPC = 2 (6 instructions issued in 3 cycles)



_IW Lock-Step Execution

Lock-step (all or none) execution

o If any operation in a VLIW instruction stalls, all concurrent
operations stall

In a truly VLIW machine:

o the compiler handles all dependency-related stalls

o hardware does not perform dependency checking

o What about variable latency operations? Memory stalls?
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_IW Philosophy & Principles

Proceedings of the ACM SIGPLAN '84 Symposium on Compiler Construction

o4

SIGPLAN Notices Vol. 19, No. 6, June 1984

Parallel Processing;: | ]
A Smart Compiler and a Dumb Machine

Joseph A. Fisher, John R. Ellis,
John C. Ruttenberg, and Alexandru Nicolau

Department of Computer Science, Yale University
New Haven, CT 06520

Abstract

Multiprocessors and vector machines, the only success-
ful parallel architectures, have coarse-grained paralielism
that is hard for compilers to take advantage of. We've
developed a new fine-grained parallel architecture and a
compiler that together offer order-of-magnitude speedups
for ordinary scientific code.

future, and we're building a VLIW machine, the ELI
{Enormously Long Instructions) to prove it.

In this paper we'll describe some of the compilation
techniques used by the Bulldog compiler. The ELI
project and the details of Bulldog are described
elsewhere [4, 8, 7, 15, 17)].

Fisher et al., “Parallel Processing: A Smart Compiler and a Dumb Machine,” CC 1984.
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LIW Philosophy & Principles

Philosophy similar to RISC (simple instructions and hardware)
o Except "multiple instructions in parallel: in VLIW

RISC (John Cocke+, 1970s, IBM 801 minicomputer)

o Compiler does the hard work to translate high-level language
code to simple instructions (John Cocke: control signals)

And, to reorder simple instructions for high performance
o Hardware does little translation/decoding - very simple

VLIW (Josh Fisher, ISCA 1983)

o Compiler does the hard work to find instruction level parallelism
o Hardware stays as simple as possible
Executes each instruction in a bundle in lock step

Simple - higher frequency, easier to design, low power
190



VLIW Philosophy and Properties

More formally, VLIW architectures have the following
properties:

There is one central control unit issuing a single long

instruction per cycle.

Each long instruction consists of many tightly coupled
independent operations.

Each operation requires a small, statically predictable
number of cycles to execute.

Operations can be pipelined. These properties distinguish
VLIWs from multiprocessors (with large asynchronous tasks)
and dataflow machines (without a single flow of control, and
without the tight coupling). VLIWs have none of the required
regularity of a vector processor, or true array processor.

Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983.
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Commercial VLLIW Machines

Multiflow TRACE, Josh Fisher (7-wide, 28-wide)

Cydrome Cydra 5, Bob Rau

Transmeta Crusoe: x86 binary-translated into internal VLIW
TI C6000, Trimedia, STMicro (DSP & embedded processors)
and some ATI/AMD GPUs

o Most successful commercially

Intel IA-64

o Not fully VLIW, but based on VLIW principles

o EPIC (Explicitly Parallel Instruction Computing)

o Instruction bundles can have dependent instructions

o A few bits in the instruction format specify explicitly which
instructions in the bundle are dependent on which other ones
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LIW Tradeoffs

Advantages
+ No need for dynamic scheduling hardware - simple hardware

+ No need for dependency checking within a VLIW instruction >
simple hardware for multiple instruction issue + no renaming

+ No need for instruction alignment/distribution after fetch to
different functional units = simple hardware

Disadvantages

-- Compiler needs to find N independent operations per cycle
-- If it cannot, inserts NOPs in a VLIW instruction
-- Parallelism loss AND code size increase

-- Recompilation required when execution width (N), instruction
latencies, functional units change (Unlike superscalar processing)

-- Lockstep execution causes independent operations to stall

-- No instruction can progress until the longest-latency instruction completes
193



_LIW Summary

= VLIW simplifies hardware, but requires complex compiler
techniques

= Solely-compiler approach of VLIW has several downsides
that reduce performance
-- No tolerance for variable or long-latency operations (lock step)
-- Too many NOPs (not enough parallelism discovered)
-- Static schedule intimately tied to microarchitecture
-- Code optimized for one generation performs poorly for next

++ Most compiler optimizations developed for VLIW employed
in optimizing compilers (for superscalar compilation)

o Enable code optimizations

++ VLIW very successful when parallelism is easier to find by

h mpiler (traditionally em mark DSP P -



“xample Work: Trace Scheduling

(b)

TRACE SCHEDULING LOOP-FREE CODE

(a) A flow graph, with each block representing a basic block
of code. (b) A trace picked from the flow graph. (c) The trace
has been scheduled but it hasn’t been relinked to the rest of the
code. (d) The sections of unscheduled code that allow re-
linking.

Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983. 195



Recommended Paper

Fisher,

VERY LONG INSTRUCTION WORD
ARCHITECTURES
AND THE ELI-512

JOSEPH A. FISHER
YALE UNIVERSITY
NEW HAVEN, CONNECTICUT 06520

ABSTRACT

By compiling ordinary scientific applications programs with a
radical technique called trace scheduling, we are generating
code for a parallel machine that will run these programs faster
than an equivalent sequential machine — we expect 10 to 30

times faster.

Trace scheduling generates code for machines called Very
Long Instruction Word architectures. In Very Long Instruction
Word machines, many statically scheduled, tightly coupled,
fine-grained operations execute in parallel within a single
instruction stream. VLIWs are more parallel extensions of

several current architectures.

These current architectures have never cracked a
fundamental barrier. The speedup they get from parallelism is
never more than a factor of 2 to 3. Not that we couldn’t build
more parallel machines of this type; but until trace scheduling
we didn't know how to generate code for them. Trace
scheduling finds sufficient parallelism in ordinary code to
justify thinking about a highly parallel VLIW.

At Yale we are actually building one. Our machine, the
ELI-512, has a horizontal instruction word of over 500 bits and

MY sA L. AAMIOA Y o alall e el IDldbnan OO

“Very Long Instruction Word architectures and the ELI-512,” ISCA 1983.

are presented in this paper. How do we put enough tests in
each cycle without making the machine too big? How do we
put enough memory references in each cycle without making
the machine too slow?

WHAT Is A VLIW?

Everyone wants to use cheap hardware in parallel to speed
up computation. One obvious approach would be to take your
favorite Reduced Instruction Set Computer, let it be capable of
executing 10 to 30 RISC-level operations per cycle controlled by
a very long instruction word. (In fact, call it a VLIW.) A
VLIW looks like very parallel horizontal microcode.

More formally, VLIW architectures have the following
properties:

There is one central control unit issuing a single long

instruction per cycle.

Each long instruction consists of many tightly coupled
independent operations.

Each operation requires a small, statically predictable
number of cycles to execute.

Operations can be pipelined. These properties distinguish
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Recall: Basic Block Reordering

Likely-taken branch instructions are a problem
o They hurt the accuracy of “always not taken” branch prediction
o They make static code reordering/scheduling difficult

Idea: Convert likely-taken branch to a likely not-taken one
o i.e., reorder basic blocks (after profiling)
o Basic block: code with a single entry and single exit point

Control Flow Graph Code Layout1 Code Layout 2
9% 1 . NT 1% A NT 99% A NT 1%
/\ B C
B C D D

o : ;

Code Layout 1 leads to the fewest branch mispredictions

Pettis and Hansen, “Profile Guided Code Positioning,” PLDI 1990. 197




Superblock: Can We Do Better?

Idea: Combine frequently-executed basic blocks such that they form a

|
single-entry multiple exit larger block, which is likely executed as
straight-line code o o
Ieus e
+ Reduces branch mispredictions A N
+ Enables aggressive
. gg o . 10 \ ---------------- 10 \\
compiler optimizations 2ol » c
. A ]
and code reordering m— R— i
within the superblock o || Lse 1 1
w A e N\ 0 10
I / ,
-- Increased code size
-- Requires recompilation Q Q
-- Profile dependent : :
\ i 0.1

Hwu et al. “The Superblock: An effective technique for VLIW
and superscalar compilation,” Journal of Supercomputing, 1993.
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Superblock Formation (I)

This is a trace

o O
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Superblock Formation (II)

This is a superblock

(code with single entry point,
multiple exit points)

Tail duplication:
duplication of basic blocks
after a side entrance to
eliminate side entrances

- transforms a trace
Into a superblock
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Superblock Code Optimization Example

opA: mul r1<-r2,3 opA: mul r1<-r2,3
99 opB: add r2<-r2,1 i 99 i ppB: add r2<-r2,1
1 Y 0pC’ : mul r3<-r2,3
opC: mul r3<-r2,3 i ppC: mul r3<-r2,3
Original Code Code After Superblock Formation

opA: mul r1<-r2,3

1
99 éopB: adcrzl r2<-r2,1
v f{)pC’ : mul r3<-r2,8
opC: mov r3<-r1] :

Code After Common
Subexpression Elimination
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Paper on Superblock Formation

The Superblock: An Effective Technique

for VLIW and Superscalar Compilation

Wen-mei W. Hwu Scott A. Mahlke William Y. Chen Pohua P. Chang
Nancy J. Warter Roger A. Bringmann Roland G. Ouellette Richard E. Hank

Tokuzo Kiyohara Grant E. Haab John G. Holm Daniel M. Lavery *

Hwu et al., The superblock: An effective technique for VLIW and superscalar compilation.

The Journal of Supercomputing, 1993.

= Lecture Video on Static Instruction Scheduling
o https://www.youtube.com/watch?v=isBEVkIjgGA
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Another Example Work: IMPACT

Pohua P. Chang

IMPACT: An Architectural Framework for

Multiple-Instruction-Issue Processors

Scott A. Mahlke William Y. Chen Nancy J. Warter

Center for Reliable and High-Performance Computing
University of Illinois
Urbana, IL 61801

The performance of multiple-instruction-issue processors
can be severely limited by the compiler’s ability to gen-
erate efficient code for concurrent hardware. In the IM-
PACT project, we have developed IMPACT-I, a highly
optimizing C compiler to exploit instruction level concur-
rency. The optimization capabilities of the IMPACT-I
C compiler are summarized in this paper. Using the
IMPACT-I C compiler, we ran experiments to analyze
the performance of multiple-instruction-issue processors ex-
ecuting some important non-numerical programs. The
multiple-instruction-issue processors achieve solid speedup
over high-performance single-instruction-issue processors.

Wen-me: W. Hwu

Chang et al., IMPACT: an architectural framework for multiple-instruction-issue processors. ISCA 1991.
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Another Example Work: Hyperblock

Effective Compiler Support for Predicated Execution
Using the Hyperblock

Scott A. Mahlke David C. Lin* William Y. Chen Richard E. Hank Roger A. Bringmann

Center for Reliable and High-Performance Computing
University of Illinois
Urbana-Champaign, IL 61801

Lecture Video on Static Instruction Scheduling
o https://www.youtube.com/watch?v=isBEVkIjgGA

Mahlke+, “Effective Compiler Support for Predicated Execution Using the Hyperblock,” MICRO 1992. 204
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The Bulldog V!

_LIW Compiler

Chapter 1: My Thesis

intermediate code

source language

Parser

intermediate code

Flow Analysis
& Optimization

Memory-bank
Disambiguation

optimized intermediate code

intermediate code

. 1 2
Trace trace Code v[il, v[j]?
Scheduler - Generator |-
machine code yes, no, maybe
object codel

Figure 1.5. The Bulldog compiler.

Disambiguator

John Ellis, “Bulldog: A Compiler for VLIW Architectures,” PhD Thesis 1984.
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It all helps software optimization

Front-End

| 32K L1 Instruction Cache B»|Pre-decode #| Instr Queue II_
[ Decoders |

| Branch Predictor |

| 1.5K uOP Cache |
Load [ store |1 Reorder [——— ﬁ
Buffers (| Buffers [| Buffers 3 Allocat name/Retire
_____ In-order

out-of-order
Scheduler

Port0O | [Port1 | [ Port5 Port2 | [Port3 | [ Port4
F

ALU | ALU ] ALU Load Load STD
V-Mul V-Add TMP StAddr || StAddr
V-Shuffld V-Shuffle 256- FP Shuf ‘
Fdiv | 256- FP Add || 256- FP Bool
256- FP MUL 256- FP Blend
256- FP Blend | | Memory Control

‘ 48 bytes/cycle
Line Fill
256K L2 Cache (Unified) Buffers

32K L1 Data Cache

Back-End



Analyzing and Improving the Scalability of In-Memory
Indices for Managed Search Engines

Aditya Chilukuri
aditya.chilukuri@anu.edu.au
Australian National University
Canberra, ACT, Australia

Abstract
Managed search engines, such as Apache Solr and Elastic-
search, host huge inverted indices in main memory to offer
fast response times. This practice faces two challenges. First,
limited DRAM capacity necessitates search engines aggres-
sively compress indices to reduce their storage footprint.
Unfortunately, our analysis with a popular search library
shows that compression slows down queries (on average) by
up to 1.7x due to high decompression latency. Despite their
performance advantage, uncompressed indices require 10x
more memory capacity, making them mmpractical. Second,
indices today reside off-heap, encouraging unsafe memory
lccaues md nﬁkmg evu:hnn fmm dm page cache.

latile mem-
ory (NVM) offers a good fit forr staring uncompressed indices.
Unfortunately, NVM exhibits high latency. We rigorously
evaluate the performance of DRAM and NVM-backed com-
pressed/uncompressed indices to find that an uncompressed
index i a high-capacity d heap y -mapped
over NVM provides a %% reduction in query response times
compared to a DRAM-backed compressed index in off-heap
memory. Also, it is only 11% slower than the uncompressed
index in a DRAM heap (fastest approach). DRAM and NVM-
backed compressed (off-heap) indices behave similarly.

‘We analyze the narrow response time gap between DRAM
and NVM-backed indices. We conclude that inverted indices
d d ive memory capacity, but search algorithms
exhibit a high spatial locality that modern cache hierarchies
exploit to hide NVM latency. We show the scalability of
uncompressed indices on the NVM-backed heap with large
core counts and index sizes. This work uncovers new space-
time tradeoffs in storing in-memory inverted indices.

Permission to make digital oc hard copies of all oc part of this wark for
persomal or classroom use is granted without fee provided that copies
are not made o distributed for profit or commercial advantage and that
copies bear this notice and the full citatica ca the first page. Copyrights
for campoaents of this wock owned by others than the authon(s) must
be honceed A ing with credit is p itted. To copy ise, ar
mbpnmmnuhmmmnx uqmumnrqxnﬂc

Shoaib Akram
shoaib.akram@anu.edu.au
Australian National University
Canberra, ACT, Australia

CCS Concepts: « Information systems — Search index
compression; Search engine indexing; « Hardware — Mem-
ory and dense storage; « Software and its engineering
— Garbage collection.

Keywords: Text search, inverted index, persistent memory,
compression, managed heap, garbage collection

ACM Reference Format:

Aditya Chilukuri and Shoaib Akram. 2023. Analyzing and

ing the Scalability of In-Memory Indices for Managed Search En-
gines . In Froceedings of the 2023 ACM SIGPLAN International Sym-
posium on Memory Management (ISMM '23), June 18, 2023, Orlando,
H., USA. ACM, New York, NY, USA, 15 pages. httpsJ/doi.org/10.
1145/2591195.3595272

1 Introduction
Search engines enable locating web pages on the internet
and are a critical component of social media, professional
networking, and e-commerce platforms. The key to retaining
satisfied users is to offer low query response times. Amazon
reports that even a 100 ms delay results in revenue drops [36).
Similar observations guide Google’s search infrastructure.
The critical data structure search engines use for locating
documents (web pages or social media posts) matching a
word (term) is an inverted ndex. An inverted index maps
unique terms to posting lists, where each posting stores
an integer document identifier (ID) and meta-data (term fre-
quency and position). Associating terms to posting lists using
an inverted index speeds up query evaluation dramatically.
Today’s standard practice is to host the inverted index
n off-heap main memory. Recent work shows that even
PCle NVMe SSDs with byte-addressable 3D XPoint memory
cannot deliver real-time response times [ 2). Therefore, ser-
vice providers keep indices in memory [60). Unfortunately,
as datasets grow, the inverted index grows proportionally,
and large indices put increased pressure on DRAM. On the
other hand, DRAM scaling cannot cope with the growth in
datasets [20, 42). Specifically, as data volume doubles yearly,
the DRAM capacity only scales by 10% [24, 28]. The resultis
either the poor quality of service due to index lookups from

permission and/or a fee. Request permissions from
ISMM 23, June 18, 2023, Orlando, AL, USA

® 2023 Copyright held by the owner/author(s). Publication rights beensed
to ACM.

ACM ISBN 975-2-4007-0179-523/06.
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st or exorbitant memory-related expenditures.
Problem # 1(High Decompression Latency): Compres-
sion is a crucial technique search engines use to store large
indices in limited DRAM. For example, Apache Lucene uses
a compression scheme that reduces index size by 85-90%,

Honors thesis *best paper candidate at ISMM*

yzing and ing the

ll-'m mLPFNYN NDPFORAM
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T

Figure 7. Showing average query latency normalized to the
LPF-DRAM baseline for different sy stems with single-term
queries. (T stands for thread count.)

Avenge Quary L deery Noematized b
LAF-DRAM
a2

Figure 8. Showing average query latency normalized to the
LPF-DRAM baseline for different systems with 2-term AND
queries. (T stands for thread count.)

memory. On the other hand, DPF-NVM is slower (7%) than
DPE-DRAM, the fastest approach today, i.e., hosting uncom-
pressed indices in DRAM. We regain the lost performance
with the intuition that most queries last only a few tens of
milli ds, but they allocate temporary, short-lived ob-
jects in the mursery. Queries incur a high latency if new
object allocation happens in a slow media (NVM). Figure 7
shows that a hybrid system with a well-tuned nursery size
(4x to 64x) is 6% faster than DPF-NVM (36% compared to
LPF-DRAM), which places the entire heap on slow NVM.
Our proposed hybrid system offers an attractive solution: €
it consumes between 0.5 GB to 2 GB DRAM, @ exploits the
NVM capacity for hosting the uncompressed index, € and
1s only 1% (48 cores) slower than DPF-DRAM. We observe
that the best-performing nursery size varies across thread
counts, and a hybrid system’s performance benefits are more
significant at high concurrency levels. This cbservation is in
line with prior work that reports NVM bandwidth saturates
rapidly beyond eight threads [3, 62], and hence the benefits
of a hybrid approach that mitigates pressure on NVM by
isolating new allocations in DRAM are higher. On average,
small nurseries increase the GC overhead. Automatically
tuning the DRAM nursery size is future work.

ity of In-Memory Indices for Managed Search Engines
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We observe similar behaviors for two-term conjunctive
queries. One notable difference is that the gap between LPF-
DRAM and DPF-DRAM is generally less wide, especially at
low thread count. In general, conjunctive queries are more
compute-intensive than single-term queries because of the
large number of comparisons across multiple posting lists. At
48 threads, conjunctive queries with DPE-NVM, on average,
suffer a 4% slowdown compared to the fastest system (DPF-
DRAM). A hybrid system with a well-tuned nursery (15x
the LLC size) bridges the gap to only 2% of DPF-DRAM.

[ =MamoryBosnd  m Core Boumd Ratiring \
e 12 Frooted Bowd Bad
s Singlo-Term 2-Term AND
i ! - --_
0s
z 06
.!

A P

Figure 9. Showing the hreakdown ofper-query etecutnm
time mto various comp T

jural bhottlenacks

4.3.2 Microarchitectural Annly.ds. Wb nmv mport ob-

4 o cur datailad

query workloads. We aim to understand how search queries
interact with a server’s cache and memory hierarchy. We use
the top-down methodology [66) that sy stematically identi-
fies true bottlenecks in an out-of-arder processor. It identifies
bottlenech rigorous perf counter

Figure 9 shows the results of our analysis for two query work-
loads and different memory sy stems (48 threads). We break-
down query execution times (normalized to LPF-DRAM)
nto five components: € backend memory-bound due to
long-latency memory operations (cache hits or misses), @
backend core-bound due to lack of core resources, such as
functional unit or reservation station, € smoothly retiring
instructions, €) frontend bound due to, e.g, lack of decoded
microps, and @ recovering from misspeculation. Unfortu-
nately, we observe that queries spend a significant portion of
the execution time resolving memory loads (high memory-
bound comp ) due to the data-i ive nature of search
workloads. ILP is low due to the dependencies between in-
structions performing binary searches and skip-list traver-
sals. Mispredicted branches cost very few cycles.

We observe that the memory-bound portion of the exe-
cution time is the highest (up to 3%%) for DPF-NVM, while
it is 30% for other systems. Reading essed indices
stresses NVM's bandwidth, especially at high thread count.
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ABSTRACT

Today, real-time search over big microblogging data requires low in-
dexing and query latency. Online services, therefore, prefer to host
inverted indices in memory. Unfortunately, as datasets grow, in-
dices grow proportionally, and with limited DRAM scaling, the main
memory faces high pressure. Also, indices must be persisted on
disks as building them is computationally i . C ly,
it becomes necessary to frequently move on-heap mdex segments to
block storage, slowing down indexing. Reading storage-resident in-
dex segments necessitates filesystem calls and disk accesses during
query evaluation, leading to high and unpredictable tail latency.
This work exploits (hybrid) DRAM and scalable non-volatile
memory (NVM) to offer dynamically growing, and instantly search-
able, large persistent indices in on-heap memory. We implement our
proposal in SPIRIT, a real-time text inversion engine over hybrid
memory. SPIRIT exploits the byte-addressability of hybrid mem-
ory to enable direct access to the index on a pre-allocated heap,
eliminating expensive block storage accesses and filesystem calls
during live operation. It uses fast persistent pointers in a global
descriptor table to offer: @ instant segment availability to query
evaluators upon fresh ingestion, @ low-overhead segment move-
ment across memory tiers t P t to query 1 s, and
© decoupled segment movement into NVM from their visibility
to query evaluators, enabling intelligent policies for mitigating
high NVM latency. SPIRIT accelerates compaction with zero-copy
merging and supports fast, graceful shutdown and instant recovery.

Shoaib Akram
Shoaib.Akram@anu.edu.au
Australian National University
Canberra, ACT, Australia

1 INTRODUCTION

Today, enabling fast real-time search over social media content
is critical to the success of many enterprises, including Linkedin,
Meta, and Twitter [8, 52]. Social media content is either queried
explicitly for relevance search, similar to static web content, or im-
plicitly by the service for timeline retrieval to populate a user’s
home feed. The latter generates queries based on the user’s pre-
ferred topics or followers and is more frequent on social media
platforms — the source of 50% of tweets recommended on Twitter's
For You and Following tabs [69]. The queries run concurrently
with an indexing engine that builds indices in real-time, coping
with a massive volume of data, e.g., 500 million Tweets per day for
Twitter [69]. Consequently, real-time indexing puts high pressure
on the aggregate CPU and memory of the real-time cluster, and
concurrent queries exacerbate the pressure further [3, 52].

The critical data structure search engines use for locating docu-
ments (web pages, social media posts, or tweets) matching a word
(term) is an inverted index [84]. Offering real-time response times
requires hosting the index in memory (28, 75). Unfortunately, in-
dices grow proportional to datasets, and large indices put pressure
on DRAM. However, DRAM scaling cannot cope with the growth
in datasets [1, 11, 14, 28, 29,33, 57, 61, 72], increasing infrastructure
cost [15, 72]. Scaling in-memory indices to large datasets demands
dense memory technologies, complementing DRAM.

Hosting indices in memory is also at odds with persisting them in
today’s storage stack. Popular search engines, e.g., Apache Solr [22]

With 15% and 50% of the index in DRAM, it concurrently I
queries only 13% and 6.44% slower, respectively, compared to DRAM
alone. Our work lizes to other data-i ive services that
will benefit from direct on-heap access to large persistent indices.
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and Elasti h [20] use a segmented index, and each fixed-size
segment resides on the heap before being moved to the page cache.
Segments are buffered in the cache (no synchronous I/O per seg-
ment) to amortize I/O overheads. Ultimately, calling fsync to bulk-
persist segments on storage, an operation called commit in Elastic-
search, becomes necessary to avoid losing significant index updates
on a crash [5, 20]. Unfortunately, if the index outgrows available
DRAM, later reads of the persistent segment generate I/O transfers.
Recent work shows that even the fastest PCle NVMe SSDs cannot
deliver the response times required by real-time search [3, 52, 69).
Furthermore, an fsync is costly and cannot be performed without a
significant performance hit [20]. Existing systems either risk losing
a significant state or paying a performance penalty.

Due to limited DRAM and the need for persistence, block storage
is deeply integrated into real-time search clusters. Therefore, popu-
lar real-time search engines do not make on-heap segments visible
to query evaluators [20]. Instead, query evaluators use multiple
filesystem calls to access new segments from the OS cache or stor-
age. (In Elastic search, one set of calls is to read the commit point
and another to read the index segment [20].) These calls incur high
overhead [9, 38], prohibiting real-time operation [20]. Furthermore,

to keep busy during the time it takes for the indexer to process
1 M documents. In WRT, we start our QPS measurement after a
threshold of documents are ingested. The intuition for WRT is that
initially the index is empty and all queries, popular and others, are
resolved instantly, inflating QPS.
Query Formation. We use two query types: @ single-word (ST)
and @ multi-word (MT) conjunctive queries. Our workloads are
homogeneous, and we do not mix S and M queries. We use terms
from topTerms20120502. txt available on the Luceneutil website.
The terms are divided into low, medium, and high categories. We
form a query workload suite isting of six workloads: L, M,
H, LL, MM, and HH. We validate critical findings for workloads
with up to 100 K queries. We use a query thread pool for resolving
queries, and a single query is resolved sequentially.
Default Parameters. Unless otherwise stated, we use the following
default We index 1M d QPS for
100 K queries, and use six query workloads. We vary the number
of executors from 1 to 16, and use one query thread per executor.
The segment size is 128 MB. The ephemeral and long-lived, DRAM
and NVM, heaps are 1 GB, 5 GB, 5 GB, and 20 GB, respectively. We
use the naive advance algorithm for intersection queries, and the
hash table DRAM-resident dictionary. In WRT mode, the window
is sized as follows: first the indexer ingests 800 K documents, and
the QPS is measured while the queries execute concurrently with
of 200 K additional d
Statistical Significance Our results are statistically significant.
The coefficient of variation (COV) for (average) indexing time across
eight experimental runs is 0.25%, 0.69%, and 0.38% for 1, 4, and 16
executors. In RT and WRT modes, the variation is higher, and the
COV is up to 1.6%. For QPS, across hundreds of configurations,
the COV is between 0.09% (HH queries, one executor) and 2.6% (M
queries, 16 executors).

7 EVALUATION RESULTS

necessary today to avoid storage latency. Our evaluation

aim.s lo establish if we can use NVM tn mitigate DRAM pressure and

perform several sensmvnty studies (e.g., dxcuonary type, segmenx
size, i and NVM bandwidth). More specifi-
cally, we ask the following key questions.

« How much slower is NVM-Only compared to DRAM-Only
in non-concurrent mode? Does merging bridge this gap?
What is the impact of DRAM size (as a percentage of index
size) on SPIRIT’s indexing and query latency?

How does SPIRIT’s indexing pipeline behave, and what is
the impact of concurrent queries?
e What is the overhead of graceful shutdown and recovery?

7.1 Query Performance

We first report the QPS for DRAM-Only and NVM-Only in NC
mode with and without merging, varying the executor count. We
then show the impact of heap sizing on QPS in WRT mode.
DRAM-Only versus NVM-Only. We compare QPS with DRAM-
Only and NVM-Only. For a fair comparison against DRAM-Only,
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Figure 2: Showing the QPS with NVM-Only relative to DRAM-
Only for single-term and multi-term query workloads.

we first disable merging in NVM, placing non-merged segments in
DRAM or NVM. We execute queries after indexing and show the
results of our evaluation in Figure 2. The figure shows the QPS with
NVM-Only against a DRAM-Only baseline. (DRAM-Only is one,
and higher is better.) We first focus on results without merging. We
observe that across a different number of executors, on average,
across all workloads, NVM-Only is 48% slower than DRAM-Only.
Specifically, L queries are up to 68% slower with NVM-Only. The
DRAM-NVM gap opens up with single-term and MM queries. The
HH queries are less sensitive to NVM latency (only 4% slower with
NVM). We observe a trend: as the CPU overhead per memory ac-
cess increases, the query workload is less sensitive to memory
latency. Most of the time, L queries are so unpopular that they do
not even traverse the posting lists and merely perform a dictio-
nary lookup. Therefore, a single lookup is slower in NVM than in
DRAM. At the other end of Lhe extreme, the HH queries perform a
peration, and therefore, for each
mdex (memory) access, they incur a substantial CPU overhead. The
MM (32% slower) queries lie between the two extremes.
Impact of merging. We now discuss the normalized QPS of NVM-
Only with merging enabled. Many non-merged segments increase
the dictionary lookup latency because each non-merged segment
is an independent index. With 16 executors, on average, across six
query workloads, QPS with merging is 33% higher than no merging.
We observe two surprising results in Figure 2. First, the QPS of L
queries with NVM-Only is even better than DRAM-Only (up to
23%). This better QPS is because the cost of many hash table lookups
slows down L queries much more than the slow access latency of
NVM. Second, HH queries are slower (4%) with merging compared
to no merging. For HH queries, the cost of a dictionary lookup
is only a fraction of the total query latency. Therefore, searching
over a merged segment does not speed up HH queries. The slightly
worst performance with merging is likely due to locality effects.
Heap sensitivity. Figure 3 shows the QPS of SPIRIT in WRT mode
for diff heap confi ifically, we vary the long-
term DRAM heap and observe !he QPS. The long-term DRAM
impacts QPS as SPIRIT retains segments in DRAM upon engraving
and only makes them visible to query evaluators when it runs out of
DRAM. The more the DRAM capacity available to SPIRIT, the better
the QPS, especially for L, M, LL, and MM query workloads. To verify
this hypothesis, we experiment with three heap configurations and
size them relative to the total size of the index. The expectation is
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ABSTRACT

Big data analytics frameworks, such as Spark and Giraph, need to
process and cache massive amounts of data that do not always fit
on the managed heap. Therefore, frameworks temporarily move
long-lived objects outside the managed heap (off-heap) on a fast
storage device. However, this practice results in (1) high serializa-
tion/deserialization (S/D) cost and (2) high memory pressure when
off-heap objects are moved back to the heap for processing.

In this paper, we propose TeraHeap, a system that eliminates S/D
overhead and expensive GC scans for a large portion of the objects
in big data frameworks. TeraHeap relies on three concepts. (1) It

limi S/D cost by e: ding the d runtime (JVM) to
use a second high-capacity heap (H2) over a fast storage device. (2)
1t offers a simple hint-based interface, allowing big data analytics
frameworks to leverage knowledge about objects to populate H2. (3)
It reduces GC cost by fencing the garbage collector from scanning
H2 objects while maintaining the illusion of a single managed heap.

‘We implement TeraHeap in OpenJDK and evaluate it with 15
widely used applications in two real-world big data frameworks,
Spark and Giraph. Our evaluation shows that for the same DRAM
size, TeraHeap improves performance by up to 73% and 28% com-
pared to native Spark and Giraph, respectively. Also, it provides
better performance by consuming up to 4.6x and 1.2x less DRAM
capacity than native Spark and Giraph, respectively. Finally, it out-
performs Panthera, a state-of-the-art garbage collector for hybrid
memories, by up to 69%.
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« Software and its engineering — Memory management;
Garbage collection; Runtime environments; « Information

*Foundation for Research and Technology - Hellas (FORTH), Institute of Computer
Science (ICS), Greece

TDepartment of Computer Science, University of Crete, Greece

#Australian National University, Australia

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permmcd To copy ¢ othmw:s: or

Shoaib Akram* Christos Kozanitis"
ANU, Australia FORTH-ICS, Greece
shoaib.akram@anu.edu.au kozanitis@ics.forth.gr
Polyvios Pratikakis* " Angelos Bilas**
FORTH-ICS, Greece FORTH-ICS, Greece
polyvios@ics.forth.gr bilas@ics.forth.gr

systems — Flash memory; Phase change memory; Data ana-
Iytics; « Comp systems ion — Cloud computing.

KEYWORDS

Java Virtual Machine (JVM), large analytics datasets, serialization,
large managed heaps, memory management, garbage collection,
memory hierarchy, fast storage devices

ACM Reference Format:

Iacovos G. Kolokasis, Giannos Evdorou, Shoaib Akram, Christos Kozanitis,
Anastasios Papagiannis, Foivos S. Zakkak, Polyvios Pratikakis, and Angelos
Bilas. 2023. TeraHeap: Reducing Memory Pressure in Managed Big Data
Frameworks. In Proceedings of the 28lh ACM International Conference on
Archit -al Support for Prog L and Operating Systems,
Volume 3 (ASPLOS ’23), March 25-29, 2023, Vancouver, BC, Canada. ACM,
New York, NY, USA, 16 pages. https://doi.org/10.1145/3582016.3582045

1 INTRODUCTION

Managed big data frameworks, such as Spark [56] and Giraph [44],
are designed to analyze huge volumes of data. Typically, such pro-
cessing requires iterative computations over data until a conver-
gence condition is satisfied. Each iteration produces new transfor-
mations over data, generating a massive volume of objects spanning
long computations.

Hosting a large volume of objects on the managed heap increases
memory pressure, resulting in frequent garbage collection (GC)
cycles with low yield. Each GC cycle reclaims little space because
(1) the cumulative volume of allocated objects is several times larger
than the size of available heap [51] and (2) objects in big data
frameworks exhibit long lifetimes [10, 48, 52]. Although production

rb 11 efficiently ge short-lived objects, they do
not perform well under high memory pressure introduced by long-
lived objects [32].

The common practice for coping with rapidly growing datasets
and high GC cost is to move objects outside the managed heap
(off-heap) over a fast storage device (e.g., NVMe SSD). However,
frameworks cannot compute directly over off-heap objects, and
thus, they (re)allocate these objects on the managed heap to process
them. Although some sy support off-heap putation over
byte arrays with primitive types [14], they do not offer support
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for putation over arbitrary objects, resulting in applications
specific solutions, such as Spark SQL [12].

Moving managed objects off-heap has two main limitations. First,
it introduces high serialization/deserialization (S/D) overhead for
applications that use complex data structures [34, 43, 50]. Recent
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Figure 12: TeraHeap (TH) performance compared to (a) Spark-SD, (b) Spark-MO, and (c) Panthera (P) over NVM server.

TeraHeap when using NVM to increase the heap size, which can
eliminate S/D at increased GC cost for native. Figure 12(a) shows
that TeraHeap improves performance by up to 79% and on average
by 56%, compared to Spark-SD. Unlike the off-heap cache in Spark-
SD, TeraHeap allows Spark to directly access cached objects in H2
via load/store operations to NVM, without the need to perform
S/D. TeraHeap significantly reduces S/D and GC time compared to
Spark-SD by up to 97% and 93%, respectively.

Figure 12(b) shows that TeraHeap improves performance by up
to 86% and on average by 48%, compared to Spark-MO. The main
improvement of TeraHeap results from the reduction of minor GC
and major GC time by up to 88% (on average by 52%) and 96% (on
average by 46%) compared to Spark-MO, respectively. In Spark-MO,
running the garbage collector on top of NVM (using DRAM as a
cache) incurs high overhead due to the latency of NVM [53] and
the agnostic placement of objects. For instance, minor GC time
in Spark-MO increases on average by 36% compared to Spark-SD
(Figure 12b) because objects of the young generation are placed
in NVM, resulting in higher access latency for the garbage collec-
tor. Unlike TeraHeap that controls object placement in NVM (H2),
Spark-MO relies on the memory controller to move objects between
DRAM and NVM. We measure that Spark-MO incurs on average
5.3x and 11.8x more read and write operations to NVM compared
to TeraHeap, resulting in higher overhead. Therefore, the ability to
maintain separate heaps allows TeraHeap to both limit GC cost and
reduce the adverse impact of the increased NVM access latency on
GC time.

We also compare TeraHeap with Panthera [48], a system de-
signed to use NVM as a heap in Spark. Panthera extends the man-
aged heap over DRAM and NVM, placing the young generation
in DRAM and splitting the old generation into DRAM and NVM
components. We configure Panthera similar to Wang et. al [48] with
64 GB heap, 25% on DRAM (16 GB), and 75% on NVM. We set the
size of the young generation to % (10 GB) of the total heap size and
place it entirely on DRAM. We set the size of the old ion to
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o
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Figure 13: Performance scaling with (a) number of mutator
threads and (b) dataset size in the NVMe server.

Figure 12(c) shows that TeraHeap improves performance between
7% and 69% compared to Panthera across all workloads. Panthera
bypasses the allocation of some objects in the young generation,
allocating them directly to the old generation. However, each major
GC still scans all objects in the old generation, which increases
overhead as the heap address space grows. Instead, TeraHeap re-
duces the address space that needs to be scanned by the garbage
collector. Note that Panthera incurs more accesses to NVM because
it allocates mature long-lived objects that are highly read and up-
dated by the mutator threads. Specifically, it increases other by up
to 53% because it performs more NVM read (up to 54x) and NVM
write (up to 51x) operations than TeraHeap.

7.6 Performance Scaling

A benefit of TeraHeap is that it allows increasing the number of

and Giraph, each mutator thread processes a separate partition.
Thus, as the number of threads in the executor increases, the object
11 rate i leading to higher GC cost. Figure 13(a)

the rest of the heap size (54 GB) and place 6 GB on DRAM and the
rest (48 GB) on NVM. We configure TeraHeap to use an H1 of 16 GB
and map H2 to NVM. Thus, both systems use the same DRAM and
NVM capacity.

'As Panthera is not publicly available, we are thankful to the authors for providing us
their code.

shows the performance of CC, LR, and CDLP (other workloads show
similar behavior) using Spark-SD, Giraph-OOC, and TeraHeap (TH)
with 4, 8, and 16 threads, normalized to 8 threads per configuration.
‘We note that Giraph-OOC with four threads results in an OOM error.
TeraHeap allows applications to scale per further to 23%
with 2x more threads. However, Spark-SD does not scale beyond
8 threads in LR because GC cost increases (by 44%), eliminating




MSQuest: An FPGA Accelerator for Peptide
Database Search

Abstract—Inp ic and ly mass-sp

y (MS) based peptide identification is at the heart of cancer

bio-marker studles The most popular approach to deduce peptides from MS data are database search algorithms which operate by

matching mass spectra of biological samples against a large database of th ical peptide This process is
nmeoonsumlng and nequlres too many computational ially when post: modifications (PTMs) are

P inthe We present an FPGA- based accelerator called MSQuest to accelerate database search
process using a codesgn thodology. First, we th ly lyzed the ithm to reveal lleli
opportunities and p ks. Second, m igned an architectural for the FPGA to exploit different sources
of parallelism inherent in the rkload. Third, we d an analytical performanoe model for the architecture
template to perform design space exploration (DSE) and find a near-optimal architectural g Finally, we impk d our

design on Intel Stratix 10 FPGA platform and validated it using real-world proteomics datasets and peptide database search

experiments.

Index Terms—Mass-Spectrometry, FPGA, HW/SW co-design, d:

search, pi

1 INTRODUCTION

MASS spectrometry based analysis is the foundation
of large scale proteomics, peptidomics and proteoge-
nomics studies [1], [2]. The discovery of novel disease
biomarkers by MS analysis enables early detection of tu-
mors, determine treatment and prognosis, and provide a
deeper understanding of disease pathology which is the
basis for developing personalized and precision medicine.
Incorporating proteomics profiling in a clinical setting is
an active goal of systems biology researchers [3]. Recent
advancements in MS instrumentation techniques has greatly
improved the quality of spectra that can be generated from
complex clinical samples which is crucial in discovering
clinically relevant biomarkers [4]. Thus, MS based peptide
identification in proteomics and peptidomics is set to be
the driving force behind diagnosing and treating genetic
disorders via precision medicine [3].

To date, database search is the most popular approach
to identify proteins from mass-spectrometry data [5], [6].
In database search, the first step is to generate a database
containing all possible peptides which can result from en-
zymatic digestion of the protein sequences. To find a match
in the generated database for each experimental spectrum,
a similarity score is computed to quantitatively compare
the mass spectrum against the set of candidate peptide
sequences filtered by their precursor masses. In this pro-
cess, the accuracy of a match is affected by two factors:
quality of experimental spectra, and the presence of the
corresponding peptide in the filtered candidates [7]. Thus, if
the sample contains known peptides they are easily found,
but most peptides go through post-translational modifica-
tions (PTMs) which are not accounted for in the theoretical
database. Possible solutions to this include performing an
unrestricted search by relaxing the mass filter or incorporat-
ing all possible PTMs in the search process when construct-
ing the peptide database. However, an unconstrained search
and inclusion of PTMs results in a combinatorial increase
in the database size leading to a gigantic search space that

+

requires too much time and computational resources [8],
[9]. The current state-of-the-art database search frameworks
lead to impractical search times (several days to weeks)
when searching for PTMs [10].

Today, most popular database search frameworks that
run on commodity computers are SEQUEST [11], Crux
[12], Comet [13], X!tandem [14], and MSFragger [15]. To
accelerate database search process, many researchers have
utilized specialized computing platforms such as multicore
[15], [16], [17] and distributed-memory architectures (HPC)
[10], [18], [19], [20], [21], [22], graphical processing units
(GPU) [23], [24], [25], [26], [27], and field programmable gate
arrays (FPGA) [28], [29], [30].

In this work, we propose MSQuest, a novel FPGA-based
hardware/software co-design approach to efficiently accel-
erate protein database search. We begin with a theoretical

lysis of existing database search algorithms to identify
different sources of parallelism at each stage of computation.
Informed by our theoretical analysis, we design a processing
element(PE) to compute similarity score that is configurable
based on loop unroll factor. Moreover, to exploit all sources
of parallelism, our overall architecture template allows loop
pipelining and loop tiling to be configurable as well. Next,
to find optimal design parameters, we derive an analytical
performance model for our architecture template that takes
into account the resource budget of the FPGA. Finally, we
implement the design on Intel Stratix 10 FPGA and evaluate
the design extensively with real world datasets to show
improvement in runtime. The main contributions of this

paper are:

« Design of a parameterized processing element with
configurable loop unroll factor

« A novel architecture template design guided by the-
oretical analysis of the database search computation
along with performance model to find optimal de-
sign configuration parameters
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Fig. 2: Highlevel organization of the accelerator system. Host CPU communicates with the FPGA via a PCle link. All n
pipelined processing units (PUs) are exposed to the CPU host. CPU periodically polls the PUs, and copies the respective
spectra, peptides, or scores. Each PU is composed of a pipeline of m PEs through which peptides and scores are streamed.
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Fig. 3: Fragment-ion index generation procedure. First all
the th ical spectra are computed from the peptides, then
the spectra are indexed where each fragment-ion is a key
and the peptides that share the ion are values.

Algorithm 2 Compute with fragment-ion index

Require: M experimental spectra with top 150 peaks each
Require: On average k k candxdate pephdes per spectrum
Ensure: Pre-comp -ion ind
> m is a vector of mz va]ues, I is a vector of candidate
peptides, S is score matrix

1: form < 1to M do

2 for i « 1to 150 do

3 v  bin[ml[i]]

4 forn < 1tokdo
5: Simlfoin]] < Simfvln]) + Imfil]foin]]
6:
7:
8:

end for
end for
: end for

2.5 Parallelism analysis

There are several sources of parallelism in database search
process. To efficiently accelerate this computation, all of
these sources must be correctly identified and exploited.
Algorithm 1 and algorithm 2 show the psuedocode for
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Fig. 4: Hardware design of the configurable processing
element. An FSM controller reads the spectrum packets
and peptide packets from the pipeline, and stores them in
local on-chip RAM and shift registers. The scorer modules
compute the dot-product concurrently, and the number of
scorers is configurable according to the loop-unroll factor.

database search without indexing and with indexing, re-
spectively. The overall computation is represented by three
nested for-loops:

« Inner loop: In index-free approach, lines 4-7 com-
pute the dot-product score between an experimental
vector and a theoretical vector by iterating over 150
experimental spectrum peaks and performing the
inner-join operation with the theoretical vector. This
step can be parallelized by unrolling the loop on a
vector processing hardware.

In indexed search approach, the inner loop updates
the score between experimental spectrum and all



