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What is considered systems
research?




The Transformation Hierarchy

We use a systematic transformation
hierarchy to solve complex problems
" From English to movement of electrons

The “system of transformations” is built to
satisfy “user constraints”
= Device size, cost, energy, reliability

What is systems research?

= How to enable the transformation?

= Qualified answer: How best to enable an
optimal design point in a complex space

=  Show by building a real system

Problem

Compilers and runtimes

Operating systems

ISAS

Microarchitecture
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What is a computer system?

Sequence of transformations

Hardware + software Problem
Algorithm, PL
Compute + storage Compilers and runtimes
Operating systems
CPU, memory, and disk > computer ISAs
Microarchitecture
Network of computers - Datacenter —
VLSI circuits
Network of datacenters = Cloud FlEEs

Network of CPU and accelerators = system on a chip



Two Historical Examples

= Two examples
= Storage and file systems

" Processor microarchitecture



Fast File System (FFS)

= Unix OS is introduced. Ken Thompson wrote the first filesystem

= Simple and elegant (?)| superblock | Inodes | Data

= Unfortunately, performance was terrible

= Kirk McKusick measured it could utilize only 2% of disk bandwidth

" Problem: Filesystem was written as if the underlying device was a random
access memory (like physical memory)

=  But, disk is not a random access device

" |t has mechanical components. Arm movement. Rotational disk

= Sequential accesses are faster than random access

= Agroup at Berkeley wrote the fast “disk-aware” filesystem

= Key constraint: Not enough details of the device are exposed to the system

= Key realization: Exploit device organization/physics whatever is known about it.
“Keep related stuff together”




Out of Order Execution

1960s and 70s: It is established that the programming model of a Von Neuman

machine is intuitive for the programmers

And that such machines are practical to build on large scale

Problem: One operation per clock cycle in program order (as specified by the

Von Neuman model) is very restrictive

= Need to concurrently execute many instructions in one clock cycle to gain
higher performance

Solution: (a marvel of human ingenuity)

= Key constraint: Instructions have dependences, so how can one find conc.

= Key realization: With some effort one can find independent insts. in programs

= Dynamic scheduling: Fetch instruction in order, but execute instructions
whenever their operands are ready (dataflow machine with seq. model)

= Control Data and IBM the early innovators

" |mproved over many decades (branch prediction, precise interrupts)



Lessons

FFS was possible because the team that built it realized that it is critical to

look one layer below the OS abstraction layer

= They realized early on that device physics shapes the system

= They also realized the need for good abstraction, so they did not change
what was exposed to the users of FFS

» Modern file systems still use the same file system API

000 was possible because early systems researchers at CDC and IBM

studied program behavior and program interaction with machines

= They were innovating at many layers: ISA, OS, microarchitecture,
compilers, design, PL, algorithms, management

" |n this specific instance, a different debate emerged. OOO in hardware is
too complex. Why can’t compiler do it? Compiler/uARCH both innovated.



Computer Architecture Ideas

Venues
= |SCA, MICRO, ASPLOS, HPCA

Not much in traditional OOO processor microarchitecture
Memory systems: caching, coherence, consistency, multicore
DRAM reliability

Mitigating security vulnerabilities

Processing in memory

New storage technologies

ML accelerators

ML for systems



Operating Systems Ideas

= \Venues
= ASPLOS, OSDI, SOSP

" True OS papers: Very hard to find

= Garbage collection

= Data-intensive systems

= NoSQL stores

" Persistent memory programming models
= Compute in NICs

= Computational storage



Why should you consider it?

= Key enabler of new and “emerging” applications
= Millisecond-scale real-time analytics over social media

= Broad applicability
= 1% improvement in GPU throughput for ML

= Building systems is fun although “challenging”
= Lots of room to work at different abstraction layers
= Same problem can have a variety of solutions: Compiler vs. managed

runtime vs. OS vs. hardware

= Can help produce better algorithms, think new problems, move technology



Ongoing Research




Motivation

» Lot of pressure on physical memory (DRAM)

= Technology is not scaling as fast as it used to

= But applications demand more memory
= Key realization
= Data is expensive to cache and store for fast delivery
= Meta-data is more expensive

= Counter-intuitive. Why?



Example 1: Search Engines

Key data structure that enable fast search
u Inve rted |ndeX D?Fumentl : Never arrive late.

n . st 7 » Nowvor ermy nove
Jocument 2 : Never say never

A A

[

Think of a massive hash table term  offset
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Every time we create a new website or tweet,
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something gets added to the hash table _[SSD: 158
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Hash table placement and query response 8
time ko
= DRAM:

2-term AND,
99% tail latency

70 ms



Example 2: ML Analytics

" |terative computation until a condition is met
" Each iteration produces a transformation of a massive dataset
= Two options
" Recompute the transformation whenever needed (possibly in
every transformation)

= Cacheitin memory or disk

= Cache capacity to avoid recomputation 10X of actual dataset!



Some Ongoing Projects

" Huge heaps without increasing GC overhead

= Rethinking software stacks for emerging memories
= Search engines, databases, caches

= Accelerators for proteomics discovery
= Secure and practical memory systems

= Storing and querying very large indices in memory



Aim of a research project

17



What is the aim of a research project?

= | will give you five keywords to post in your workspace
= Remember them like the stages of instruction processing in a basic CPU pipeline

Fetch Decode Execute | Memory |[Writeback

= Aim of a research project

Question | Answer Data Argument | Revise

= Ask a question worth answering
med an answer that you can support with good reasons
“Find good data that you can use as reliable evidence to support your reasons
= Draft an argument that makes a good case for your answers
= Revise the draft until reader would think you meet the first four goals
= Jtisimportant to realize how best to utilize your mentor for each step
= Hindsight: Wished had engaged mentor more for Question, Argument, Revise



Formula for Questions

= Three step process

1) Topic: | am working on X (history of ANU school of computing)
2) Question: because | want to find out Y (why students love it so much)

3) Significance: so | can help others understand Z (how can ANU SOCO

practices help other schools in the region attract more students)
Why is the question worth asking?

1) Topic: | am working on machine learning analytics
2) Question: because | want to find out how it performs on modern GPUs
3) Significance: so | can help others understand how to architect GPUs to

accelerate ML analytics
* In systems research, we build artifacts, so typically, we use the understanding to build stuff (there is an additional step)
*  We cannot build stuff without “understanding.” That is ANTI-RESEARCH
e So, if you sitin a talk where someone begins with, “I built X.” Ask: “What informs the design and architecture of X?”
Do we understand the behavior of existing systems that do X? Why did you built X? Who benefits? Why does X work?



More Example Questions

= Three step process

1) Topic: | am working on memory management
2) Question: because | want to find out the overhead of malloc() on Linux
3) Significance: so | can help others understand how to build high-
performance memory allocators
4) Finally, I use the understanding to build kangaroomalloc()

1) Topic: | am working on branch prediction
2) Question: because | want to find out how it behaves for Java workloads
3) Significance: so | can help others understand how to build new branch
predictors for object-oriented languages like Java
4) Finally, | use the understanding to build kangaroopredictor()



Wrong

| propose kangaroopredictor

It exhibits 2% more accuracy for Java workloads
It uses state of the art machine learning

Trust me: It beats everything else!

https://www.youtube.com/watch?v=alzDuOPkMSw&t=1086s&ab channel=securitylectures



Wrong

" | propose kangaroopredictor

" |t exhibits 2% more accuracy for Java workloads
" |t uses state of the art machine learning

" Trust me: It beats everything else

_ Bill Dally

“What transfers is insight, not academic design, not
performance numbers.”

= |n January 2009 he was appointed chief scientist of Nvidia. He worked full-time

at Nvidia, while supervising about 12 of his graduate students at Stanford.

= |n 2009, he was elected to the National Academy of Enqineering for

contributions to the design of high-performance interconnect networks and
parallel computer architectures.

» He received the 2010 ACM/IEEE Eckert—Mauchly Award for "outstanding

contributions to the architecture of interconnection networks and parallel
computers."


https://en.wikipedia.org/wiki/Nvidia
https://en.wikipedia.org/wiki/National_Academy_of_Engineering
https://en.wikipedia.org/wiki/Eckert%E2%80%93Mauchly_Award

Right!

We find that frequent jumps in object-oriented code due to
= XV Z .. Good systems problems can be solved in

. . . . .. different ways. At different layers. Ok to do
= resultin high misprediction rates it based on your philosophy. But don’t

= 20% of all mispredictions are due to X dismiss other approaches. Sometimes there
is no precedent to solve problem at a
= 30%duetoY

specific layer.
" 10%duetoZ

One could rewrite code to eliminate X, Y, Z, but that requires extra
programming effort. One could add a compiler optimization pass

We propose kangaroopredictor that tackles X, Y, and Z to do better
prediction in hardware

Note: The excitement is NO LONGER in kangaroopredictor (it’s now the
last bullet) but in “understanding” the behavior of existing predictors and
more importantly, interaction b/w OO programs and hardware



Good ideas cannot be dismissed

Instruction set architectures

RISC had clear advantages. MIPS a great ISA. MIPS R10K a great microarchitecture
CISC (Intel x86) became the de facto in high performance computing (some history)
Technology (physics) trends eventually betrayed. CISC decoding consumes too much
power. (Even hardware speculation is being questioned (Meltdown). VLIW return?)
Today: RISC-V emerged as a popular open-source alternative

Memory management

Predominant opinion as late as early 2000s: Programmers should manually manage
memory for high-performance and memory-efficient code

C vs. languages with automatic memory managers (aka garbage collection)

Memory became cheaper. Technology scaling lead to high density

Programs became too complex (programming burden)

Java became the standard for developing major data processing applications

= Search engines, analytics, graph processing, 90% of Apache software



Importance of Hypothesis

" You should have a theory to answer the question
= Current predictors are inaccurate because of large # methods
= Current allocators incur high latency because applications
allocate objects with variable sizes leading to fragmentation
" Current CPUs are memory-bound for ML workloads

= Testing the hypothesis

" Representative applications (benchmarks)
= Real machine or simulator

" @Gain insight into program-machine interaction



Testing Hypothesis
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Another Example

nursery mature

-GC_

70% 22%

of writes to 2% of objects

27



Picking Problems

" Must pick important problems. Ask Why frequently
" Questions that someone cares about
= Hopefully, an entire community
" Enable new applications
= Keep an eye on where technology will go

= Aim high!



Aim High

" Try to contribute something novel as an undergrad
" You learn a lot. Research could lead to impact.

Best paper candidate, honors project
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Abstract
Managed search engines, such as Apache Solr and Elastic-
search, host huge inverted indices in main memory to offer
fast response times. This practice faces two challenges. First,
limited DRAM capacity necessitates search engines aggres-
sively compress indices to reduce their storage footprint.
Unfortunately, our analysis with a popular search library
shows that compression slows down queries (on average) by
up to 1.7x due to high decompression latency. Despite their
advantage, indices require 10x
more memory capacity, making them impractical. Second,
indices today reside off-heap, encouraging unsafe memory
accesses and risking eviction fmm &ne page cache.
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ary (NVM) offers a good fit for storing
Unfortunately, NVM exhibits high latency. We rigorously
evaluate the perfonmnce of DRAM and NVM-backed com-
pressed/uncompressed indices to find that an uncompressed
index in a high-capacity managed heap memory-mapped
over NVM provides a %% reduction in query response times
compared to a DRAM-backed compressed index in off-heap
memory. Also, it is only 11% slower than the uncompressed
index in a DRAM hesp (fastest approach). DRAM and NVM-
backed compressed (off-heap) indices behave similarly.

We analyze the narrow response time gap between DRAM
and NVM-backed indices. We conclude that inverted indices
demand massive memory capacity, but search algorithms
exhibit a high spatial locality that modern cache hierarchies
exploit to hide NVM latency. We show the scalability of
uncompressed indices on the NVM-backed heap with large
core counts and index sizes. This work uncovers new space-
time tradeoffs in storing in-memory inverted indices.
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1 Introd
Search engines enable locating web pages on the internet
and are  crtical component of social media, professionl
platforms. The key i

uuuﬁad users is to offer low quary response times. Amazon
reports that even a 100 ms delay results in revenue drops [36].
Similar ions guide Google’s search i

The critical data structure search engines use for locating
documents (web pages or social media posts) matching a
word (tenm) is an inverted index. An inverted index maps
unique terms to posting lists, where each posting stores
an integer document identifier (ID) and meta-data (term fre-
quency and position). Asscciating terms to posting lists using
an inverted index speeds up query evahation dramatically.

Today's standard practice is to host the inverted index
n off-heap main memory. Recent work shows that even
PCle NVMe SSDs with byte-addressable 3D XPoint memory
cannot deliver real-time response times [2). Therefore, ser-
vice providers keep indices in memory [60]. Unfortunately,
as datasets grow, the inverted index grows proportionally,
and large indices put increased pressure on DRAM. On the
other hand, DRAM scaling cannot cope with the growth in
datasets [20, 42]. Specifically, as data volume doubles yearly,
the DRAM capacity only scales by 10% [24, 28]. The result is
either the poor quality of service due to index lookups from
storage or exorbitant memory-related expenditures.

Problem # 1(High Decompression Latency): Compres-
sion s a crucial technique search engines use to store large
indices in limited DRAM. For example, Apache Lucene uses
a compression scheme that reduces index size by 85-90%,
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disks as building them is computationally intensive. Consequently,
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1 INTRODUCTION

Today, enabling fast real-time search over social media content
is critical to the success of many enterprises, including Linkedin,
Meta, and Twitter (8, 52]. Social media content is either queried
explicitly for relevance search, similar to static web content, or im-
plicitly by the service for timeline retrieval to populate a user’s
home feed. The latter generates queries based on the user's pre-
ferred topics or followers and is more frequent on social media
platforms — the source of 50% of tweets recommended on Twitter’s
For You and Following tabs [69]. The queries run concurrently
with an indexing engine that builds indices in real-time, coping
with a massive volume of data, e.g. 500 million Tweets per day for
Tiwitter [69). Consequently, real-time indexing puts high pressure
on the aggregate CPU and memory of the real-time cluster, and
concurrent queries exacerbate the pressure further (3, 52].

The critical data structure search engines use for locating docu-
ments (web pages, social media posts, or tweets) matching a word
(term) is an inverted index [84]. Offering real-time response times
requires hosting the index in memory [28, 75). Unfortunately, in-
dices grow proportional to datasets, and large indices put pressure
on DRAM. However, DRAM scaling cannot cope with the growth
in datasets [1, 11, 14, 28, 29,33, 57, 61,72], increasing infrastructure
cost (15, 72]. Scaling in-memory indices to large datasets demands
dense memory technologies, complementing DRAM.

Hosting indices in memory is also at odds with persisting them in
today’s storage stack. Popular search engines, e.g., Apache Solr [22]
and Elasticsearch [20] use a segmented index, and each fixed-size
segment resides on the heap before being moved to the page cache.
Segments are buffered in the cache (no synchronous 1O per seg-
ment) to amortize I/O overheads. Ultimately, calling fsync to bulk-
persist segments on storage, an operation called commit in Elastic-
search, becomes necessary to avoid losing significant index updates
on a crash 5, 20]. Unfortunately, if the index outgrows available
DRAM, later reads of the persistent segment generate I/O transfers.
Recent work shows that even the fastest PCle NVMe SSDs cannot
deliver the response times required by real-time search [3, 52, 69].
Furthermore, an fsync is costly and cannot be performed without a
significant hit [20). Existing systems either risk losing
a significant state or paying a performance penalty.

Due to limited DRAM and the need for persistence, block storage
is deeply integrated into real-time search clusters. Therefore, popu-
lar real-time search engines do not make on-heap segments visible
to query evaluators [20]). Instead, query evaluators use multiple
filesystem calls to access new segments from the OS cache or stor-
age. (In Elastic search, one set of calls is to read the commit point
and another to read the index segment [20]) These calls incur high
overhead [9, 38, prohibiting real-time op: [20]. Furtk

research project, top conference



Some Tenets of Systems Research

=  Good abstractions are powerful. In fact, this is why computer systems work. (And why | start every semester with: Alice
has an idea to save the world. How can she orchestrate the movement of electrons with English. She cannot. She uses?)

=  Yet, many great ideas come from understanding the interaction between abstraction layers

n Insight is key. Go to class for insight. Read (critically) for insight. Do research for insight. Communicate to gain and give
insight. If something “just works,” and you do not understand WHY, it’s useless. (When it breaks, you can’t fix it.)

=  Good engineering in systems research is necessary, but the goal of research is to communicate new insights. No one is
interested in how you fixed bugs in your code. (Analogy: Fertilizer is critical for growing pretty roses, but we don’t
decorate our house with fertilizer. Try it and no guests will come again. Same with research, tell people about “boring”
engineering details, and they won’t listen to you again. YET must decide how much they need to know.)

n Designing new systems is somewhat of an art. (Technology “pull,” and application “push.”) Must learn from prior
art/design, i.e., precedents (COMP2300/COMP2310/Microarch.). Must use creativity to adapt to new changing
technology trends and new workloads. Two things systems researcher must live with: physics (speed of light, how small
a transistor can me made, and still be used reliably, yield of an X mm? chip) and society (big data due to microblogging,
social media, and online payments; use of Al/ML; purchasing power; Netflix vs. renting video; cloud vs. in-house)

n Device physics shapes the system
n Early filesystem research. Moore’s law and its impact on systems. Persistent memory. Distributed systems. What
enabled multi-layer software stacks (think Scala)? What threatens them now? Shift to multicore. Disk vs. Flash



Systems Architect’s Toolbox: Design Side

=  Know the precedents (what techniques worked in prior systems)?
= (Caching, prediction, ISA additions, speculation, write batching, sequential log, tracing
collector, write barrier, spin lock, interrupt, MMU

=  Know the “key” tradeoffs
= Compression saves storage capacity but decompression incurs high latency
= RISC ISA simplifies circuit complexity, but results in more instructions per C/C++
statement (pressure on instruction memory)
= Disk is cheap but its latency is high
= SRAM is fast but consumes more power

= Know the “critical” metrics
= Performance, power, energy, reliability, security, extendibility, observability,
manageability, cost, scalability, throughput, tail latency



Engineering Side

= Holistic view of system

= Good comprehension of CPU, memory, and disk datapath. Byte-addressable vs. block
addressable. Virtual memory. Virtualizing CPU.

=  Good programming skills in one or more languages and ability to pick a new language
quickly

" Good systems building skills (compiling the Linux kernel, using GCC/GDB, writing Makefile,
hacking OpenlJDK)

= Data structures and algorithms
= Performance debugging

=  Monitoring low-level processor performance
= |/O traffic monitoring tools



Writing and Presentation
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Advice on Writing

WILLIAM W
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Advice by “prescription”

“Trust me.” Do X. Do Y

E

JOSEPH M. WILLIAMS |
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“‘Superh, articulate, \

TOWARD CLARITY
AND GRACE

Advice based on “insight”

What is the purpose of writing?

What do humans consider good writing?

Why one writing style is more powerful than other?
How “attention mechanics” work? Invoking stress



Advice on ertlng

WILLIAM w
STRUNK-=
EBWHITE

h nl pom'm!ena

ELEM el\FS
e O SRR,
STYLE

Passive voice is best avoided

Don’t end a sentence with preposition

And many more prescriptions

= Analogy: temporary relief, no pinpointing the real
source of pain, no diagnosis

Reality
= Passive serves an important role
= OK to end with prep.

Key realization in style community: Passive and preps.
alone don’t put people off. There are more fundamental
issues to be dealt with. And they relate to a system of
style that must be understood



Advice on Writing
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Advice based on “insight”
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78  Chapter Four

The System of Clarity

By now, we begin to appreciate the extraordinary complexity
of an ordinary English sentence. A sentence is more than its sub-
ject, verb, and object. It is more than the sum of its words and
parts. It is a system of systems whose parts we can fit together in
very delicate ways to achieve very delicate ends—if we know
how. We can match, mismatch, or metaphorically manipulate the
grammatical units and their meanings:

SUBJECT VERB COMPLEMENT

CHARACTERS ACTION -

We can match or mismatch rhetorical units to create more or
less important meanings:

TOPIC STRESS

OLD/LESS IMPORTANT NEW/MORE IMPORTANT

And we can fit these two systems into a larger system:

TOPIC STRESS
OLD/LESS IMPORTANT NEW/MORE IMPORTANT
SUBJECT VERB COMPLEMENT
CHARACTERS ACTION —

Of course, we don’t want every one of our sentences to march
lockstep across the page in a rigid character-action order. When
a writer exercises his stylistic imagination in the way Jefferson
did with the Declaration of Independence, he can create and con-
trol fine shades of agency, action, emphasis, and point of view.
But if for no good reason he writes sentences that consistently
depart from any coherent pattern, if he consistently hides agency,
nominalizes active verbs into passive nominalizations, and if he

Coberence II 109

ISSUE DISCUSSION
POINT (POINT)
TOPIC STRESS
OLD/FAMILIAR NEW/UNFAMILIAR
SUBJECT VERB COMPLEMENT
CHARACTERS ACTION —

To this figure we add three principles:

1. In the issue, introduce key thematic and topical words in
its stress.

2. In the discussion, keep strings of topics consistent.

3. In the discussion, repeat those thematic words or words re-
lated to them.

We can use these principles both to predict when our readers
might judge our writing to be cloudy and to achieve what we
might call generic clarity. We achieve an individual style when we
learn how to meet the expectations of our readers, and at the
same time surprise them.

The final point is not to make every paragraph a work of art.
Art may be long, but life is too short. The point is to make these
principles work together well enough so that you do not confuse
your readers. Readers call writing clear not when it is clear, but
when they have no reason to call it unclear. Which is to say, writ-
ing usually seems clearest when readers are least conscious of it.

Headings as Test for Coherence

Headings are a familiar feature in professional writing. We
usually think of them as most helpful to readers, because they
give readers a general idea about the content of the section they
head. They also show readers where one section stops and an-
other starts and indicate levels of subordination.

But if headings are useful to readers, they are more useful to



Advice on Writing
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The First Two Principles of Clear Writing
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(2) the verbs that go with those subjects name the crucial actions
those characters are part of.
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Advice based on “insight”



Presenting Research Outcomes

One main idea per slide

presentationzen

Simple Ideas on Presentation Design and Delivery

Few bullets

Good titles (some examples later)

Figures clearly annotated

One slide to the next (story telling)

o o A My students create a slide deck. | can write an entire

I crevoro 6 ouy Kawssaa . paper without bugging them too much by just following the
el slide deck

New
Riders

Advice based on “insight”



Latex and Overleaf

All Projects
L Q
earn Latex
O Title
O 2023s1 Hash Table Final Report - Peter
O junming_thesis
. " "

Start collaborating with your advisor on = s
O ispass-paper (Copy for ISMM)

Overleaf 2 e
O spirit
O IEEE Symposium on Workload Characterization
O iiswc23-junming-segcache
O spirit-cache
O spirit-nvme
O segcache-nvm-junming
O ISMM-2023-Search-Caching-Jack
O ispass-paper
O TeraHeap: Reducing Memory Pressure in Managed Big Data Frameworks

He will help you stay focused

please do 19:02

Extension does not mean we can relax. We have to keep working and submit a very strong thesis.

21:37 VW

FRIDAY

you did not do anything for the thesis today? 18:45 W/

and poster? 18:45

Owner
peter.oslington

Junming Zhao

You're on the

Last Modified v

’ 8 hours ago by peter.oslington ‘
3 days ago by Junming Zhao
4 days ago by Anson Thai
6 days ago by You
12 days ago by skuma027
21 days ago by You
a month ago by skuma027
a month ago by You
2 months ago by You
2 months ago by You
2 months ago by You
2 months ago by You
3 months ago by You

4 months ago by You

—



Systems Papers




Systems Papers: One Classification

= Architecture

= Runtimes for PL

= Memory management
= Distributed databases
= Graph analytics

= Compilers

= Many more areas ...



Systems Papers: Another Classification

4

= New “systems idea’
= New mechanism
= New policy

= Performance analysis and evaluation
= Evaluate existing/emerging hardware
= Specific features
= Full system (holistic)
= Evaluate existing/emerging workloads
= Specific phases
= Full workload

= Analytical and mechanistic modeling
= Enable new insights (by fast exploration)
= Enable new policies that are rigorously understood (contrast with “ML magic”)



Mechanism vs. Policy

Sharing a CPU among many users

= Mechanism: Changing PC ., to PC .., and other actions to switch to executing process
from user 2

= Policy: When to switch from one user to the next, which user to give priority, cloud vs.
desktop

Using disk as an extension of main memory (swapping)
=  Mechanism: Copying data from memory to disk, physical hardware changes, pins, wires,

interrupts, system calls, all that jazz
= Policy: When to initiate a transfer from memory to disk (when memory is critically low,

when memory is 80% of capacity, ...)

Offloading computation to a GPU

= Mechanism: Introducing GPU in the system, setting up CPU-GPU communication, etc

= Policy: What to offload? When to offload? If the GPU is busy, what is the policy to
offload another waiting task?



Importance of Performance Evaluation

= Why do we evaluate performance?
= To understand if we can build better systems for a specific workload
= To understand if we are enabling needless features
= To understand how can we improve the system

= Hardware is available
= Do areal system study

= Hardware is not available
= Use simulation (e.g., model the behavior of the system in C++)
= Cycle accurate (very time consuming) vs. mechanistic model (fast but not
very accurate)
= Use emulation
= Emulate the “unavailable system” using an existing system



Example of Emulation

NUMA to model a hybrid DRAM-PCM system

Frequency scaling to model a big.LITTLE system

App
0S

CPU




Example of Simulation

= Sniper multicore simulator we use in Microarchitecture Course



Importance of Modeling

= Gaininsight
= How does a system work?
= A high-level model of an out-of-order processor

uarch-indep branch predictor model [De Pestel, ISPASS’15]

total cycle count miss rates predicted using StatStack

[Eklov and Hagersten, ISPASS’10]
Base l I-cache \
5 S
Mprc X Cmem

C= Dun + Mipreq Xffres + Cfrz+ E L X CLis +\ MLD
Branch et R

T D-cache

/

uarch-indep MLP model
[Van den Steen, CAL’18]

N = dynamic instruction count
D.¢ = effective dispatch rate; is function of ILP, I-mix, ALU contention



Importance of Modeling

= Quickly explore large design space in early stage of design
= Simulators are extremely slow
" |n early stages, only need to know relative performance

= To filter out parameter settings (for example, cache size) that do not
show good trends



New Idea Papers

Let’s look at some top-tier idea papers from my recent work

TeraHeap: Reducing Memory Pressure in Managed Big Data Frameworks
= ASPLOS 2023

Write-Rationing Garbage Collection for Hybrid Memories
= PLDI 2019

SPIRIT: Scalable and Persistent On-Heap Indices in Hybrid Memory for Real-Time Search
= Under Review



What’s in a title?

= Succinct. To the point. Stress the key contribution. Good verbs. Good adjectives.
= Typically include software aspect and a hardware aspect
= Find a “decent” & memorable name. But if you can’t, don’t force a name, or have one

that is pointless

= TeraHeap: Reducing Memory Pressure in Managed Big Data Frameworks
= ASPLOS 2023

Write-Rationing Garbage Collection for Hybrid Memories
= PLDI 2019

SPIRIT: Scalable and Persistent On-Heap Indices in Hybrid Memory for Real-Time Search
= Under Review



Other Papers & Presentations

" Let’s see some other papers

" Let’s see some presentations






Write-Rationing Garbage Collection
for Hybrid Memories

Shoaib Akram (Ghent), Jennifer B. Sartor (Ghent and VUB),
Kathryn S. Mckinley (Google), and Lieven Eeckhout (Ghent)
Shoaib.Akram@UGent.be
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DRAM is facing challenges

Scalability
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Cost .........................

Energy
Reliability
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Phase change memory

reset to amorphous

Persistent v
>
Byte addressable
()
High latency 3
Q

Low endurance

time -



PCM only is not practical

2

Lifetime in years

o =
L
.

<
]
L

% 1l

.

32 GB PCM with hardware wear-levelling

56



Hybrid DRAM-PCM memory

DRAM PCM
Challenges

Bridging the DRAM-PCM latency gap
Mitigating PCM wear-out -




Prior art in mitigating PCM wear-out

Hardware wear-leveling
Spread writes out across PCM
32 GB PCM lasts only two years!

OS write partitioning
Keep highly written pages in DRAM
Coarse granularity
Costly page migrations

58



Garbage collection for hybrid memory

nursery | | =& ' mature -

e, ® o : .
®.: ‘:'.? o @ - ..t e
observer
DRAM . * . mature
.. e . . . . '. )

This work uses GC to keep highly written
objects in DRAM



Distribution of writes in GC heaps

nursery mature

IIIIIIIIIII.f(SC: ‘|IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

70%

of writes




Distribution of writes in GC heaps

nursery - mature
70% 22%

of writes to 2% of objects

61



Contribution
Write-Rationing Garbage Collectors
mature

\_

GC




Two write-rationing garbage collectors
Kingsguard- Kingsguard-
Nursery Writers

63



Heap organization in DRAM

pur§ery|( ,G_Q
RETAPLY ) e

\‘ .+ mature- - - []| large
JUS .

DRAM

64



KG-N Kingsguard-Nursery

PCM

65



KG-W Kingsguard-Writers

- ~ - ~

observer's

PCM



Monitoring writes -

o T >

e D

Header References Primitives

On a write to an object
Write barrier sets a bit in header

Write barrier configurations
Monitor references
Monitor references and primitives



Two additional optimizations

Large object optimization
Selectively allocate large objects in DRAM

Metadata optimization
Place mark bits of PCM objects in DRAM



Large object optimization

nursery large
EEEEEN
EEEEEN
EEEEEN
b ' J
¥ of remaining Monitor PCM write rate



Results

(1) Measurements on real hardware
(2) Simulation

Jikes research virtual machine

Java applications ¢



Real hardware methodology

Use write barriers to count object writes
Applications: 12 DaCapo, 3 GraphChi, and Pjbb
Configurations
4 MB nursery
KG-W: 4 MB nursery, 8 MB observer
12 MB nursery



Reduction in PCM writes
Baseline: PCM-Only

m KG-N KG-N-12 m KG-W
c 100
c O
o E 75
0 =2
= 50
O O
(a
X 25
0
\S! o e
’c)Q Qio (* (’c)%
036 6( P»“e

KG-W reduces 95% of writes to PCM

72



Simulation methodology

7 DaCapo applications @682%0

Measure lifetime, energy, and >>|
execution time in simulator



Memory systems

Homogeneous
32 GB
32 GB

Hybrid
1 GB
32 GB

parameters

4X read latency
4X write energy
10 M writes/cell



PCM lifetimes

m PCM-Only m KG-N m KG-W

- 40

(qv]

()]

> 30

<

Q

g 20 17

£ _.I .‘ .9*
) 1 J

0 \ &, \\Qo

+%QQ<°@’0‘»°V°<<> v

S
PCM alone is not practical
PCM lasts more than 10 years with KG-W 75



PCM write rates

m PCM-Only m KG-N m KG-W
40

30

20

Pl LLI._I_ L

N
v

Werite rate in GB/s

4
NN
& o
O
AV

’b
X
©

+’b‘2<°
? v

KG-N reduces write rate by 6X over PCM-Only
KG-W reduces write rate by 2X over KG-N 76



EDP reduction compared to DRAM

m PCM-Only m KG-N m KG-W

S 80
L
= 40
C
S
B 0
3
) -40 . .
S o Higher is better
Q O S Q N ~ X e
NG N > & < ~ o o
42 TS L2 PR AQ}?’
> \e

EDP : Energy Delay Product
KG-W has 35% better EDP than DRAM-Only .



In the paper

Execution time results
Breakdown of KG-W overheads
Object demographics

Comparison with OS approach



Write rationing garbage collection

Monitor fine grained write behavior el gia®
of objects el

Exploit managed runtimes to organize
objects in hybrid memory

Kingsguard collectors improve
PCM lifetime
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Crystal Gazer: Profile-Driven
Write-Rationing Garbage Collection
for Hybrid Memories

Shoaib Akram (Ghent), Jennifer B. Sartor (Ghent and VUB),
Kathryn S. McKinley (Google), and Lieven Eeckhout (Ghent)
Shoaib.Akram@UGent.be
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Main memory capacity expansion
DRAM - Charge storage a scaling limitation

1

Manufacturing Z 09 ,/
complexity makes ¢ . /\///(
DRAM pricing 5 /—/
volatile 07

Source: WSTS, IC Insights

0.6

Jan’17 Jan’18

1



Phase change memory (PCM)

reset to amorphous

T .

set tqg crystalline

More Gb/S

Byte addressable
Latency - DRANVI
& Write endurance

temperature

time



Hybrid DRAM-PCM memory

DRAM PCM

PCM alone can wear out in a few months time
This work - Use DRAM to limit PCM writes



Garbage Collection to limit
PCM writes

GC understands memory semantics

A GC approach is finer grained

Operating
than OS approaches System

Hardware

Write-Rationing Garbage Collection for Hybrid Memories, PLDI, 2018

5



KG-W ngsguard -Writers

E ez~

o= o
7
P

observer '\

PCM




KG-W drawbacks

Overhead of dynamic monitoring

Limited time window to predict write intensity
—> mispredictions

Excessive & fixed DRAM consumption



Predicting highly written objects
without a DRAM observer

Crystal Gazer
H |




Allocation site as a write predictor

new Object ()
new Object ()
new Object ()
new Object ()

0. Q T o



Allocation site as a write predictor

new Object ()
new Object ()
()
()

0. Q T o

new Object
new Object

Uniform distribution &



Allocation site as a write predictor

new Object ()
new Object ()
new Object ()

C
‘ d = new dram Object()

new Object
new Object
new Object
new Object

a
b

0. Q T o
I | I | I |

()
()
()
()

Uniform distribution &
Skewed distribution &



Write distribution by allocation site

% 100 -
o
5 .
v Pjbb2005
o 50
(©
=
NS 25 i

O #.g"i-l.

0) 50 100 150

Sites sorted by writes

A few sites capture majority of the writes

10



Crystal Gazer overview

Application _ Advice __ Bytecode Object

Profiling Generation  Compilation Placement
1t 4
a = new Object() a = new Object()

b = new Object() b = new_dram Object()



Application profiling (offline)

Goal: Generate a write intensity trace

01 0 4 A() + 10
02 0 4 A() + 10
03 2048 4 A() + 10
04 2048 4096 B() + 4

12



Tracking alloc sites and # writes
Object layout

payload

H writes
alloc site

Compiler inserts code to compute allocation sites
Write barrier tracks # writes to each object

13



Application Profiling

Minimize full-heap collections - 3 GB heap

Nursery size a balance b/w size of trace
and mature object coverage

2.4X slowdown across 15+ applications



Advice generation

Goal: Generate <alloc-site, advice> pairs
advice - DRAM or PCM
Input is a write-intensity trace

Two heuristics to classify allocation sites as
DRAM or PCM

15



Alloc site classification heuristics

Freq: A threshold % of objects from a site get more
than a threshold # writes - DRAM

& Aggressively limits PCM writes

‘=’ No distinction based on object size

16



Alloc site classification heuristics
Write density - Ratio of # writes to object size

Dens: A threshold % of objects from a site have
more than a threshold write density - DRAM

17



Classification thresholds

Homogeneity threshold - 1%

Frequency threshold - 1
Density threshold - 1



Classification examples

Frequency threshold =1
PCM writes = ?, DRAM bytes = ?

01 0 4 A() + 10
02 0 4 A() + 10
03 128 4 A() + 10
04 128 4096 B() + 4




Classification examples

Frequency threshold =1
PCM writes = ?, DRAM bytes = ?

01 0 4 A() + 10
02 0 4 A() + 10




Classification examples

Frequency threshold =1
PCM writes = 0/256, DRAM bytes = 5008

O1

0

4

A() + 10

02

0

4

A() + 10

19



Classification examples

Density threshold = 1
PCM writes = ?, DRAM bytes = ?

01 0 4 A() + 10
02 0 4 A() + 10
03 128 4 A() + 10
04 128 4096 B() + 4




Classification examples

Density threshold =1
PCM writes = ?, DRAM bytes = ?

01 0 4 A() + 10
02 0 4 A() + 10

-> 32

04 128 4096 B() + 4

20



Classification examples

Density threshold = 1
PCM writes = ?, DRAM bytes = ?

01 0 4 A() + 10
02 0 4 A() + 10
03 128 4 A() + 10
04 128 4096 B() + 4

- 32
><1]

20



Classification examples

Density threshold = 1
PCM writes = 128/256, DRAM bytes = 12

01 0 4 A() + 10
02 0 4 A() + 10
03 128 4 Al)+10 =» 32
04 128 4096 B)+4 =<1

20



Bytecode compilation

Introduce a new bytecode - new dram()

Bytecode rewriter modifies DRAM sites to use
new_dram()

21



Object placement

new dram() - Set a bit in the object header

GC - Inspect the bit on nursery collection to
copy object in DRAM or PCM

22



Obiject placement

DRAM IR
Is marked
highly written? v ————————————

22



Key features of Crystal Gazer
Eliminate overheads of dynamic monitoring

Proactive — less mispredictions

Reduces DRAM usage & opens up pareto-optimal
tradeoffs b/w capacity and lifetime



Evaluation methodology

15 Applications - DaCapo, GraphChi, SpecJBB
Medium-end server platform

Different inputs for production and advice

Jikes RVM



Emulation on NUMA hardware

App
Jikes RVM
OS

16 hardware threads and 20 MB L3
Use Intel pcm-memory.x to get per-socket write rate .



Lifetime versus DRAM capacity

Z 0.8

2 0.7 @ Pibb2005
= CGZ « AKG-W

v 0.6 .'

g 0.5 T .

§ 0.4 = 51

S 0.3

?) 100 150 200 250

(o

DRAM capacity in MB

Crystal Gazer provides Pareto-optimal choices



PCM Writes

mWKG-W mDens ®EFreq mS-Dens M S-Freq

< 1.0
o)
c =
SG)
2 x
= 9 0.5
E 0%
@)
(o
0.0
\S) Q O Q )
\b%&b .\3}% Q(’\\ <</(\>\Qc) Q\\O

To optimize for lifetime, use Freq & survivors

24



Execution time

mWKG-W mDens ®EFreq mS-Dens M S-Freq

< 1.5

G

2 30%
= 1.0

S

= 0.5

)

£

= 0.0

o X LS Q@ S
b Q{,&b TSRO ¥

sz?o o

To optimize for performance, use Freq or Dens

25



DRAM capacity

mWKG-W mDens ®EFreq mS-Dens M S-Freq

75
=
Q
© =
o é 50
"5 )
X 25
0
\S) Q O Q )
\b%&b .\3}% Q(’\\ <</(\J\\Q(‘) Q\\O

To optimize for DRAM usage, use Dens

26



Write rates

m KG-N m KG-W m S-Dens | S-Freq
800

600

400

200

Write rate in MB/s

0

Write-rationing GC makes PCM practical

27



Profile-driven write-rationing GC

Hybrid memory is inevitable - -

Allocation site a good predictor of writes

Static approach beats dynamic
— Better performance
— Reduced DRAM capacity
— Better PCM lifetime




OS to limit PCM writes

DRAM PCM

Coarse-grained data movement is inefficient

Page migrations hurt performance and lifetime



Obiject placement

-~ ~

DRAM

PCM

22



Obiject placement




Proteus: Workload-adaptive | &

write-rationing GC

Prpblem: continuous workload

(V)]
S Aggressively Limit
E Minimlze writes
S DRAM use Limlt wrttes
O Limit DRAM use
('l
Writer Writer

Proteus: encode advice for different scenarios in
object headers .
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Hybrid DRAM-PCM memory
&) More GB/S$ with Phase Change Memory

& Higher latency and low endurance

DRAM PCM




Managing DRAM-PCM memory

Mitigate PCM wear-out
Bridge the DRAM-PCM latency gap

DRAM PCM




Managing DRAM-PCM memory

Write-Rationing
Garbage Collection
i !: d!;hgn! for Hybrid Memory
Operating System
Coarse-grained
pages |KB

bwﬂi

icfof O&O
g@% JGaOJ

Garbage collection
Proactive ©
Fine-grained
objects ooo0o0

GC manages DRAI\/I-Phrid better than OS
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Managing DRAM-PCM memory

Write-Rationing
Garbage Collection
i !: d!;hgn! for Hybrid Memory
Operating System
Coarse-grained
pages |KB

bwﬂi

icfof O&O
g@% JGaOJ

Garbage collection
Proactive ©
Fine-grained
objects ooo0o0

GC manages DRAI\/I-Phrid better than OS

128



Pros/cons of simulating DRAM-PCM
Gain insight

What triggered the writeback to memory?
Study parameter sensitivity

Slow process
Page Rank over twitter = hours versus months!

Incomplete model
Missing OS or proprietary hardware features

129



Emulation for hybrid memory

Multi-socket NUMA for emulating | "5
DRAM-PCM hybrid memory B 1o

Sk inside
T — |

Fast evaluation of emerging workloads
Several co-running BIG graph analytic
applications written in Java

130



Existing emulation platforms

Focus is to evaluate explicit memory
management in C/C++

Focus is to model the latency of PCM



Contribution: Emulation platform

DRAM-PCM emulation for managed 4,
applications Java

Comparison with Sniper using
write-rationing garbage collectors

132



Contribution: Analysis of PCM writes

PCM writes and write rates
C++ versus Java
Impact of multiprogramming
Classic versus emerging applications

Is PCM practical as main memory?



Outline

Heap management
Kingsguard collectors

Comparison with simulation

Write analysis



Outline

Heap management
Kingsguard collectors

Comparison with simulation

Write analysis

10



DRAM heap management

Heap Tracker vailable O occupied
L I IIfIL

HEAP BEGIN HEAP END

Heap Organization

o h

11



DRAM heap management

Heap Tracker vailable O occupied
L I IIfIL

HEAP BEGIN HEAP END

Heap Organization

ursery
- i I ;‘
arbage Collection Services NG

Phy5|cal Memory -7




DRAM-PCM heap management

JVM uses mbind() to inform the OS to map
a space in DRAM or PCM

Anything else the JVM should do?

Next: Sanity check with a DRAM nursery
and PCM mature

12



DRAM-PCM heap management

Heap Tracker iva”ab'e O occupied

HEAP_BEGIN

Heap Organization ':

ursery




DRAM-PCM heap management

Heap Tracker vailable O occupied
__L_ DEEE O

HEAP_END

HEAP_BEGIN PCM _BEGIN

Heap Organization

o k




DRAM-PCM heap management

Heap Tracker vailable O occupied
2ol S

HEAP_END

HEAP_BEGIN PCM_BEGIN.--~

-

Heap Organization

ursery




DRAM-PCM heap management

Options

Map/unmap pages in physical memory
whenever space grows/shrinks

Two free lists V

14



DRAM-PCM heap management

vailable O occupied

Heap Tracker

DRAM_BEGIN PCM_BEGIN PCM_END

Heap Organization

- h

Physical Memory




Outline

Heap management
Kingsguard collectors

Comparison with simulation

Write analysis

16



Kingsguard-Nursery (KG-N)
Write-rationing GC: concentrate writes in DRAM

70% 22%

of writes to 2% of objects

3 h




Kingsguard-Writers (KG-W)

KG-W monitors writes in a DRAM observer space

Trades off performance for better endurance

3 “ h




Emulation setup

App/Monitor Monitor: Intel pcm-memory.x
Jikes RVM to get per-socket write rate

OS

19



Emulation versus simulation

PCM write reduction with KG-N and KG-W
versus PCM-Only

Execution time increase with KG-W versus KG-N

No OS in simulation
Faithfully model emulator

20



Reduction in PCM writes with KG-N
and KG-W versus PCM-Only

Kingsguard collectors limit PCM writes

KG-W much better than KG-N
Simulation Emulation

KG-N L7, 8/
KG-W 627 647,

21



Increase in execution time with
KG-W versus KG-N

KG-W is slower than KG-N because it monitors
writes to objects

Simulation Emulation
KG-W  +77 +107%

22



Graph workload evaluation

GraphChi: Analyze BIG graphs on a single machine
Both Java and C++ implementations

Page Rank and Connected Components
LiveJournal social network

ALS Factorization
Netflix challenge

23



Graph apps write more than DaCapo

Billions of vertices = Billions of objects

Normalized PCM write

rate

8

6 -

4 -

P

Page
Rank

PCM-Only

Connected
Components Factorization

24



Java writes more to PCM than C++

Normalized

PCM writes

M Java

3.5

3
2.5 O&A

) N\
1.5 -

1 - . C++
0.5 -

O |

Page Connected ALS
Rank Components Factorization

25



Java writes more to PCM than C++

Reasons
Higher allocation volume -
Copying between heap spaces
Zeroing to provide memory safety



Java writes more to PCM than C++

MW Java

3.5
s g > AllocatiQp
E 'E 2.5 . B
E 2 5 hlhb\/ Q
= S \ Q(/
§ 8 1.5 ] N @/\

1 —= T p———
0.5 - -

PagBage Cor(imeutedted ALRALS
RanRank CorGpomententbadtactratmbion
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Writes increase super-linearly due to
multiprogramming with PCM-Only

8

Normalized PCM writes

Degree of multiprogramming
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Writes increase linearly due to
multiprogramming with KG-W

8

Normalized PCM writes
D
7~
()

Degree of multiprogramming
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PCM-Only is not practical as main
memory

B PCM-Only
c 400
o
c 300
23
s 2 200 MB/s
S
O 100

DaCapo Pjbb GraphChi
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Conclusions

Across the stack emulation of
hybrid memory

Similar outcomes with different
evaluation methods

More research to make PCM
practical as main memory

31
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Emulating and Evaluating Hybrid
Memory for Managed Languages on
NUMA Hardware
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DRAM is facing challenges
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Phase change memory
reset to amorphous

Endurance ®

" OF
GB/$ © 2
Latency ® 7] d,crystalline
-
)

time
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Hybrid DRAM-PCM memory

DRAM PCM

Mitigate PCM wear-out
Bridge the DRAM-PCM latency gap




Abstractions for hybrid memory

CoO4Y
> Microsoft'l ] & <
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Abstractions for hybrid memory

C @ 4\¥
O O
g% 80 Garbage Collection

O’0%0
| p :

Virtual Memory r ;:|
= | DRAM Cache

=
N

= Wear Level
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Hybrid memory evaluation

PageRank over Twitter network graph

GraphChi on commodity hardware

User-level simulation with
mechanistic models

Emulation on NUMA machine
J&  Priorart: latency v C/C++ V4

167



DRAM heap management

Heap Tracking (Chunks)

HEAP_BEGIN HEAP_END

MegaCity m = new MegaCity(*"Madison”)

168



DRAM heap management

Heap Tracking (Chunks)

AEAP_BEGIN
Heap Organization (Spaces)

OS Memory (pages)

Physical Memory (frames)

HEAP_END

169



DRAM heap management

Heap Tracking (Chunks)

AEAP BEGIN
Heap Organization (Spaces)

OS Memory (pages)

HEAP_END

HEE EEE HEE
Physical Memory (frames)
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DRAM heap management

Heap Tracking (Chunks)

AEAP BEGIN
Heap Organization (Spaces)

OS Memory (pages) gc/

Physical Memory (frames)

HEAP_END
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DRAM heap management

Heap Tracking (Chunks)

AEAP BEGIN
Heap Organization (Spaces)

OS Memory (pages) gc/

Physical Memory (frames)

HEAP_END
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DRAM heap management

Heap Tracking (Chunks)

AEAP BEGIN
Heap Organization (Spaces)

OS Memory (pages) gc/

Physical Memory (frames)

HEAP_END




DRAM heap management

Heap Tracking (Chunks)

AEAP BEGIN
Heap Organization (Spaces)

OS Memory (pages) gc/

Physical Memory (frames)

HEAP_END




DRAM heap management

Heap Tracking (Chunks)

AEAP BEGIN
Heap Organization (Spaces)

OS Memory (pages) gc/

Physical Memory (frames)

HEAP_END
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DRAM heap management

Heap Tracking (Chunks)

HEAP_BEGIN _ HEAP_END
Heap Organization (Spaces)

OS Memory (pages)

Physical Memory (frames)
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DRAM heap management

Free List (Chunks)

HEAP_BEGIN HEAP_END
Heap Spaces

Virtual Memory (pages)

gy IEf o em
A0 EEE BEE ===

Physical Memory (frames)




NUMA platform for emulation



Validation against Sniper



More PCM writes with Java than C++



Co-running apps increase PCM writes



Graph apps write more than DaCapo



PCM-Only is impractical



KG-N and KG-W limit PCM writes



Takeaways

Monitoring heaps at a fine granularity .., !
IS promising Lle T

vy
st
i -

Write-rationing garbage collection makeZ Lf,
PCM practical as main memory

—

Similar conclusion with 3 distinct
methods




Heap management in DRAM-Only

Free List (Chunks)

S, DRAM PCM

Virtual Memory (pages)

;v 88 SE% SEEEE  BExfm nmm a
s OEES DEOE OEE pEm EEE EEE NN EEE NEE EEE

Physical M y (f




Hardware platform



How to evaluate hybrid memory?

Simulation Emulation

Speed Slow Native
Diversity Low High
Full System X Vv

Realistic X v
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How to evaluate hybrid memory?

Simulation Emulation



OS to limit PCM writes

DRAM PCM

Drawbacks
Coarse granularity
Costly page migrations
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Managed runtime to limit PCM writes

observer
I
PLDI
ﬁ Philadelphia 2018 PC |V|

Our work uses garbage collection to keep highly
written objects in DRAM o



Distribution of writes in GC runtime

nursery mature

-”N\_
192

70%

of writes



Distribution of writes in GC runtime

nursery mature
70% 22%

of writes to 2% of objects
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Contribution
Write-Rationing Garbage Collectors
mature

\_

GC




Two write-rationing garbage collectors
Kingsguard- Kingsguard-
Nursery Writers
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Heap organization in DRAIVI

196



KG-N Kingsguard-Nursery
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KG-W Kingsguard-Writers

E i
—— H P
Y
AN SAV
/et

observer '\

PCM

198



Observing writes

Object L
format references primitives
Write barrier sets a bit on object writes

Write barrier configurations
Observe references
Observe references and primitives
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Two extra optimizations in KG-W

Large object optimization

Allocate selected large objects in DRAM
Metadata optimization

Allocate PCM metadata in DRAV



Large object optimization

nursery large

\_'_l

% of remaining Monitor PCM write rate
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Metadata optimization
Mature Meta

Full-heap GC: Mark live PCM objects
KG-W: Keep mark bits of PCM objects in DRAIM
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Metadata optimization
Mature Meta

Full-heap GC: Mark live PCM objects
KG-W: Keep mark bits of PCM objects in DRAIM
address _mark_bit = start_ meta + idx_pcm_obj
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DRAM metadata overhead
Mature Meta

Smallest object size is 4 B: 25% overhead
Common case size is > 16 B: 6.25% overhead
KG-W: Only use side meta for objects > 16 B

204



Evaluation Methodology

Hardware Software

(1) Simulator Jikes research

(2) Real hardware virtual machine

Java applications




Real hardware measurements

Use write barriers to count object writes
Applications: 12 DaCapo, 3 GraphChi, and Pjbb
Configurations

KG-N : 4 MB nursery

KG-W: 4 MB nursery, 8 MB observer

KG-N: 12 MB nursery



Reduction in PCM writes
Baseline: PCM-Only

m KG-N KG-N-12 m KG-W
c 100
c O
o E 75
0 =2
= 50
O O
(a
X 25
0
\S o e
’c)Q Qio (* (’c)%
036 6( P»“e

KG-W reduces 95% of writes to PCM
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Simulation with Sniper

7 DaCapo applications @ié?%o
4 cores, 1 MB per core LLC >>|

Scale simulated rates to a 32 core machine
using trends from real hw



Memory systems

Homogeneous
32 GB DRAM
32 GB PCM

Hybrid
1 GB DRAM
32 GB PCM

PCM parameters
4X read latency
4X write energy
10 M writes/cell
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PCM lifetimes

B PCM-Only m KG-N m KG-W

40

30

20

Lifetime in years

10

0

Q
\©o
N\:b

PCM alone is not practical
PCM lasts more than 10 years with KG-W 210



PCM write rates

20 m PCM-Only m KG-N m KG-W

20

IZL.»LJ_lLJ_ L

Werite rate in GB/s

KG-N reduces write rate by 6X over PCM-Only
KG-W reduces write rate by 2X over KG-N 11



EDP reduction compared to DRAM

B PCM-Only m KG-N m KG-W

80

40

0

-40

% reduction in EDP

4 cores Higher is better
-80
¢ QO > %
~\:§b Q(Q ? (06 \{9@ ’bﬁo S < VQ& Q)\O’b Q)
A\

EDP : Energy Delay Product
KG-W has 35% better EDP than DRAM-Only



Emulation on NUMA hardware
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Use Intel per monitor to measure writes
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PCM write rates on NUMA hardware

. m PCM-Only m KG-N m KG-W
.5

1.0
0.5 I
0.0

DaCapo Pjbb GraphChi

Werite rate in GB/s

KG-N reduces write rate by 3.8X over PCM-Only
KG-W reduces write rate by 1.9X over KG-N
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Crystal Gazer: Profile-Driven
Write-Rationing Garbage Collection for
Hybrid I\/Iemorles .
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Takeaways

Monitoring heaps at a fine granularity .., !
IS promising Lle T

vy
st
i -

Write-rationing garbage collection makeZ Lf,
PCM practical as main memory

—

Similar conclusion with 3 distinct
methods







Exploiting Intel Optane Persistent
Memory for Full Text Search

Shoaib Akram
ANU, Canberra
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Full text search is ubiquitous
Web search (GO gle b Bmg

Retall

Social media
Qa

219



Search = Indexing + Query eval

Indexing builds an {word1 — document-list
iInverted index word2 — document-list

Query evaluation Google
searches for words

Google Search I'm Feeling Lucky

220



Challenge: I/0 intensity

Writing & merging partial indices on
storage takes up 40% of exec time




Challenge: DRAM capacity

NVMe SSD violates real
time response constraint

oob: 1.09s 2-tel’m AND,

99% tail latency
DRAM:|70 ms

& Data growth outpaces DRAM scaling

Data volume — 2X
DRAM GB/$ — 20%

milliseconds

222



Today: Give up real time, or give
up cost efficiency

Looking forward

Reduce |I/O overhead

Find a fresh memory scaling roadmap

223



Persistent memory (PM)

4X denser than DRAM
L oad/store access
Non-volatile

S
e




Contribution: PM Search Engine

Exploiting PM for building/storing indices
— Memory, storage, universal roles
— Fine-grained crash consistent recovery

Extensive PM evaluation vs DRAM/SSD
— Indexing perf, scalabllity, bottlenecks
— Talil latency of query workloads




Rest of the talk

Building an index
Exploiting PM

Evaluation



Step 1: Building the hash table

postiqg lists

terms
[ A | [
the | —
anu ——— —
bl e —
bla —m —
blah — —

' When the table

is full — Step 2

Each box is a posting. It contains

-~ -

ﬁ
7S
4

terms

\, the document id plus meta-data,
L/ e.g., frequency and position of

10



Step 2: Sorting the hash table

terlms postiqg lists
| |
anu

bl
bla
blah

NN
l

the




Step 3: Flushing the hash table

terlms

|

postiqg lists

| |

anu

ﬁ

ﬁ

bl

~
~
~
~
~
~
~
\\
~

ﬁ

bla

~

ﬁ

ﬁ

blah

ﬁ

the

ﬁ

[ 111

ﬁ

ﬁ

-’
-’
,ﬂ'
,"
,f
-

Flushing results in large amounts of sequentail 1/0



Step 4: Merging segments

Merging segments is crucia

for fast query evaluation

\

anu bl bla
blah the
anu bl bla
blah the

Merging results in large amounts of read/write 1/0O

13



Index = Segment + Dictionary

term |offset anu bl
anu 0 blah the
bl 6

Segment: Sequentially sorted postings on storage

Dictionary: To find posting lists in segments, indexers use a
key-value store, such as, Berkeley DB



Different ways to exploit PM

Hash table, DRAM — PM
Partial segments, SSD — PM

Merged segments, SSD — PM
Dictionary, SSD — PM

15



PM configurations for indexing

Name of Placement of Table, Postings, and Dictionary @ole of )
Configuration | H Table Partial St Merged St Dict Optane PM
stock DRAM SSD SSD SSD none
table-pm PM SSD SSD SSD main memory
pm-only PM PM PM PM universal
“hybrid  |[DRAM PM  PM | PM | storage |
hybrid+ DRAM PM PM SSD \Storage )
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PM configurations for indexing

Name of Placement of Table, Postings, and Dictionary @ole of )
Configuration | H Table Partial St Merged St Dict Optane PM
stock DRAM SSD SSD SSD none
teblepm __|PM_____SSD_____SSD SSD____|main memory]
pm-only PM PM PM PM universal
hybrid DRAM PM PM PM storage
hybrid+ DRAM PM PM SSD \Storage )
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PM configurations for indexing

Name of Placement of Table, Postings, and Dictionary @ole of )
Configuration | H Table Partial St Merged St Dict Optane PM
stock DRAM SSD SSD SSD none
table-pm PM SSD SSD SSD main memory
pm-only_____|PM_____PM_____ M PM____ | universal __
{ hybric DRAM  PM PM PM storage |
| hybrid-+ DRAM  PM PM SSD|  \storage )
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Crash consistent indexing

Crash consistent segment flushing
— Use pmem_persist(segment)
— Track progress (doclds)

Crash consistent merging
— [racking progress is tricky
— Detalls of “logging” in the paper

17



Baseline Engine

MosSBENCH

P S e a rc hy Silas Boyd-Wickizer, Austin T. Clements, Yandong Mao, Aleksey Pesterev, M. Frans Kaashoek, Robert Morris, Nickolai Zeldovich mosbench@pdos

MosBENCH is a set of application benchmarks designed to measure scalability of operating systems. It consists of applications that
previous work has shown not to scale well on Linux and applications that are designed for parallel execution and are kernel
intensive. The applications and workloads are chosen to stress important parts of many kernel components.

Native, fast, and flexible

Easily integrated with Intel PMDK

18



Indexing Methodology

Dataset and measurement
— Wikipedia English (DRAM)
— Execution time
— 1 GB HT per core, up to 32 cores

PM setup
— |Interleaved, local, EXT4+DAX
— pmemkv dictionary github.com/pmem/pmemkv

19



Experimental Platform

2 TB PM
0.5 TB DRAM
1.5 TB NVMe Optane SSD

20



Indexing perf with one core

Normalized Indexing Time

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

B stock
hybrid

¥ table-pm
B hybrid+

® pm-only
cc-hybrid
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PM as main/only is 30% slower

Normalized Indexing Time

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

M stock
hybrid

30%

¥ table-pm
B hybrid+

® pm-only
cc-hybrid

21



Normalized Indexing Time

Is 8% slower than stock

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

M stock
hybrid

3O%i I I

¥ table-pm H pm-only
B hybrid+ cc-hybrid

8% slower
than stock

21



Hybrid+ is best, 20% over stock

B stock ¥ table-pm H pm-only
hybrid B hybrid+ cc-hybrid
o 1.0
£
= 0.9
) 0.8
S 0.7
X .
e 0.6 20%
i
s 0.5
N 0.4
©
e 0.3
O 0.2
< 0.1

21



Hybrid+ is best, pmkv costs 28%

B stock ¥ table-pm H pm-only
hybrid B hybrid+ cc-hybrid

1.0

0.9

0.8

0.7 o)
07 |28%
0.5

0.4

0.3

0.2

0.1

0.0

Normalized Indexing Time

21



Crash consistency costs 10%

B stock ¥ table-pm H pm-only
hybrid B hybrid+ cc-hybrid

o 1.0
£

= 0.9
) 0.8
C

= 0.7
()

'C_g 0.6
s 0.5
N 0.4
©

e 0.3
O 0.2
< 0.1

21



syscall - mmap is mainly why
hybrid+ beats stock

Use perf counters to
P B|oad M Store Rest

observe Load/Store 0 1.5
stalls the multicore §
incurs O 1.0
D
N 0.5
(qv)
S
5 0.0
zZ
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Indexing scalability

—stock ----table-pm ---pm-only @ hybrid+

®
N\
D

Normalized Indexing Time
OCOO00000000
O—=-NWPLOIOONOOOO

Core Count

23



Hybrid+ Incurs an increase In
memory stalls (32 cores)

Use perf counters to

B|oad M Store

observe Load/Store 0 1.5
stalls the multicore §
incurs O 1.0

D

N 0.5

(qv)

S

S 0.0

zZ

Rest

24



Crash consistent indexing with 32
cores improves perf

Baseline: No

32 cores: Invalidated .
pmem_persist()

cache lines become . 15

replacement candidates, % 10

improving LLC hit rate B .
c O
T B I
a0 —
S -
E 5 S’
< 1 4 8 16 32

Core Count
25



Query Evaluation Methodology

Tail latency of 100K concurrent queries
- 1 term
- AND 2 terms

See paper for details
—> Term selection, variation, ranking

26



Tall latency of single-term queries
DRAM = PM = SSD

*°DRAM +PM  +SSD

Accgssmg a smgle. 2 3000 .
posting listresultsina < o509 4
. &)
sequential access $ 2000 3
pattern g 1500 :
T 1000
500
0
1 50 99

% of Requests

27



Taill latency of 2-term AND
Region 1: DRAM < SSD < PM

*°DRAM +PM  +SSD

50% Shortest queries @

. . = o0 :
Advancing two lists = 40 PM is slow for
leads to random S concurrent &
accesses S 20 random

TTS
= 10
0
1 50 99

% of Requests

28



Taill latency of 2-term AND
Region 2: DRAM < PM < SSD

*DRAM s+PM +SSD
1500 'pCle SSD interface is  —
000 Slower than PM DDR—T;’

50% Longest queries D
These queries access
the SSD media

Tail Latency (ms

i
3X
500 ;’ :"’
0
1 50 99

% of Requests

28



More analysis in the paper

Indexing: updates

Query eval: access patterns
Breakdowns: sort vs merge, load vs store
pmemkvV: volatile map, binding

Other: OS caching impacts

29



Key Takeaways

PM does not scale well for write I/0 bound
indexing

PM shines for the latency-critical
query evaluation

30



Contribution: PM Search Engine

Exploiting PM for building/storing indices
— Memory, storage, universal roles
— Fine-grained crash consistent recovery

Extensive PM evaluation vs DRAM/SSD
— Indexing perf, scalabllity, bottlenecks
— Talil latency of query workloads

31
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Analytics frameworks need large heaps

Analytics frameworks use managed runtimes
To process large amounts of data they need large heaps

Large heaps are expensive (DRAM) and increase GC cost!
DRAM is expensive in dollar cost, energy, and power
GC requires expensive scans over large heaps

For these reasons analytics frameworks avoid large heaps
s apoche_ ™
Slignite

ASPLOS 2023 259




Common practice: Move objects off-heap

Off-heap storage in this context means I other M s/D
8000
Off DRAM — on fast storage _
Unmanaged — no GC scans é
£

Off-heap demands serialization/deserialization (S/D) -

Execut

Transform object closure into byte streams

S/D is significant problem!
o/ -+ PageRank Linear Logistic
Takes up to 47% in Spark workloads Regression Regression
Not everything is serializable! Spark Workloads

Off-heap can be unsafe

ASPLOS 2023 260



Eliminate S/D: Extend the heap over storage

__________________________________________________________________________

FrameWNk Today OpendDK naively uses mmap()
' JVM |
% BI&  GCcostincreases dramatically!

ManagedHeap () OO O OO0 Random accesses over storage

O O O O O O O O Q O O (HJ:)j:clz;c(;:?rr;\fpf?Cction over storage
0O000000 000 ™

_________________________________________________________________________

File-backed mmap()
DRAM (0S Page Cache)

00000000

ASPLOS 2023 261




TeraHeap: Eliminate S/D without increasing GC cost

___________________________________________________________________

AL L L — . Provides the illusion of a single heap

' JVM :

m’ m’ Avoid GC scans over the device heap

‘| Regular Heap (H1) Second Heap (H2)

Custom management for the device heap
Lazy GC due to high storage capacity
Minimizing I/0 traffic
DRAM I File-backed mmap()
0S Page Cache
'

Ej

ASPLOS 2023 262




Outline

Motivation

Design
ldentify objects for moving to H2
Reclaim objects in HZ2 without GC scans
Update cross-heap references with low I/0 cost

Evaluation

Conclusions

ASPLOS 2023 YASKS



Move off-heap objects to H2

h2_move(label)

JVM
Regular Heap (H1)

M Goal: Find large clusters of objects with similar lifetime

Frameworks move partitions off-heap

Frameworks have eventually immutable objects

| TeraHeap provides two hints
‘ h2_mark_root(): Mark key object with a label
| h2_move(): Advice when to move objects to H2

Move objects to HZ during GC

___________________________________

GC propagates the label from key object to all reachable
ASPLOS 2023 264




Can move objects to H2 eagerly

rgooooeeeepooo-oeee——-——-. /] Goal: Reduce memory pressure in H1

Increased memory pressure before transfer hint?
Regular Heap (H1)

Eager transfers to H2 — decrease memory pressure in HT

Use a high threshold to identify memory pressure
Bypass transfer hint

Move only a few marked objects to H2

Reduce read-modify-write operations in storage

___________________________________

ASPLOS 2023 265



Leverage storage capacity to free objects lazily

' Regular Heap (H1) Second Heap (H2)

Region 0| Region 1

Region 2|:

JVM Metadata (DRAM)

Reg

ion2 |

Region 0 | RegionT
List List

Live

Region 1

____________________________________________________

__________________________________________________________

ASPLOS 2023

List

. M Goal: Reclaim dead objects without GC scans

TeraHeap organizes H2 in fixed-sized regions
Objects with same label in the same region
Reclaim whole regions (bulk free)

Per region DRAM metadata (avoid object access)
Live bit — region liveness
Dependency list — cross-region references

GC identifies H2 live regions
Free regions by zeroing regions metadata

266



Preserve correctness of object liveness

i:;’;:lar Heap (H1) Second Heap (H2) . M Goal: Track H2 to H1references with low 1/0 cost
| Region 0| Reg|on 1 |Regipn 2
O . '® . Card table(byte array in DRAM)
@) \‘. \O One byte per fixed-size H2 segments

Large segments to reduce card table size

JVM Metadata (DRAM)

H2 Card Table ! Categorize cards to scan less segments

Based on GC type, we scan specific segments

____________________________________________________

__________________________________________________________

ASPLOS 2023 267



Testbed

We implement TeraHeap in OpendDK 8 (we now support OpendDK 17)
Extend Parallel Scavenge garbage collector
Extend interpreter, Cl1and C2(JIT) compilers to support updates in H2

We use one servers with 2 TB NVMe SSD and 256 GB DRAM
Also, we evaluate TeraHeap with NVM

® Real world applications
Spark with SparkBench suite
Giraph with Graphalytics benchmark suite

Limit DRAM capacity using cgroups
ASPLOS 2023 268




TeraHeap outperforms native Spark by up to 54%

other [MMinorGC [EIMajorcc S/D+1/0

1.0

e Teraheap reduces S/D overhead
£
S 0.75 - : : .
% S/Din TeraHeap is due to shuffling
L1 0.50
©
N
=
£0.25
O
=

0

Native TH |Native TH |Native TH

PageRank Linear Logistic
Regression Regression

ASPLOS 2023 269



TeraHeap outperforms native Giraph by up to 28%

other MMinorGC .Major GC

1.0
& Main performance improvement
= P P
%075 Reduction of major GC (up to 50%)
3) - Off-heap reduces heap pressure temporarily
° Giraph processes objects only on-heap
N
© Increases heap pressure — Increased
£0.25 GC!
= !
=Z

0

Native TH ‘Native TH ‘Native TH
PageRank  Connected Shortest
Components Path

ASPLOS 2023 270




Normalized Execution Time

TeraHeap reduces DRAM requirements

] Native .TeraHeap

Provide direct access to HZ objects

0.75 Outperforms native Spark using 4.6x less DRAM
0.50 Outperforms native Giraph using 1.2x less DBRAM
0.25
0
48 80 144 32 | 85 74
DRAM(GB)

Spark - PageRank  Giraph PageRank
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Key Takeaways

Analytics frameworks deal with large datasets using S/D

TeraHeap provides the illusion of single managed heap
No S/D and no GC scans in the device heap for freeing space

Improves native Spark and Giraph performance by up to 54% and 28%
TeraHeap requires up to 4.6x less DRAM

Future work
Eliminate hints by dynamically determining which objects to move to H2

ASPLOS 2023 272



TeraHeap: Reducing Memory Pressure
for Managed Big Data Frameworks

github.com/CARV-ICS-FORTH/teraheap

We thankfully acknowledge the support of the European Commision projects
EVOLVE (GA No 825061) and Eupex (GA No 101033975)
lacovos G. Kolokasis is supported by the Meta Research PhD Fellowship (2022 - 2024)
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DVFS Performance Prediction

o
w0
N\~
COG\Q many
applications here

performance 2

memory bound

frequency =2

Sample at all DVFS states ®
Estimate performance ©



Managed Multithreaded Applications
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Background

Base Frequency Target Frequency
. * r = Base/Target
cpu e S>S*y
X ie AN * NS = No change

° tb sum Of ° target (S*r) + NS
ase

—Scaling (S) * Not simple
—Non-Scaling (NS)~—/™—" " OO0+MLP




State of the Art

* CRIT estimates non-scaling by

—Measuring critical path through loads
—lgnoring store operations

R. Miftakhutdinov, E. Ebrahimi, and Y. N. Patt. Predicting

performance impact of DVFS for realistic memory
systems. MICRO, 2012.



T0

T1

Multithreaded CRIT (M+CRIT)
Base Frequency ===y Target Frequency
2X

— — — — — — — — — — —

time =2

critical

05
time =2

1

Use CRIT to identify each thread’s non-scaling

High error for multithreaded Java!



Sources of Inaccuracy in M+CRIT

—— busy ---- wait store burst

0
)
’

o S o
gz(lt“\'“ ““““ == > % ————————————

Application CollectiorU Application

Scaling or non-scaling?



Sources of Inaccuracy in M+CRIT

—— busy ---- wait store burst

0p——BbER—F-------- DE
ik DEP ) @

appl R '
P e - — 4

gc

5 L D G )

Application Collection Application

®
>

Scaling or non-scaling?



Our Contribution

—— busy ---- wait store burst

app0
appl

X

gcl

N\

a0RT
Application Collection Application

Scaling or non-scaling?




Our Contribution

DEP+BURST

A New DVFS Performance Predictor



Example: Inter-thread Dependences

T0 T1
while (cond®) while (condl)
e 92
} } :
Acquirellock) cquire@ock) walt ---

crft sec() ..
Release(\lock)

crt_sec() ..
Release(@ock)
ooy

Intercept synchronization activity
Reconstruct execution at target frequency



ldentifying Synchronization Epochs

Base Frequency ===y Target Frequency
TO T1

|

1
loop

Epoch
#1

loop
|

wait()

()

Epoch
#2

|
crit sec
wait

wake()

Epoch
#3

(crit_sec()
|

time



ldentifying Synchronization Epochs

Base Frequency ===y Target Frequency
TO T1

Epoch
— #1

Epoch
#2

Epoch
#3

time




ldentifying Synchronization Epochs

Base Frequency ===y Target Frequency
TO T1

Epoch
. |10 |10

Epoch
#2 |10

Epoch

 #3
time

10 10
= 30 units




Reconstruction at Target Frequency

Base Frequency ===y Target Frequency

T0

T1

Epoch
#1

Epoch
#2

Epoch

 #3
time

10

10

10

10

TO T1
#1 l5 7
|5




Reconstruction at Target Frequency

Base Frequency === Target Frequency

0O T1 2X TO

Epoch I % F}

4, |10 |10 .
Epoch i I

#2 |10 | #3 @ I5

=17 units

Epoch =» Longest running in an epoch

#3 |10 10 + Zero book-keeping

time

- Not accurate



Reconstruction at Target Frequency

Base Frequency ===y Target Frequency
TO T1 2X TO

T1
#1
fPoch 170 |10 % F}
| 5?:—@
Epoch : |
#2 |10 i #3 @ I5

=€;hnhs
Epoch 10 =% Critical thread across epochs
#3 |10 + Accurate

e =units - Book-keeping




DEP: Summary
Sync Activity

* Sync Epochs

Decompose
[ P e Perf Counters

EReconstruct Epochs @ Tet.

Aggregate}

Predicted Total Time



Our Contribution

DEP+BURST

A New DVFS Performance Predictor



Our Contribution

DEP+BURST

A New DVFS Performance Predictor



Store Bursts

* Reasons
—Zero initialization
—Copying collectors
* Modeling Steps
—Track how long the store queue is full
—Add to the non-scaling component



Methodology

Jikes RVM 3.1.2

Production collector (Immix)
fesearch # GC threads =2

SO0 i ptya] e 2x min. heap

ivrpra machine
01

Version 6.0

4

@@@0 . . . * Seven multithreaded benchmarks

4 cores, 1.0 GHz =2 4.0 GHz
3-level cache hierarchy

LLC fixed to 1.5 GHz

DVFS settings for 22 nm Haswell

* Four application threads



Accuracy

®m M+CRIT = M+CRIT+BURST DEP+BURST

30

27%

20

10

% average absolute error

2.0 GHz 3.0 GHz 4.0 GHz

Baseline Frequency = 1.0 GHz




Energy Manager

tolerable performance_degradation

l

4 GHz

New Freql

New Freqg?2

Quantum
5 ms




Energy Savings

MW Performance Degradation = Energy Reduction

25

299

Memory Intensive Compute Intensive



Conclusions

DEP+BURST: First predictor that accounts for

— Application and service threads

— Synchronization = inter-thread dependencies

— Store bursts

High accuracy

— Less than 10% estimation error for seven Java bmarks.
Negligible hardware cost

— One extra performance counter

— Minor book-keeping across epochs

Demonstrated energy savings

— 20 % avg. for a 10% slowdown (mem-intensive Java apps.)



DVFS PERFORMANCE PREDICTION FOR
MANAGED MULTITHREADED
APPLICATIONS

Thank You !

Shoaib.Akram@elis.UGent.be
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Managed Language Runtimes

on Heterogeneous Hardware:

Optimizations for Performance, Efficiency
and Lifetime Improvement

Programming Across the Stack Workshop
Invited Talk by
Shoaib Akram, Ghent University



Circa 2000, hardware features were
fixed at design time

304



As time passed, efficiency became a

Billions of watts in data centre power
More search gueries on mobiles
End of Dennard scaling

305



Hardware designers turned to
erX|b|I|ty for | |mprovmg efficiency

DDR4 DIMM




Event counters became the key to
help OS configure hardware

Understand the behaviour of

undividual Ehreads and ac{a!zv&

\\\\\\\\

G N o
< P '..:?“/‘ N
<
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What about software evolution?

Multithreading

: ( Microsoft’
Language runtimes m
= e

JavaScript

308



Prior Work in making software
aware of hardware heterogeneity

<> Mostly for native applications

<> No input from language runtime or user



Managed languages are popular due
to their productivity advantage

The 2015 Top Ten Programming Languages,
spectrum.ieee.org. 310



Research activity # |: Behavior of
managed multithreaded environs

<> Scheduling user vs. service threads
< Understanding the impact of synchronization

OO0 4 OO
00 T OO0

User Services



Research activity #2: Include the
runtime for better policy making

<~ Is any service thread critical to performance!?
< Is it better to allocate object X in memory
type T

Managed Language Runtime Layer
C Py 6” A
A -



Research activity #2: Include the
runtime for better policy making

<~ Is any service thread critical to performance!?

<>

COS Y4B DY

Managed Language Runtime Layer

Sorg A

Bridge the application-0$ qap




Agenda

Scheduling concurrent collection on
heterogeneous multicores

Predicting the performance impact of
DVFS for managed multithreaded
applications

Using the garbage collector to guide
object placement in hybrid memory



ACM Transactions on Architecture and Code Optimization (TACO), 2016
Boosting the Priority of
Garbage:

Scheduling Collection on Heterogeneous
Multicore Processors

Shoaib Akram, Jennifer B. Sartor, Kenzo Van Craeynest,
Wim Heirman, Lieven Eeckhout
Ghent University, Belgium
Shoaib.Akram@UGent.be

N

I VRIJE - t l &
UNIVERSITEIT
GHENT INAERS (inte )

UNIVERSITY



Garbage collector automatically
reclaims memory for reuse

CPU usage is not negligible
Concurrent collectors fit for multicores

316



Heterogeneous multicores consist
of different core types

...........................
..............................

........
----------------

rformance

Exynox 8890
U IARM Cortex? 4x ARM Cortex A53

Oy Jarm clcme@rder 4x Exynos M|

Power

317



Which core type to run application
versus the collector threads?

Application

Out-of-Order

() G

In-Order

Performance

Power



What is the performance impact of
running collector on LITTLE core!?

Application —————————————
Allocates new objects

=
|dentifies live objects

.
2. Reclaims memory

Collector



Running GC on LITTLE degrades
performance of some applications
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Running GC on LITTLE degrades
performance of some applications
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Running GC on LITTLE degrades
performance of some applications

G C~Crikical

322
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Why does the execution time of
GC critical applications increase?

Application

Collector
(slow)

Out of Memory

J\/
*’ aused!!!
Allocates new objécts

Serial collection

v

' |. Identifies live objects
2. Reclaims memory
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What happens if we give GC a fair
share of the big core!

G C-Unerikical

BB 2 LITTLE
B 1 LITTLE

oG _ [ 3LITTLE

O

uolnonpa.
S} UOI}NDBXa 9,

-15 -



G C~Crikical
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>
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G C-Unerikical
©

BB 2 LITTLE
B 1 LITTLE

O

uolnonpa.
S} UOI}NDBXa 9,

oG _ [ 3LITTLE

What happens if we give GC a fair
share of the big core!
15 -
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What happens if we give GC a fair

share of the big core!
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What happens if we give GC a fair

share of the big core!

N
S
J
8
- |
8
p
J
¢
J
gl
S
J
8
- |
8
p
J
wuw S
EEE <
— e —]
M N C
(@) O (@)
N "
uononpal

aWI} UOIINOSXd

%

329



G C~Crikical

=

O

(qv]

@,

O

)

P -

00 ~- -~ [

o 2 ¢ So

3 w = Y

Y— A7,

= oo U $-

w = 0 va.d

- O LW S
U Er Q==

o - EEE

nDal P o@a e

g5 Y

I=J | _

E5yg v

W |Mna uolonpal
7

S} UOI}NDBXa 9,

-15 -

330



Our Contribution

GC-Criticality-Aware
Scheduler

Dynamically adjusts # big core cycles
given to application versus GC



GC-Criticality-Aware Scheduler
Starting point is gc-on-LITTLE

' App alone! time

app

g¢ |
Schd ——, gc-on-LITTLE

p—— .



GC-Criticality-Aware Scheduler
gc-on-LITTLE to gc-fair

' App alone! time

app

g¢ |
Schd ——, gc-on-LITTLE

p—— .



GC-Criticality-Aware Scheduler
gc-on-LITTLE to gc-fair

JVM signals the scheduler

App alone! Stop ! Concurrent! Scan | time

app
gc

schd ——, gc-on-LITTLE o, gc-fair

p——

Stop pause to do book-keeping ighored
Scan stop pause: |VM signals scheduler
gc-fair gives equal priority to GC and app

334



GC-Criticality-Aware Scheduler
Boost States
Stop scan pauses observed even with gc-fair

m How many quanta scheduled on the BIG core?

gc-on-LITTLE First GC thread = 0, Second GC thread =0
gc-fair First GC thread = 1, Second GC thread =1

Boost the priority of garbage
Give GC more consecutive quanta on big

mm How many quanta scheduled on the BIG core?

gc-boost PO First GC thread = 1, Second GC thread =1
< gc-boost P1 First GC thread = 1, Second GC thread = 2

Degrade boost state when no longer critical

335



GC-Criticality-Aware Scheduler
gc-boost:PO to gc-on-LITTLE

JVM signals the scheduler

. App alone | Stop | Concurrent | App alone  time

app :
gc |

Schd._> gc-boclast:PO.__——> gc-on-LITTLE

|
>l | |
| | |
| | |
| | |

If no scan pause in state PO, go to gc-on-LITTLE
Can configure # zero stop scan intervals before
returning to gc-on-LITTLE



Summary of gc-criticality-aware
scheduling

. JVM detects GC Ciriticality during
execution

2. JVM communicates gc criticality to the
scheduler

3. Scheduler adapts # big core cycles given to
GC



Experimental Setup

ﬁéz,!;;Zgi%ffif???%éaﬂz;;57 é&uﬁméZmawﬁf;azﬁz

< How to tackle non-determinism?

Research

wea < CMS with heap 2x of minimum

>>| <> Model different architectures
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GC-Criticality-Aware scheduler is

better performing vis-a-vis gc-fair
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GC-Criticality-Aware scheduler is

better performing vis-a-vis gc-fair

B gc-boost

B gc-fair
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GC-Criticality-Aware scheduler is

better performing vis-a-vis gc-fair

B gc-fair

B gc-boost
Ac
S

20

o O O O
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1
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Where does the performance
advantage of big core comes from!?

Cycles per instruction
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Application

Collector



Where does the performance
advantage of big core comes from!?

LITTLE

RN
N
|

Cycles per instruction

Application Collector

0.8 1
0.4 I

mL2 Miss

mL1-D Miss

L1-I

m Base
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Where does the performance
advantage of big core comes from!?

LITTLE
O
5 mL2 Miss
@ 0.8 - |
= mL1-D Miss
8‘ L1-I
B 04 -
O m Base
>
O

_Application Collector

344



Where does the performance
advantage of big core comes from!?

L

(@) —_\
oo N
| |

O
AN
|

Cycles per instruction

TTLE

mL2 Miss

mL1-D Miss

L1-I

m Base

Application Collector
Instruction-level parattet&sm ©

Memorjwtevei. p&rattei.i,sm ®
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Lowering the frequency of LITTLE
core makes GC even more critical

B Similar freq
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Lowering the frequency of LITTLE
core makes GC even more critical

B Similar freq

B 1 GHz slower

25
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gc-boost provides greater gains for

architectures with more big cores
16

, N I [
1B 2B 3B

% execution time
reduction
00
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A few takeaway messages

(1) Multithreaded applications could be GC critical

(2) GC benefits from big core features

(3) JVM support for scheduling GC improves efficiency




