
Shoaib Akram
shoaib.akram@anu.edu.au

What is considered systems
research?

2

The Transformation Hierarchy
§ We use a systematic transformation

hierarchy to solve complex problems
§ From English to movement of electrons

§ The “system of transformations” is built to
satisfy “user constraints”
§ Device size, cost, energy, reliability

§ What is systems research?
§ How to enable the transformation?
§ Qualified answer: How best to enable an

optimal design point in a complex space
§ Show by building a real system

Problem
Algorithm, PL

Compilers and runtimes
Operating systems

ISAs
Microarchitecture

VLSI circuits
Physics

What is a computer system?
§ Sequence of transformations

§ Hardware + software

§ Compute + storage

§ CPU, memory, and disk à computer

§ Network of computers à Datacenter

§ Network of datacenters à Cloud

§ Network of CPU and accelerators à system on a chip

Problem
Algorithm, PL

Compilers and runtimes
Operating systems

ISAs
Microarchitecture

VLSI circuits
Physics

Two Historical Examples
§ Two examples

§ Storage and file systems

§ Processor microarchitecture

Fast File System (FFS)
§ Unix OS is introduced. Ken Thompson wrote the first filesystem
§ Simple and elegant (?)
§ Unfortunately, performance was terrible
§ Kirk McKusick measured it could utilize only 2% of disk bandwidth
§ Problem: Filesystem was written as if the underlying device was a random

access memory (like physical memory)

§ But, disk is not a random access device
§ It has mechanical components. Arm movement. Rotational disk
§ Sequential accesses are faster than random access
§ A group at Berkeley wrote the fast “disk-aware” filesystem
§ Key constraint: Not enough details of the device are exposed to the system
§ Key realization: Exploit device organization/physics whatever is known about it.

“Keep related stuff together”

Superblock Inodes Data

§ 1960s and 70s: It is established that the programming model of a Von Neuman
machine is intuitive for the programmers

§ And that such machines are practical to build on large scale
§ Problem: One operation per clock cycle in program order (as specified by the

Von Neuman model) is very restrictive
§ Need to concurrently execute many instructions in one clock cycle to gain

higher performance
§ Solution: (a marvel of human ingenuity)

§ Key constraint: Instructions have dependences, so how can one find conc.
§ Key realization: With some effort one can find independent insts. in programs
§ Dynamic scheduling: Fetch instruction in order, but execute instructions

whenever their operands are ready (dataflow machine with seq. model)
§ Control Data and IBM the early innovators
§ Improved over many decades (branch prediction, precise interrupts)

Out of Order Execution

Lessons
§ FFS was possible because the team that built it realized that it is critical to

look one layer below the OS abstraction layer
§ They realized early on that device physics shapes the system
§ They also realized the need for good abstraction, so they did not change

what was exposed to the users of FFS
§ Modern file systems still use the same file system API

§ OOO was possible because early systems researchers at CDC and IBM
studied program behavior and program interaction with machines
§ They were innovating at many layers: ISA, OS, microarchitecture,

compilers, design, PL, algorithms, management
§ In this specific instance, a different debate emerged. OOO in hardware is

too complex. Why can’t compiler do it? Compiler/uARCH both innovated.

§ Venues
§ ISCA, MICRO, ASPLOS, HPCA

§ Not much in traditional OOO processor microarchitecture
§ Memory systems: caching, coherence, consistency, multicore
§ DRAM reliability
§ Mitigating security vulnerabilities
§ Processing in memory
§ New storage technologies
§ ML accelerators
§ ML for systems

Computer Architecture Ideas

§ Venues
§ ASPLOS, OSDI, SOSP

§ True OS papers: Very hard to find

§ Garbage collection
§ Data-intensive systems
§ NoSQL stores
§ Persistent memory programming models
§ Compute in NICs
§ Computational storage

Operating Systems Ideas

Why should you consider it?
§ Key enabler of new and “emerging” applications

§ Millisecond-scale real-time analytics over social media

§ Broad applicability
§ 1% improvement in GPU throughput for ML

§ Building systems is fun although “challenging”

§ Lots of room to work at different abstraction layers
§ Same problem can have a variety of solutions: Compiler vs. managed

runtime vs. OS vs. hardware

§ Can help produce better algorithms, think new problems, move technology

Ongoing Research

12

Motivation
§ Lot of pressure on physical memory (DRAM)

§ Technology is not scaling as fast as it used to

§ But applications demand more memory

§ Key realization

§ Data is expensive to cache and store for fast delivery

§ Meta-data is more expensive

§ Counter-intuitive. Why?

Example 1: Search Engines
§ Key data structure that enable fast search

§ Inverted index

§ Think of a massive hash table

§ Every time we create a new website or tweet,
something gets added to the hash table

§ Hash table placement and query response
time

m
illi

se
co

nd
s SSD: 1.5 s

DRAM: 70 ms

2-term AND,
99% tail latency

Example 2: ML Analytics
§ Iterative computation until a condition is met

§ Each iteration produces a transformation of a massive dataset

§ Two options
§ Recompute the transformation whenever needed (possibly in

every transformation)
§ Cache it in memory or disk

§ Cache capacity to avoid recomputation 10X of actual dataset!

Some Ongoing Projects
§ Huge heaps without increasing GC overhead

§ Rethinking software stacks for emerging memories
§ Search engines, databases, caches

§ Accelerators for proteomics discovery

§ Secure and practical memory systems

§ Storing and querying very large indices in memory

Aim of a research project

17

§ I will give you five keywords to post in your workspace
§ Remember them like the stages of instruction processing in a basic CPU pipeline

§ Aim of a research project

§ Ask a question worth answering
§ Find an answer that you can support with good reasons
§ Find good data that you can use as reliable evidence to support your reasons
§ Draft an argument that makes a good case for your answers
§ Revise the draft until reader would think you meet the first four goals
§ It is important to realize how best to utilize your mentor for each step

§ Hindsight: Wished had engaged mentor more for Question, Argument, Revise

What is the aim of a research project?

WritebackMemoryExecuteDecodeFetch

ReviseArgumentDataAnswerQuestion

§ Three step process

1) Topic: I am working on X (history of ANU school of computing)
 2) Question: because I want to find out Y (why students love it so much)
 3) Significance: so I can help others understand Z (how can ANU SOCO
 practices help other schools in the region attract more students)

1) Topic: I am working on machine learning analytics
 2) Question: because I want to find out how it performs on modern GPUs
 3) Significance: so I can help others understand how to architect GPUs to

 accelerate ML analytics

Formula for Questions

Why is the question worth asking?

• In systems research, we build artifacts, so typically, we use the understanding to build stuff (there is an additional step)
• We cannot build stuff without “understanding.” That is ANTI-RESEARCH

• So, if you sit in a talk where someone begins with, “I built X.” Ask: “What informs the design and architecture of X?”
Do we understand the behavior of existing systems that do X? Why did you built X? Who benefits? Why does X work?

§ Three step process

1) Topic: I am working on memory management
 2) Question: because I want to find out the overhead of malloc() on Linux
 3) Significance: so I can help others understand how to build high-
 performance memory allocators
 4) Finally, I use the understanding to build kangaroomalloc()

1) Topic: I am working on branch prediction
 2) Question: because I want to find out how it behaves for Java workloads
 3) Significance: so I can help others understand how to build new branch

 predictors for object-oriented languages like Java
 4) Finally, I use the understanding to build kangaroopredictor()

More Example Questions

§ I propose kangaroopredictor
§ It exhibits 2% more accuracy for Java workloads
§ It uses state of the art machine learning
§ Trust me: It beats everything else!

Wrong

“The purpose of computing is insight, not numbers.”
 - Richard Hamming (Turing Award)

https://www.youtube.com/watch?v=a1zDuOPkMSw&t=1086s&ab_channel=securitylectures

Hamming, “You and Your Research”

§ I propose kangaroopredictor
§ It exhibits 2% more accuracy for Java workloads
§ It uses state of the art machine learning
§ Trust me: It beats everything else

Wrong

“What transfers is insight, not academic design, not
performance numbers.”
 - Bill Dally § In January 2009 he was appointed chief scientist of Nvidia. He worked full-time

at Nvidia, while supervising about 12 of his graduate students at Stanford.

§ In 2009, he was elected to the National Academy of Engineering for
contributions to the design of high-performance interconnect networks and
parallel computer architectures.

§ He received the 2010 ACM/IEEE Eckert–Mauchly Award for "outstanding
contributions to the architecture of interconnection networks and parallel
computers."

https://en.wikipedia.org/wiki/Nvidia
https://en.wikipedia.org/wiki/National_Academy_of_Engineering
https://en.wikipedia.org/wiki/Eckert%E2%80%93Mauchly_Award

§ We find that frequent jumps in object-oriented code due to
§ X, Y, Z, ...

§ result in high misprediction rates
§ 20% of all mispredictions are due to X
§ 30% due to Y
§ 10% due to Z

§ One could rewrite code to eliminate X, Y, Z, but that requires extra
programming effort. One could add a compiler optimization pass

§ We propose kangaroopredictor that tackles X, Y, and Z to do better
prediction in hardware

§ Note: The excitement is NO LONGER in kangaroopredictor (it’s now the
last bullet) but in “understanding” the behavior of existing predictors and
more importantly, interaction b/w OO programs and hardware

Right!

Good systems problems can be solved in
different ways. At different layers. Ok to do
it based on your philosophy. But don’t
dismiss other approaches. Sometimes there
is no precedent to solve problem at a
specific layer. Good research community
enables a variety of solutions.

§ Instruction set architectures
§ RISC had clear advantages. MIPS a great ISA. MIPS R10K a great microarchitecture
§ CISC (Intel x86) became the de facto in high performance computing (some history)
§ Technology (physics) trends eventually betrayed. CISC decoding consumes too much

power. (Even hardware speculation is being questioned (Meltdown). VLIW return?)
§ Today: RISC-V emerged as a popular open-source alternative

§ Memory management
§ Predominant opinion as late as early 2000s: Programmers should manually manage

memory for high-performance and memory-efficient code
§ C vs. languages with automatic memory managers (aka garbage collection)
§ Memory became cheaper. Technology scaling lead to high density
§ Programs became too complex (programming burden)
§ Java became the standard for developing major data processing applications

§ Search engines, analytics, graph processing, 90% of Apache software

Good ideas cannot be dismissed

§ You should have a theory to answer the question
§ Current predictors are inaccurate because of large # methods
§ Current allocators incur high latency because applications

allocate objects with variable sizes leading to fragmentation
§ Current CPUs are memory-bound for ML workloads

§ Testing the hypothesis
§ Representative applications (benchmarks)
§ Real machine or simulator
§ Gain insight into program-machine interaction

Importance of Hypothesis

Testing Hypothesis

0

0.4

0.8

1.2

C
yc

le
s

pe
r i

ns
tru

ct
io

n L3 Miss

L2 Miss

L1-D Miss

L1-I

Base

LITTLE

Application Collector

§ CPI stack: Breaks down execution
time into different components
at the microarchitectural level

nursery mature
GC

22%
to 2% of objects

70%
of writes

27

Another Example

§ Must pick important problems. Ask Why frequently

§ Questions that someone cares about

§ Hopefully, an entire community

§ Enable new applications

§ Keep an eye on where technology will go

§ Aim high!

Picking Problems

§ Try to contribute something novel as an undergrad
§ You learn a lot. Research could lead to impact.

Aim High

Best paper candidate, honors project
under review at VLDB, research project, top conference

§ Good abstractions are powerful. In fact, this is why computer systems work. (And why I start every semester with: Alice
has an idea to save the world. How can she orchestrate the movement of electrons with English. She cannot. She uses?)

§ Yet, many great ideas come from understanding the interaction between abstraction layers

§ Insight is key. Go to class for insight. Read (critically) for insight. Do research for insight. Communicate to gain and give
insight. If something “just works,” and you do not understand WHY, it’s useless. (When it breaks, you can’t fix it.)

§ Good engineering in systems research is necessary, but the goal of research is to communicate new insights. No one is
interested in how you fixed bugs in your code. (Analogy: Fertilizer is critical for growing pretty roses, but we don’t
decorate our house with fertilizer. Try it and no guests will come again. Same with research, tell people about “boring”
engineering details, and they won’t listen to you again. YET must decide how much they need to know.)

§ Designing new systems is somewhat of an art. (Technology “pull,” and application “push.”) Must learn from prior
art/design, i.e., precedents (COMP2300/COMP2310/Microarch.). Must use creativity to adapt to new changing
technology trends and new workloads. Two things systems researcher must live with: physics (speed of light, how small
a transistor can me made, and still be used reliably, yield of an X mm2 chip) and society (big data due to microblogging,
social media, and online payments; use of AI/ML; purchasing power; Netflix vs. renting video; cloud vs. in-house)

§ Device physics shapes the system
§ Early filesystem research. Moore’s law and its impact on systems. Persistent memory. Distributed systems. What

enabled multi-layer software stacks (think Scala)? What threatens them now? Shift to multicore. Disk vs. Flash

Some Tenets of Systems Research

§ Know the precedents (what techniques worked in prior systems)?
§ Caching, prediction, ISA additions, speculation, write batching, sequential log, tracing

collector, write barrier, spin lock, interrupt, MMU

§ Know the “key” tradeoffs
§ Compression saves storage capacity but decompression incurs high latency
§ RISC ISA simplifies circuit complexity, but results in more instructions per C/C++

statement (pressure on instruction memory)
§ Disk is cheap but its latency is high
§ SRAM is fast but consumes more power

§ Know the “critical” metrics
§ Performance, power, energy, reliability, security, extendibility, observability,

manageability, cost, scalability, throughput, tail latency

Systems Architect’s Toolbox: Design Side

§ Holistic view of system
§ Good comprehension of CPU, memory, and disk datapath. Byte-addressable vs. block

addressable. Virtual memory. Virtualizing CPU.

§ Good programming skills in one or more languages and ability to pick a new language
quickly

§ Good systems building skills (compiling the Linux kernel, using GCC/GDB, writing Makefile,
hacking OpenJDK)

§ Data structures and algorithms

§ Performance debugging
§ Monitoring low-level processor performance
§ I/O traffic monitoring tools

Engineering Side

Writing and Presentation

33

Advice on Writing 👍 👍

👎
Advice by “prescription”
“Trust me.” Do X. Do Y

§ Advice based on “insight”
§ What is the purpose of writing?
§ What do humans consider good writing?
§ Why one writing style is more powerful than other?
§ How “attention mechanics” work? Invoking stress

Advice on Writing
§ Passive voice is best avoided
§ Don’t end a sentence with preposition
§ And many more prescriptions

§ Analogy: temporary relief, no pinpointing the real
source of pain, no diagnosis

§ Reality
§ Passive serves an important role
§ OK to end with prep.

§ Key realization in style community: Passive and preps.
alone don’t put people off. There are more fundamental
issues to be dealt with. And they relate to a system of
style that must be understood

Advice on Writing
👍

Advice based on “insight”

Advice on Writing
👍

Advice based on “insight”

The First Two Principles of Clear Writing
Readers are likely to feel that they are reading prose that is
dear and direct when

(1) the subjects of the sentences name the cast of characters,
and

(2) the verbs that go with those subjects name the crucial actions
those characters are part of.

Presenting Research Outcomes
👍

Advice based on “insight”

One main idea per slide

Few bullets

Good titles (some examples later)

Figures clearly annotated

One slide to the next (story telling)

My students create a slide deck. I can write an entire
paper without bugging them too much by just following the
slide deck

Latex and Overleaf
Learn Latex

Start collaborating with your advisor on
Overleaf

He will help you stay focused

Systems Papers

40

§ Architecture

§ Runtimes for PL

§ Memory management

§ Distributed databases

§ Graph analytics

§ Compilers

§ Many more areas ...

Systems Papers: One Classification

Systems Papers: Another Classification
§ New “systems idea”

§ New mechanism
§ New policy

§ Performance analysis and evaluation
§ Evaluate existing/emerging hardware

§ Specific features
§ Full system (holistic)

§ Evaluate existing/emerging workloads
§ Specific phases
§ Full workload

§ Analytical and mechanistic modeling
§ Enable new insights (by fast exploration)
§ Enable new policies that are rigorously understood (contrast with “ML magic”)

Mechanism vs. Policy
§ Sharing a CPU among many users

§ Mechanism: Changing PCuser1 to PCuser2 and other actions to switch to executing process
from user 2

§ Policy: When to switch from one user to the next, which user to give priority, cloud vs.
desktop

§ Using disk as an extension of main memory (swapping)
§ Mechanism: Copying data from memory to disk, physical hardware changes, pins, wires,

interrupts, system calls, all that jazz
§ Policy: When to initiate a transfer from memory to disk (when memory is critically low,

when memory is 80% of capacity, ...)

§ Offloading computation to a GPU
§ Mechanism: Introducing GPU in the system, setting up CPU-GPU communication, etc
§ Policy: What to offload? When to offload? If the GPU is busy, what is the policy to

offload another waiting task?

Importance of Performance Evaluation
§ Why do we evaluate performance?

§ To understand if we can build better systems for a specific workload
§ To understand if we are enabling needless features
§ To understand how can we improve the system

§ Hardware is available
§ Do a real system study

§ Hardware is not available
§ Use simulation (e.g., model the behavior of the system in C++)

§ Cycle accurate (very time consuming) vs. mechanistic model (fast but not
very accurate)

§ Use emulation
§ Emulate the “unavailable system” using an existing system

Example of Emulation
§ NUMA to model a hybrid DRAM-PCM system

§ Frequency scaling to model a big.LITTLE system

CPU CPU

App
OS

Example of Simulation
§ Sniper multicore simulator we use in Microarchitecture Course

Importance of Modeling
§ Gain insight

§ How does a system work?
§ A high-level model of an out-of-order processor

Importance of Modeling
§ Quickly explore large design space in early stage of design

§ Simulators are extremely slow

§ In early stages, only need to know relative performance

§ To filter out parameter settings (for example, cache size) that do not
show good trends

New Idea Papers
§ Let’s look at some top-tier idea papers from my recent work

§ TeraHeap: Reducing Memory Pressure in Managed Big Data Frameworks
§ ASPLOS 2023

§ Write-Rationing Garbage Collection for Hybrid Memories
§ PLDI 2019

§ SPIRIT: Scalable and Persistent On-Heap Indices in Hybrid Memory for Real-Time Search
§ Under Review

What’s in a title?
§ Succinct. To the point. Stress the key contribution. Good verbs. Good adjectives.
§ Typically include software aspect and a hardware aspect
§ Find a “decent” & memorable name. But if you can’t, don’t force a name, or have one

that is pointless

§ TeraHeap: Reducing Memory Pressure in Managed Big Data Frameworks
§ ASPLOS 2023

§ Write-Rationing Garbage Collection for Hybrid Memories
§ PLDI 2019

§ SPIRIT: Scalable and Persistent On-Heap Indices in Hybrid Memory for Real-Time Search
§ Under Review

Other Papers & Presentations
§ Let’s see some other papers

§ Let’s see some presentations

Shoaib Akram (Ghent), Jennifer B. Sartor (Ghent and VUB),
Kathryn S. Mckinley (Google), and Lieven Eeckhout (Ghent)

Shoaib.Akram@UGent.be

54

DRAM is facing challenges

Scalability
Cost
Energy
Reliability

55

Phase change memory

te
m

pe
ra

tu
re

set to crystalline

read

reset to amorphous

time

Persistent
Byte addressable
High latency
Low endurance

56

0

1

2

Xala
n

Pmd
Pmd.S

Lu
se

arch
Lu

.Fi
x

Antlr
Bloat

Avg

Li
fe

tim
e

in
 y

ea
rs

PCM only is not practical

32 GB PCM with hardware wear-levelling

57

Hybrid DRAM-PCM memory

Challenges
 Bridging the DRAM-PCM latency gap
 Mitigating PCM wear-out

Speed
Endurance

Energy
Capacity

DRAM PCM

58

Prior art in mitigating PCM wear-out

OS write partitioning
 Keep highly written pages in DRAM
 Coarse granularity
 Costly page migrations

Hardware wear-leveling
 Spread writes out across PCM
 32 GB PCM lasts only two years!

59

Garbage collection for hybrid memory

This work uses GC to keep highly written
objects in DRAM

nursery mature

observer

PCM

DRAM mature

nursery mature
GC

70%
of writes

60

Distribution of writes in GC heaps

nursery mature
GC

22%
to 2% of objects

70%
of writes

61

Distribution of writes in GC heaps

mature
GC

Write-Rationing Garbage Collectors
Contribution

DRAM PCM
62

Kingsguard-
Nursery

Kingsguard-
Writers

63

Two write-rationing garbage collectors

64

Heap organization in DRAM
nursery mature largeGC

DRAM

65

mature largeGC

DRAM PCM

KG-N Kingsguard-Nursery
nursery

66

KG-W Kingsguard-Writers

mature large

observer

PCM

mature largeDRAM

nursery

67

Monitoring writes

On a write to an object
 Write barrier sets a bit in header

Write barrier configurations
 Monitor references
 Monitor references and primitives

References PrimitivesHeader

68

Two additional optimizations

Large object optimization
 Selectively allocate large objects in DRAM
Metadata optimization
 Place mark bits of PCM objects in DRAM

nursery

½ of remaining
nursery

large

Monitor PCM write rate
to turn opt on/off

69

Large object optimization

70

Results
(1) Measurements on real hardware
(2) Simulation

Java applications

Jikes research virtual machine

71

Real hardware methodology
Use write barriers to count object writes

Configurations
 KG-N : 4 MB nursery
 KG-W: 4 MB nursery, 8 MB observer
 KG-N : 12 MB nursery

Applications: 12 DaCapo, 3 GraphChi, and Pjbb

0

25

50

75

100

DaCapo
Pjbb

GraphChi
Average

%
 re

du
ct

io
n

in

PC
M

 w
rit

es

KG-N KG-N-12 KG-W

72

Reduction in PCM writes

KG-W reduces 95% of writes to PCM

Baseline: PCM-Only

73

Simulation methodology

Measure lifetime, energy, and
execution time in simulator

7 DaCapo applications

Memory systems
Homogeneous

32 GB DRAM
32 GB PCM

PCM parameters
4X read latency
4X write energy
10 M writes/cellHybrid

1 GB DRAM
32 GB PCM

74

75

PCM lifetimes

0

10

20

30

40

Xala
n

Pmd
Pmd.S

Lu
se

arch
Lu

.Fi
x

Antlr
Bloat

Avg

Li
fe

tim
e

in
 y

ea
rs

PCM-Only KG-N KG-W

9
17

PCM alone is not practical
PCM lasts more than 10 years with KG-W

76

PCM write rates

0

10

20

30

40

Xala
n

Pmd
Pmd.S

Lu
se

arch
Lu

.Fi
x

Antlr
Bloat

Ave
rage

W
rit

e
ra

te
 in

 G
B/

s PCM-Only KG-N KG-W

KG-N reduces write rate by 6X over PCM-Only
KG-W reduces write rate by 2X over KG-N

77

EDP reduction compared to DRAM

-80

-40

0

40

80

Xala
n

Pmd
Pmd.S

Lu
se

arch
Lu

.Fi
x

Antlr
Bloat

Ave
rage

%
 re

du
ct

io
n

in
 E

DP

PCM-Only KG-N KG-W

EDP : Energy Delay Product
KG-W has 35% better EDP than DRAM-Only

Higher is better

78

In the paper
Execution time results

Breakdown of KG-W overheads

Object demographics

Comparison with OS approach

Monitor fine grained write behavior
of objects

79

Write rationing garbage collection

Exploit managed runtimes to organize
objects in hybrid memory

Kingsguard collectors improve
PCM lifetime

80

Shoaib Akram (Ghent), Jennifer B. Sartor (Ghent and VUB),
Kathryn S. McKinley (Google), and Lieven Eeckhout (Ghent)

Shoaib.Akram@UGent.be

1

DRAM → Charge storage a scaling limitation

Source: WSTS, IC Insights
0.6

0.7

0.8

0.9

1

Pr
ic

e/
G

b
($

)

Jan’17 Jan’18

Main memory capacity expansion

Manufacturing
complexity makes
DRAM pricing
volatile

2

te
m

pe
ra

tu
re

set to crystalline

reset to amorphous

time

More Gb/$
Byte addressable
Latency → DRAM
🙁 Write endurance

Phase change memory (PCM)

3

DRAM PCM
PCM alone can wear out in a few months time

Speed
Endurance

Capacity

Hybrid DRAM-PCM memory

This work → Use DRAM to limit PCM writes

5

Write-Rationing Garbage Collection for Hybrid Memories, PLDI, 2018

GC understands memory semantics
A GC approach is finer grained
than OS approaches

Managed
Runtime

Operating
System

Hardware

Application

Garbage Collection to limit
PCM writes

6

mature large

observer

PCM

mature largeDRAM

nursery

KG-W Kingsguard-Writers

7

KG-W drawbacks

Overhead of dynamic monitoring

Limited time window to predict write intensity
→ mispredictions

Excessive & fixed DRAM consumption

8

Crystal Gazer

Predicting highly written objects
without a DRAM observer

9

a = new Object()
b = new Object()
c = new Object()
d = new Object()

Allocation site as a write predictor

9

a = new Object()
b = new Object()
c = new Object()
d = new Object()

Uniform distribution 🙁

Allocation site as a write predictor

9

Uniform distribution 🙁

a = new Object()
b = new Object()
c = new Object()
d = new Object()

Skewed distribution 🙂

a = new Object()
b = new Object()
c = new Object()
d = new_dram Object()

Allocation site as a write predictor

10

0

25

50

75

100

0 50 100 150

%
 m

at
ur

e
ob

je
ct

s

Sites sorted by writes

Writes Volume

A few sites capture majority of the writes

Write distribution by allocation site

Pjbb2005

11

Application
Profiling

Advice
Generation

Bytecode
Compilation

a = new Object()
…
b = new_dram Object()

a = new Object()
…
b = new Object()

Object
Placement

Crystal Gazer overview

12

Application profiling (offline)
Goal: Generate a write intensity trace

Object
Identifier # Writes # Bytes

Allocation
site

O1 0 4 A() + 10
O2 0 4 A() + 10
O3 2048 4 A() + 10
O4 2048 4096 B() + 4

13

Tracking alloc sites and # writes

Compiler inserts code to compute allocation sites

payloadheader

Object layout

writes
alloc site

Write barrier tracks # writes to each object

14

Application Profiling

Minimize full-heap collections → 3 GB heap

Nursery size a balance b/w size of trace
and mature object coverage

2.4X slowdown across 15+ applications

15

Advice generation
Goal: Generate <alloc-site, advice> pairs

advice → DRAM or PCM
 input is a write-intensity trace

Two heuristics to classify allocation sites as
DRAM or PCM

16

Alloc site classification heuristics
Freq: A threshold % of objects from a site get more
than a threshold # writes → DRAM

🙂 Aggressively limits PCM writes

 🙁 No distinction based on object size

17

Alloc site classification heuristics

Dens: A threshold % of objects from a site have
more than a threshold write density → DRAM

Write density → Ratio of # writes to object size

18

Classification thresholds
Homogeneity threshold → 1%

Frequency threshold → 1

Density threshold → 1

19

Classification examples

Object
Identifier # Writes # Bytes

Allocation
site

O1 0 4 A() + 10
O2 0 4 A() + 10
O3 128 4 A() + 10
O4 128 4096 B() + 4

Frequency threshold = 1
PCM writes = ?, DRAM bytes = ?

19

Classification examples

Object
Identifier # Writes # Bytes

Allocation
site

O1 0 4 A() + 10
O2 0 4 A() + 10
O3 128 4 A() + 10
O4 128 4096 B() + 4

Frequency threshold = 1
PCM writes = ?, DRAM bytes = ?

→
→

19

Classification examples

Object
Identifier # Writes # Bytes

Allocation
site

O1 0 4 A() + 10
O2 0 4 A() + 10
O3 128 4 A() + 10
O4 128 4096 B() + 4

Frequency threshold = 1
PCM writes = 0/256, DRAM bytes = 5008

→
→

19

Classification examples

Object
Identifier # Writes # Bytes

Allocation
site

O1 0 4 A() + 10
O2 0 4 A() + 10
O3 128 4 A() + 10
O4 128 4096 B() + 4

Density threshold = 1
PCM writes = ?, DRAM bytes = ?

20

Classification examples

Object
Identifier # Writes # Bytes

Allocation
site

O1 0 4 A() + 10
O2 0 4 A() + 10
O3 128 4 A() + 10
O4 128 4096 B() + 4

Density threshold = 1
PCM writes = ?, DRAM bytes = ?

→ 32

20

Classification examples

Object
Identifier # Writes # Bytes

Allocation
site

O1 0 4 A() + 10
O2 0 4 A() + 10
O3 128 4 A() + 10
O4 128 4096 B() + 4

Density threshold = 1
PCM writes = ?, DRAM bytes = ?

→ 32
→ < 1

20

Classification examples

Object
Identifier # Writes # Bytes

Allocation
site

O1 0 4 A() + 10
O2 0 4 A() + 10
O3 128 4 A() + 10
O4 128 4096 B() + 4

Density threshold = 1
PCM writes = 128/256, DRAM bytes = 12

→ 32
→ < 1

21

Bytecode compilation

Introduce a new bytecode → new_dram()

Bytecode rewriter modifies DRAM sites to use
new_dram()

22

Object placement

new_dram() → Set a bit in the object header

GC → Inspect the bit on nursery collection to
copy object in DRAM or PCM

22

Object placement

mature large

PCM

mature largeDRAM

nursery
🧐

Is marked
highly written? ✓

7

Key features of Crystal Gazer

Eliminate overheads of dynamic monitoring

Proactive → less mispredictions

Reduces DRAM usage & opens up pareto-optimal
tradeoffs b/w capacity and lifetime

23

Evaluation methodology

15 Applications → DaCapo, GraphChi, SpecJBB

Medium-end server platform

Different inputs for production and advice

Jikes RVM

23

Emulation on NUMA hardware

CPU CPU

16 hardware threads and 20 MB L3
Use Intel pcm-memory.x to get per-socket write rate

✗

Jikes RVM
App

OS

28

0.3

0.4

0.5

0.6

0.7

0.8

100 150 200 250

PC
M

 w
rit

es
 re

la
tiv

e
to

 K
G

-N

DRAM capacity in MB

Crystal Gazer provides Pareto-optimal choices

Pjbb2005
CGZ KG-W

Lifetime versus DRAM capacity

0.0

0.5

1.0
Hsq

ldb
Xala

n
Pmd

Ec
lip

se

Pjbb

Pag
e R

an
k

Conn Comp
ALS

 Fa
ct

Ave
rage

PC
M

 w
rit

es
 n

or
m

.
to

 K
G

-N

KG-W Dens Freq S-Dens S-Freq

PCM Writes

To optimize for lifetime, use Freq & survivors
24

30%

0.0

0.5

1.0

1.5
Hsq

ldb
Xala

n
Pmd

Ec
lip

se

Pjbb

Pag
e R

an
k

Conn Comp
ALS

 Fa
ct

Ave
rage

Ex
ec

. t
im

e
no

rm
. t

o
KG

-N

KG-W Dens Freq S-Dens S-Freq

Execution time

To optimize for performance, use Freq or Dens
25

30% 8%

0

25

50

75
Hsq

ldb
Xala

n
Pmd

Ec
lip

se

Pjbb

Pag
e R

an
k

Conn Comp
ALS

 Fa
ct

Ave
rage

%
 o

f h
ea

p
in

DR

AM

KG-W Dens Freq S-Dens S-Freq

DRAM capacity

To optimize for DRAM usage, use Dens
26

68%

0

200

400

600

800
Hsq

ldb
Xala

n
Pmd

Ec
lip

se

Pjbb

Pag
e R

an
k

Conn Comp
ALS

 Fa
ct

Ave
rage

W
rit

e
ra

te
 in

 M
B/

s KG-N KG-W S-Dens S-Freq

Write rates

Write-rationing GC makes PCM practical
27

29

Profile-driven write-rationing GC
Hybrid memory is inevitable

Allocation site a good predictor of writes

Static approach beats dynamic
 → Better performance
 → Reduced DRAM capacity
 → Better PCM lifetime

DRAM PCM

4

Coarse-grained data movement is inefficient
Page migrations hurt performance and lifetime

DRAM PCM

OS to limit PCM writes

22

Object placement

mature large

observer

PCM

mature largeDRAM

nursery

22

Object placement

mature large

PCM

mature largeDRAM

nursery

23

Proteus: Workload-adaptive
write-rationing GC

Proteus: encode advice for different scenarios in
object headers

Writer

Problem: continuous workload

Writer

PC
M

 w
rit

es

Aggressively limit
writes

Limit writes
Limit DRAM use

Minimize
DRAM use

124

125

Hybrid DRAM-PCM memory

Speed
Endurance

Capacity

DRAM PCM

🙂 More GB/$ with Phase Change Memory
🙁 Higher latency and low endurance

Mitigate PCM wear-out
Bridge the DRAM-PCM latency gap

126

Managing DRAM-PCM memory

Speed
Endurance

Capacity

DRAM PCM

127

Operating System
 Coarse-grained
 pages KB

Garbage collection
 Proactive J
 Fine-grained
 objects

KB KB KB

Write-Rationing
Garbage Collection
for Hybrid Memory

Managing DRAM-PCM memory

GC manages DRAM-PCM hybrid better than OS

128

Operating System
 Coarse-grained
 pages KB

Garbage collection
 Proactive J
 Fine-grained
 objects

KB KB KB

Write-Rationing
Garbage Collection
for Hybrid Memory

Managing DRAM-PCM memory

GC manages DRAM-PCM hybrid better than OS

129

Study parameter sensitivity

Gain insight
 What triggered the writeback to memory?

Slow process
 Page Rank over twitter à hours versus months!

Pros/cons of simulating DRAM-PCM

Incomplete model
 Missing OS or proprietary hardware features

130

Multi-socket NUMA for emulating
DRAM-PCM hybrid memory

Emulation for hybrid memory

Fast evaluation of emerging workloads
 Several co-running BIG graph analytic
 applications written in Java

131

Focus is to model the latency of PCM

Focus is to evaluate explicit memory
management in C/C++

Existing emulation platforms

132

Contribution: Emulation platform
DRAM-PCM emulation for managed
applications

Comparison with Sniper using
write-rationing garbage collectors

133

Contribution: Analysis of PCM writes
PCM writes and write rates

C++ versus Java
Impact of multiprogramming
Classic versus emerging applications

Is PCM practical as main memory?

134

Outline
Heap management
Kingsguard collectors
Comparison with simulation
Write analysis

Outline
Heap management
Kingsguard collectors
Comparison with simulation
Write analysis

10

DRAM heap management
Heap Tracker

HEAP_BEGIN HEAP_END

Heap Organization
nursery mature

11

available occupied

DRAM heap management
Heap Tracker

HEAP_BEGIN HEAP_END

Heap Organization
nursery mature

Physical Memory

11

available occupied

DRAM-PCM heap management
JVM uses mbind() to inform the OS to map
a space in DRAM or PCM

12

Anything else the JVM should do?

Next: Sanity check with a DRAM nursery
and PCM mature

13

DRAM-PCM heap management
Heap Tracker

Heap Organization
nursery mature

Physical Memory

HEAP_BEGIN HEAP_ENDPCM_BEGIN

available occupied

13

DRAM-PCM heap management
Heap Tracker

Heap Organization
nursery mature

Physical Memory

HEAP_BEGIN HEAP_ENDPCM_BEGIN

available occupied

13

DRAM-PCM heap management
Heap Tracker

Heap Organization
nursery mature

Physical Memory

HEAP_BEGIN HEAP_ENDPCM_BEGIN

available occupied

✗

DRAM-PCM heap management
Options

✔

14

Map/unmap pages in physical memory
 whenever space grows/shrinks

Two free lists

15

DRAM-PCM heap management
Heap Tracker

Heap Organization
nursery mature

Physical Memory

DRAM_BEGIN PCM_ENDPCM_BEGIN

available occupied

16

Outline
Heap management
Kingsguard collectors
Comparison with simulation
Write analysis

17

nursery mature

Kingsguard-Nursery (KG-N)
Write-rationing GC: concentrate writes in DRAM

70%
of writes

22%
to 2% of objects

18

nursery mature

Kingsguard-Writers (KG-W)

mature

KG-W monitors writes in a DRAM observer space
Trades off performance for better endurance

19

CPU CPU
8 cores
SMT ✔
20MB

Emulation setup

Jikes RVM
App/Monitor

OS

Monitor: Intel pcm-memory.x
to get per-socket write rate

✗

20

Emulation versus simulation
PCM write reduction with KG-N and KG-W
versus PCM-Only

Execution time increase with KG-W versus KG-N

No OS in simulation
Faithfully model emulator

KG-N
KG-W

Simulation Emulation

4% 8%
62% 64%

21

Reduction in PCM writes with KG-N
and KG-W versus PCM-Only
Kingsguard collectors limit PCM writes
KG-W much better than KG-N

22

Increase in execution time with
KG-W versus KG-N

Simulation Emulation

+7% +10%KG-W

KG-W is slower than KG-N because it monitors
writes to objects

Graph workload evaluation

23

Page Rank and Connected Components
 LiveJournal social network
ALS Factorization
 Netflix challenge

GraphChi: Analyze BIG graphs on a single machine
 Both Java and C++ implementations

Graph apps write more than DaCapo

24

0

2

4

6

8

N
or

m
al

ize
d

PC
M

 w
rit

e
ra

te

Page
Rank

Connected
Components

ALS
Factorization

PCM-Only

Billions of vertices à Billions of objects

0
0.5

1
1.5

2
2.5

3
3.5

N
or

m
al

ize
d

PC
M

 w
rit

es

Java KG-N KG-W

Page
Rank

Connected
Components

ALS
Factorization

25

Java writes more to PCM than C++

C++
PCM-Only

Java writes more to PCM than C++
Reasons

Higher allocation volume
Copying between heap spaces
Zeroing to provide memory safety

à

26

0
0.5

1
1.5

2
2.5

3
3.5

N
or

m
al

ize
d

PC
M

 w
rit

es

Java KG-N KG-W

27

Java writes more to PCM than C++

Allocation
higher by
1.34X

1.6X
2X

C++

Page
Rank

Connected
Components

ALS
Factorization

Page
Rank

Connected
Components

ALS
Factorization

PCM-Only

DRAM-PCM

28

0

4

8

1 2 3 4N
or

m
al

ize
d

PC
M

 w
rit

es

Degree of multiprogramming

PCM-Only

Writes increase super-linearly due to
multiprogramming with PCM-Only

29

0

4

8

1 2 3 4N
or

m
al

ize
d

PC
M

 w
rit

es

Degree of multiprogramming

KG-W

Writes increase linearly due to
multiprogramming with KG-W

30

0

100

200

300

400

PC
M

 w
rit

e
ra

te
 in

M

B/
s

PCM-Only KG-W

DaCapo Pjbb GraphChi

PCM-Only is not practical as main
memory

140 MB/s

31

Conclusions
Across the stack emulation of
hybrid memory

Similar outcomes with different
evaluation methods

More research to make PCM
practical as main memory 140 MB/s

160

Shoaib Akram (Ghent), Jennifer B. Sartor (Ghent and VUB),
Kathryn S. Mckinley (Google), and Lieven Eeckhout (Ghent)

Shoaib.Akram@UGent.be

162

DRAM is facing challenges

Scalability
Reliability

Phase change memory

163

GB/$ J

Endurance L

163

te
m

pe
ra

tu
re

set to crystalline

reset to amorphous

time

164

Hybrid DRAM-PCM memory

Mitigate PCM wear-out
Bridge the DRAM-PCM latency gap

Speed
Endurance

Energy
Capacity

DRAM PCM

165

Abstractions for hybrid memory

166

Abstractions for hybrid memory

DRAM Cache
Wear Level

Garbage Collection

Virtual Memory

167

Hybrid memory evaluation
PageRank over Twitter network graph
GraphChi on commodity hardware

30 minutes J

User-level simulation with
mechanistic models 20 days L

Emulation on NUMA machine
Prior art: latency ✔ C/C++ ✔

168

DRAM heap management

MegaCity m = new MegaCity(“Madison”)

Heap Tracking (Chunks)

HEAP_BEGIN HEAP_END

169

DRAM heap management
Heap Tracking (Chunks)

HEAP_BEGIN HEAP_END
Heap Organization (Spaces)

OS Memory (pages)

Physical Memory (frames)

m

170

DRAM heap management

HEAP_BEGIN
Heap Organization (Spaces)

HEAP_END

Heap Tracking (Chunks)

OS Memory (pages)

Physical Memory (frames)

m
nursery

m m m m

171

DRAM heap management

HEAP_BEGIN
Heap Organization (Spaces)

HEAP_END

Heap Tracking (Chunks)

OS Memory (pages)

Physical Memory (frames)

m
nursery

m m m m
GC

mature
m m m

172

DRAM heap management

HEAP_BEGIN
Heap Organization (Spaces)

HEAP_END

Heap Tracking (Chunks)

OS Memory (pages)

Physical Memory (frames)

nursery

GC

mature
m m mm m m m m

173

DRAM heap management

HEAP_BEGIN
Heap Organization (Spaces)

HEAP_END

Heap Tracking (Chunks)

OS Memory (pages)

Physical Memory (frames)

nursery

GC

mature
m m mm m m m m m m

174

DRAM heap management

HEAP_BEGIN
Heap Organization (Spaces)

HEAP_END

Heap Tracking (Chunks)

OS Memory (pages)

Physical Memory (frames)

nursery

GC

mature
m m mm m m m m

175

DRAM heap management

HEAP_BEGIN
Heap Organization (Spaces)

HEAP_END

Heap Tracking (Chunks)

OS Memory (pages)

Physical Memory (frames)

nursery

GC

mature
m m mm m m m m

176

DRAM heap management

HEAP_BEGIN
Heap Organization (Spaces)

HEAP_END

Heap Tracking (Chunks)

OS Memory (pages)

Physical Memory (frames)

m
DRAM

m m m m
PCM

m m

177

DRAM heap management

Virtual Memory (pages)

Physical Memory (frames)

Free List (Chunks)

HEAP_BEGIN

m
Heap Spaces

HEAP_END

m
m m
m m

nursery mature

NUMA platform for emulation

Validation against Sniper

More PCM writes with Java than C++

Co-running apps increase PCM writes

Graph apps write more than DaCapo

PCM-Only is impractical

KG-N and KG-W limit PCM writes

Monitoring heaps at a fine granularity
is promising

185

Takeaways

Write-rationing garbage collection makes
PCM practical as main memory

Similar conclusion with 3 distinct
methods

186

Heap management in DRAM-Only

DRAM PCM

Virtual Memory (pages)

Physical Memory (frames)

Free List (Chunks)

187

Hardware platform

188

Simulation Emulation
Speed Slow Native
Diversity Low High
Full System ✗ ✔

Realistic ✗ ✔

How to evaluate hybrid memory?

189

Simulation Emulation
Speed Slow Native
Diversity Low High
Full System ✗ ✔

Realistic ✗ ✔

How to evaluate hybrid memory?

190

OS to limit PCM writes

Drawbacks
 Coarse granularity
 Costly page migrations

DRAM PCM

191

Managed runtime to limit PCM writes

Our work uses garbage collection to keep highly
written objects in DRAM

nursery mature

observer

PCM

DRAM mature

nursery mature
GC

70%
of writes

192

Distribution of writes in GC runtime

nursery mature
GC

22%
to 2% of objects

70%
of writes

193

Distribution of writes in GC runtime

mature
GC

Write-Rationing Garbage Collectors
Contribution

DRAM PCM
194

Kingsguard-
Nursery

Kingsguard-
Writers

195

Two write-rationing garbage collectors

196

Heap organization in DRAM
nursery mature largeGC

DRAM

197

mature largeGC

DRAM PCM

KG-N Kingsguard-Nursery
nursery

198

KG-W Kingsguard-Writers

mature large

observer

PCM

mature largeDRAM

nursery

199

Observing writes

Write barrier configurations
 Observe references
 Observe references and primitives

Write barrier sets a header bit on object writes

references primitivesheaderObject
format

200

Two extra optimizations in KG-W

Large object optimization
 Allocate selected large objects in DRAM
Metadata optimization
 Allocate PCM metadata in DRAM

nursery

½ of remaining
nursery

large

Monitor PCM write rate
to turn opt on/off

201

Large object optimization

202

Metadata optimization
Mature Meta

Full-heap GC: Mark live PCM objects
KG-W: Keep mark bits of PCM objects in DRAM

203

Metadata optimization
Mature Meta

Full-heap GC: Mark live PCM objects
KG-W: Keep mark bits of PCM objects in DRAM
address_mark_bit = start_meta + idx_pcm_obj

204

DRAM metadata overhead
Mature Meta

Smallest object size is 4 B: 25% overhead
Common case size is > 16 B: 6.25% overhead
KG-W: Only use side meta for objects > 16 B

205

Evaluation Methodology

(1) Simulator
(2) Real hardware

Java applications

Jikes research
virtual machine

Hardware Software

206

Use write barriers to count object writes

Configurations
 KG-N : 4 MB nursery
 KG-W: 4 MB nursery, 8 MB observer
 KG-N : 12 MB nursery

Applications: 12 DaCapo, 3 GraphChi, and Pjbb

Real hardware measurements

0

25

50

75

100

DaCapo
Pjbb

GraphChi
Average

%
 re

du
ct

io
n

in

PC
M

 w
rit

es

KG-N KG-N-12 KG-W

207

Reduction in PCM writes

KG-W reduces 95% of writes to PCM

Baseline: PCM-Only

208

Simulation with Sniper

7 DaCapo applications

4 cores, 1 MB per core LLC

Scale simulated rates to a 32 core machine
using trends from real hw

Memory systems
Homogeneous

32 GB DRAM
32 GB PCM

PCM parameters
4X read latency
4X write energy
10 M writes/cellHybrid

1 GB DRAM
32 GB PCM

209

210

PCM lifetimes

0

10

20

30

40

Xala
n

Pmd
Pmd.S

Lu
se

arch
Lu

.Fi
x

Antlr
Bloat

Avg

Li
fe

tim
e

in
 y

ea
rs

PCM-Only KG-N KG-W

9
17

PCM alone is not practical
PCM lasts more than 10 years with KG-W

211

PCM write rates

0

10

20

30

Xala
n

Pmd
Pmd.S

Lu
se

arch
Lu

.Fi
x

Antlr
Bloat

Avg

W
rit

e
ra

te
 in

 G
B/

s PCM-Only KG-N KG-W

KG-N reduces write rate by 6X over PCM-Only
KG-W reduces write rate by 2X over KG-N

212

EDP reduction compared to DRAM

-80

-40

0

40

80

Xala
n

Pmd
Pmd.S

Lu
se

arch
Lu

.Fi
x

Antlr
Bloat

Avg

%
 re

du
ct

io
n

in
 E

DP

PCM-Only KG-N KG-W

EDP : Energy Delay Product
KG-W has 35% better EDP than DRAM-Only

Higher is better4 cores

213

Emulation on NUMA hardware

D
R
A
M

D
R
A
M

DRAM: Socket 0

CPU CPU

PCM: Socket 1

Modify JVM to divide heap in DRAM or PCM
Use Intel perf monitor to measure writes

D
R
A
M

D
R
A
M

214

PCM write rates on NUMA hardware

KG-N reduces write rate by 3.8X over PCM-Only
KG-W reduces write rate by 1.9X over KG-N

0.0

0.5

1.0

1.5

DaCapo Pjbb GraphChi Avg

W
rit

e
ra

te
 in

 G
B/

s PCM-Only KG-N KG-W

215

Crystal Gazer: Profile-Driven
Write-Rationing Garbage Collection for

Hybrid Memories

Monitoring heaps at a fine granularity
is promising

216

Takeaways

Write-rationing garbage collection makes
PCM practical as main memory

Similar conclusion with 3 distinct
methods

Shoaib Akram
ANU, Canberra

shoaib.akram@anu.edu.au

219

Full text search is ubiquitous
Web search

Retail

Social media

220

Search = Indexing + Query eval
Indexing builds an
inverted index

Query evaluation
searches for words

Indexing speed increasingly critical

word1 → document-list
word2 → document-list

221

Challenge: I/O intensity
Writing & merging partial indices on
storage takes up 40% of exec time

syscall → copy → access
DRAM

222

Challenge: DRAM capacity
NVMe SSD violates real
time response constraint

🙁 Data growth outpaces DRAM scaling
Data volume → 2X

 DRAM GB/$ → 20%
m

illi
se

co
nd

s SSD: 1.5 s

DRAM: 70 ms

2-term AND,
99% tail latency

223

Looking forward
 Reduce I/O overhead
 Find a fresh memory scaling roadmap

Today: Give up real time, or give
up cost efficiency

Persistent memory (PM)

6

4X denser than DRAM
Load/store access
Non-volatile

DRAM
Optane

8

Contribution: PM Search Engine
Exploiting PM for building/storing indices
→ Memory, storage, universal roles

 → Fine-grained crash consistent recovery
Extensive PM evaluation vs DRAM/SSD
 → Indexing perf, scalability, bottlenecks
 → Tail latency of query workloads

9

Rest of the talk
Building an index
Exploiting PM
Evaluation

10

Step 1: Building the hash table

the
anu

bl

bla

blah

terms posting lists

Each box is a posting. It contains
the document id plus meta-data,
e.g., frequency and position of
terms

When the table
is full → Step 2

Step 2: Sorting the hash table

anu
bl

bla

blah

the

terms posting lists

11

12

Step 3: Flushing the hash table

anu
bl

bla

blah

the

terms posting lists Partial
segment

Flushing results in large amounts of sequentail I/O

Step 4: Merging segments

anu bl bla
blah the

anu bl bla
blah the

Merging segments is crucial for fast query evaluation

Merging results in large amounts of read/write I/O

13

14

Index = Segment + Dictionary

anu bl
blah the

Segment: Sequentially sorted postings on storage

Dictionary: To find posting lists in segments, indexers use a
key-value store, such as, Berkeley DB

term offset
anu
bl

0
6

15

Different ways to exploit PM
Hash table, DRAM → PM
Partial segments, SSD → PM
Merged segments, SSD → PM
Dictionary, SSD → PM

16

PM configurations for indexing

Name of Placement of Table, Postings, and Dictionary Role of
Configuration H Table Partial St Merged St Dict Optane PM
stock DRAM SSD SSD SSD none
table-pm PM SSD SSD SSD main memory
pm-only PM PM PM PM universal
hybrid DRAM PM PM PM storage
hybrid+ DRAM PM PM SSD storage

PM configurations for indexing

Name of Placement of Table, Postings, and Dictionary Role of
Configuration H Table Partial St Merged St Dict Optane PM
stock DRAM SSD SSD SSD none
table-pm PM SSD SSD SSD main memory
pm-only PM PM PM PM universal
hybrid DRAM PM PM PM storage
hybrid+ DRAM PM PM SSD storage

16

PM configurations for indexing

Name of Placement of Table, Postings, and Dictionary Role of
Configuration H Table Partial St Merged St Dict Optane PM
stock DRAM SSD SSD SSD none
table-pm PM SSD SSD SSD main memory
pm-only PM PM PM PM universal
hybrid DRAM PM PM PM storage
hybrid+ DRAM PM PM SSD storage

16

17

Crash consistent indexing
Crash consistent segment flushing
 → Use pmem_persist(segment)
 → Track progress (docIds)

Crash consistent merging
 → Tracking progress is tricky
→ Details of “logging” in the paper

18

Baseline Engine
Psearchy

Native, fast, and flexible
Easily integrated with Intel PMDK

19

Indexing Methodology
Dataset and measurement
 → Wikipedia English (DRAM)
 → Execution time
 → 1 GB HT per core, up to 32 cores

PM setup
 → Interleaved, local, EXT4+DAX
 → pmemkv dictionarygithub.com/pmem/pmemkv

20

Experimental Platform

2 TB PM
0.5 TB DRAM
1.5 TB NVMe Optane SSD

Our in-house server with DRAM, PM, & SSD

21

Indexing perf with one core

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

No
rm

al
ize

d
In

de
xi

ng
 T

im
e

stock table-pm pm-only
hybrid hybrid+ cc-hybrid

PM as main/only is 30% slower

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

No
rm

al
ize

d
In

de
xi

ng
 T

im
e

stock table-pm pm-only
hybrid hybrid+ cc-hybrid

30%

21

Hybrid is 8% slower than stock

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

No
rm

al
ize

d
In

de
xi

ng
 T

im
e

stock table-pm pm-only
hybrid hybrid+ cc-hybrid

30% 8% slower
than stock

21

Hybrid+ is best, 20% over stock

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

No
rm

al
ize

d
In

de
xi

ng
 T

im
e

stock table-pm pm-only
hybrid hybrid+ cc-hybrid

20%

21

Hybrid+ is best, pmkv costs 28%

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

No
rm

al
ize

d
In

de
xi

ng
 T

im
e

stock table-pm pm-only
hybrid hybrid+ cc-hybrid

28%

21

Crash consistency costs 10%

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

No
rm

al
ize

d
In

de
xi

ng
 T

im
e

stock table-pm pm-only
hybrid hybrid+ cc-hybrid

10%

21

22

syscall → mmap is mainly why
hybrid+ beats stock

0.0

0.5

1.0

1.5

sto
ck

hybrid+No
rm

al
ize

d
Cy

cl
es

Load Store Rest
Use perf counters to
observe Load/Store
stalls the multicore
incurs 1.4X

23

Indexing scalability

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1 4 8 16 32No
rm

al
ize

d
In

de
xi

ng
 T

im
e

Core Count

stock table-pm pm-only hybrid+

PM cfgs

24

Hybrid+ incurs an increase in
memory stalls (32 cores)

0.0

0.5

1.0

1.5

sto
ck

hybrid+No
rm

al
ize

d
Cy

cl
es

Load Store Rest
Use perf counters to
observe Load/Store
stalls the multicore
incurs 4X

2X

25

Crash consistent indexing with 32
cores improves perf

-5

0

5

10

15

1 4 8 16 32

%
 In

cr
ea

se
 in

 In
de

xi
ng

Ti

m
e

Core Count

Baseline: No
pmem_persist()32 cores: Invalidated

cache lines become
replacement candidates,
improving LLC hit rate

26

Query Evaluation Methodology
Tail latency of 100K concurrent queries
 → 1 term
 → AND 2 terms

See paper for details
 → Term selection, variation, ranking

27

Tail latency of single-term queries
DRAM = PM = SSD

0
500

1000
1500
2000
2500
3000

Ta
il L

at
en

cy
 (m

s)

% of Requests

DRAM PM SSD

50 991

Accessing a single
posting list results in a
sequential access
pattern

28

Tail latency of 2-term AND
Region 1: DRAM < SSD < PM

0
10
20
30
40
50

Ta
il L

at
en

cy
 (m

s)

% of Requests

DRAM PM SSD

50 991

50% Shortest queries
Advancing two lists
leads to random
accesses

PM is slow for
concurrent &
random

Tail latency of 2-term AND
Region 2: DRAM < PM < SSD

0

500

1000

1500

Ta
il L

at
en

cy
 (m

s)

% of Requests

DRAM PM SSD

50 991

50% Longest queries
These queries access
the SSD media

PCIe SSD interface is
slower than PM DDR-T

28

3X

29

More analysis in the paper
Indexing: updates
Query eval: access patterns
Breakdowns: sort vs merge, load vs store
pmemkv: volatile map, binding

Other: OS caching impacts

30

Key Takeaways
PM does not scale well for write I/O bound
indexing

PM shines for the latency-critical
query evaluation

31

Contribution: PM Search Engine
Exploiting PM for building/storing indices
→ Memory, storage, universal roles

 → Fine-grained crash consistent recovery
Extensive PM evaluation vs DRAM/SSD
 → Indexing perf, scalability, bottlenecks
 → Tail latency of query workloads

257

TeraHeap: Reducing Memory Pressure in
Managed Big Data Frameworks

Iacovos G. Kolokasis
kolokasis@ics.forth.gr

Giannos Evdorou
evdorou@ics.forth.gr

Foivos Zakkak
fzakkak@redhat.com

Christos Kozanitis
kozanitis@ics.forth.gr

Shoaib Akram
shoaib.akram@anu.edu.au

Polyvios Pratikakis
polyvios@ics.forth.gr

Angelos Bilas
bilas@ics.forth.g

r

Anastasios Papagiannis
anastasios@isovalent.com

UNIVERSITY
OF CRETE

Analytics frameworks use managed runtimes

To process large amounts of data they need large heaps

Large heaps are expensive (DRAM) and increase GC cost!
DRAM is expensive in dollar cost, energy, and power
GC requires expensive scans over large heaps

For these reasons analytics frameworks avoid large heaps

259

Analytics frameworks need large heaps

ASPLOS 2023

Off-heap storage in this context means
Off DRAM → on fast storage
Unmanaged → no GC scans

Off-heap demands serialization/deserialization (S/D)
Transform object closure into byte streams

S/D is significant problem!
Takes up to 47% in Spark workloads
Not everything is serializable!
Off-heap can be unsafe

260

Common practice: Move objects off-heap

ASPLOS 2023

Spark Workloads

PageRank Linear
Regression

Logistic
Regression

0

2000

4000

6000

8000

Ex
ec

ut
io

n
Ti

m
e

(s
)

Other S/D

Eliminate S/D: Extend the heap over storage

ASPLOS 2023 261

Framework
JVM

Managed Heap

DRAM (OS Page Cache)

File-backed mmap()

GC cost increases dramatically!
Random accesses over storage
Object compaction over storage
High I/O traffic

Today OpenJDK naively uses mmap()

TeraHeap: Eliminate S/D without increasing GC cost

ASPLOS 2023 262

Framework
JVM

Provides the illusion of a single heap

Avoid GC scans over the device heap

Custom management for the device heap
Lazy GC due to high storage capacity
Minimizing I/O traffic

DRAM

Regular Heap (H1)

OS Page Cache

File-backed mmap()

Second Heap (H2)

Outline

263ASPLOS 2023

Motivation

Design
Identify objects for moving to H2
Reclaim objects in H2 without GC scans
Update cross-heap references with low I/O cost

Evaluation

Conclusions

🗹 Goal: Find large clusters of objects with similar lifetime

Frameworks move partitions off-heap

Frameworks have eventually immutable objects

TeraHeap provides two hints
h2_mark_root(): Mark key object with a label
h2_move(): Advice when to move objects to H2

Move objects to H2 during GC

GC propagates the label from key object to all reachable
objects

Move off-heap objects to H2

264ASPLOS 2023

Framework

JVM
Regular Heap (H1)

Partition Ah2_mark_root(A, label)h2_move(label)

🗹 Goal: Reduce memory pressure in H1

Increased memory pressure before transfer hint?

Eager transfers to H2 → decrease memory pressure in H1

Use a high threshold to identify memory pressure

Bypass transfer hint

Move only a few marked objects to H2
Reduce read-modify-write operations in storage

Can move objects to H2 eagerly

265ASPLOS 2023

Framework

JVM
Regular Heap (H1)

Leverage storage capacity to free objects lazily
🗹 Goal: Reclaim dead objects without GC scans

TeraHeap organizes H2 in fixed-sized regions
Objects with same label in the same region
Reclaim whole regions (bulk free)

Per region DRAM metadata (avoid object access)
Live bit → region liveness
Dependency list → cross-region references

GC identifies H2 live regions
Free regions by zeroing regions metadata

266ASPLOS 2023

JVM
Regular Heap (H1) Second Heap (H2)

Region 0 Region 2Region 1

JVM Metadata (DRAM)

Region 1

Live List Live List Live List

Region 0 Region 2Region 1

Live

Region 1

Live

Preserve correctness of object liveness

267ASPLOS 2023

JVM
Regular Heap (H1) Second Heap (H2)

Region 0 Region 2Region 1

JVM Metadata (DRAM)

🗹 Goal: Track H2 to H1 references with low I/O cost

Card table (byte array in DRAM)
One byte per fixed-size H2 segments
Large segments to reduce card table size

Categorize cards to scan less segments

Based on GC type, we scan specific segments

H2 Card Table

268ASPLOS 2023

Testbed

We implement TeraHeap in OpenJDK 8 (we now support OpenJDK 17)
Extend Parallel Scavenge garbage collector
Extend interpreter, C1 and C2 (JIT) compilers to support updates in H2

We use one servers with 2 TB NVMe SSD and 256 GB DRAM
Also, we evaluate TeraHeap with NVM

▪ Real world applications
Spark with SparkBench suite
Giraph with Graphalytics benchmark suite

Limit DRAM capacity using cgroups

269ASPLOS 2023

TeraHeap outperforms native Spark by up to 54%

PageRank
Native TH

Linear
Regression

Native TH
0

0.25

0.50

0.75

1.0
Other Minor GC Major GC S/D + I/O

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Native TH
Logistic

Regression

40% 50% 54%

Teraheap reduces S/D overhead

S/D in TeraHeap is due to shuffling

270ASPLOS 2023

TeraHeap outperforms native Giraph by up to 28%

PageRank
Native TH

Connected
Components

Native TH
0

0.25

0.50

0.75

1.0
Other Minor GC Major GC

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Native TH
Shortest

Path

Main performance improvement
Reduction of major GC (up to 50%)

Off-heap reduces heap pressure temporarily
Giraph processes objects only on-heap
Increases heap pressure → Increased
GC!

28% 24% 26%

60%

271ASPLOS 2023

TeraHeap reduces DRAM requirements

Spark - PageRank

48

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Native

0

0.25

0.50

0.75

1

TeraHeap

80 144 32 85 74

Giraph PageRank

4.6x 1.2x

Provide direct access to H2 objects

Outperforms native Spark using 4.6x less DRAM

Outperforms native Giraph using 1.2x less DRAM

DRAM (GB)

Analytics frameworks deal with large datasets using S/D

TeraHeap provides the illusion of single managed heap
No S/D and no GC scans in the device heap for freeing space

Improves native Spark and Giraph performance by up to 54% and 28%

TeraHeap requires up to 4.6x less DRAM

Future work
Eliminate hints by dynamically determining which objects to move to H2

272ASPLOS 2023

Key Takeaways

TeraHeap: Reducing Memory Pressure
for Managed Big Data Frameworks

We thankfully acknowledge the support of the European Commision projects
EVOLVE (GA No 825061) and Eupex (GA No 101033975)

Iacovos G. Kolokasis is supported by the Meta Research PhD Fellowship (2022 – 2024)

github.com/CARV-ICS-FORTH/teraheap

274

Shoaib Akram, Jennifer B. Sartor, Lieven Eeckhout
Ghent University, Belgium

Shoaib.Akram@elis.UGent.be

DVFS Performance Prediction

276

Sample at all DVFS states L
Estimate performance J

frequency à

pe
rf

or
m

an
ce

 à

memory bound

many
applications here

compute bound

277Heterogeneity

Synch
roniza

tio
n

Sto
re Burst

s

Managed Multithreaded Applications

278

Background
Base Frequency Target Frequency

CPU
DRAM

time à

• tbase sum of
–Scaling (S)
–Non-Scaling (NS)

• r = Base/Target
• S à S * r
• NS à No change
• ttarget = (S*r) + NS

• Not simple
• OOO+MLP

tbase

• CRIT estimates non-scaling by
–Measuring critical path through loads
–Ignoring store operations

279

R. Miftakhutdinov, E. Ebrahimi, and Y. N. Patt. Predicting
performance impact of DVFS for realistic memory
systems. MICRO, 2012.

State of the Art

280

High error for multithreaded Java!

Multithreaded CRIT (M+CRIT)
Base Frequency Target Frequency

time à

T0

T1

time à

T0

T1

ttargettbase

Use CRIT to identify each thread’s non-scaling

2X

0 1 0 0.5 1

critical

281

app0

Application Collection

busy wait store burst

Scaling or non-scaling?

Sources of Inaccuracy in M+CRIT

Application

app1

gc0
gc1

282

app0

Application Collection

busy wait store burst

Scaling or non-scaling?

Sources of Inaccuracy in M+CRIT

Application

app1

gc0
gc1

BURST

DEP

DEP

DEP

DEP

DEP

283

app0

Application Collection

busy wait store burst

Scaling or non-scaling?

Our Contribution

Application

app1

gc0
gc1

BURST

DEP

DEP

DEP

DEP

DEPDEP+BURST
A New DVFS Performance Predictor

284

Our Contribution

DEP+BURST
A New DVFS Performance Predictor

285

while (cond0)
{
 …
}
Acquire(lock)
 crit_sec() …
Release(lock)
...

while (cond1)
{
 …
}
Acquire(lock)
 crit_sec() …
Release(lock)
...

T0 T1

Example: Inter-thread Dependences

21

3

• Intercept synchronization activity
• Reconstruct execution at target frequency

wait ---

wake 4

286

T0 T1
lo

op

w
ai

t

Identifying Synchronization Epochs

cr
it_

se
c(

)
lo

op

cr
it_

se
c(

)
Base Frequency Target Frequency

time

wait()

wake()

Epoch
1

Epoch
2

Epoch
3

287

T0 T1

Identifying Synchronization Epochs
Base Frequency Target Frequency

time

Epoch
1

Epoch
2

Epoch
3

288

T0 T1

Identifying Synchronization Epochs
Base Frequency Target Frequency

time

Epoch
1

Epoch
2

Epoch
3

10 10

10

10 10
= 30 units

289

T0 T1

Reconstruction at Target Frequency
Base Frequency Target Frequency

time

Epoch
1

Epoch
2

Epoch
3

2X

10 10

10

10 10

T0 T1

5 7

5

5

CRIT

5

1

2

3

290

T0 T1

Reconstruction at Target Frequency
Base Frequency Target Frequency

time

Epoch
1

Epoch
2

Epoch
3

2X

10 10

10

10 10

T0 T1

5 7

5

3

5

1

2

3

Longest running in an epoch
+ Zero book-keeping
- Not accurate

= 17 units

5

291

T0 T1

Reconstruction at Target Frequency
Base Frequency Target Frequency

time

Epoch
1

Epoch
2

Epoch
3

2X

10 10

10

10 10

T0 T1

5 7

5

5 5

1

2

3

Critical thread across epochs
+ Accurate
- Book-keeping

= 15 units

= 30 units

3

292

Decompose

Reconstruct

Aggregate

Sync Activity

• Sync Epochs
• Perf Counters

Epochs @ Tgt.

Predicted Total Time

DEP: Summary

293

Our Contribution

DEP+BURST
A New DVFS Performance Predictor

294

Our Contribution

DEP+BURST
A New DVFS Performance Predictor

• Reasons
–Zero initialization
–Copying collectors

• Modeling Steps
–Track how long the store queue is full
–Add to the non-scaling component

295

Store Bursts

296

• Jikes RVM 3.1.2
• Production collector (Immix)
• # GC threads = 2
• 2x min. heap

• Seven multithreaded benchmarks
• Four application threads

• 4 cores, 1.0 GHz à 4.0 GHz
• 3-level cache hierarchy
• LLC fixed to 1.5 GHz
• DVFS settings for 22 nm Haswell

Version 6.0

Methodology

297
Baseline Frequency = 1.0 GHz

0

10

20

30

2.0 GHz 3.0 GHz 4.0 GHz

%
 a

ve
ra

ge
 a

bs
ol

ut
e

er
ro

r
M+CRIT M+CRIT+BURST DEP+BURST

27%

13%

6%

Accuracy

298

Quantum
5 ms

4 GHz New Freq1

tolerable_performance_degradation

New Freq2

Energy Manager

299

0

5

10

15

20

25

xa
lan pmd

pmd.sc
ale

lusea
rch

av
g-m

em

lusea
rch

.fix
av

rora

su
nflo

w

av
g-c

omp

%
Performance Degradation Energy Reduction

Memory Intensive Compute Intensive

Energy Savings

• DEP+BURST: First predictor that accounts for
– Application and service threads
– Synchronization à inter-thread dependencies
– Store bursts

• High accuracy
– Less than 10% estimation error for seven Java bmarks.

• Negligible hardware cost
– One extra performance counter
– Minor book-keeping across epochs

• Demonstrated energy savings
– 20 % avg. for a 10% slowdown (mem-intensive Java apps.)

300

Conclusions

Thank You !
Shoaib.Akram@elis.UGent.be

302

Programming Across the Stack Workshop
Invited Talk by

Shoaib Akram, Ghent University

304

Circa 2000, hardware features were
fixed at design time

One GHz
Big Core
DRAM

305

As time passed, efficiency became a
first order concern

Billions of watts in data centre power
More search queries on mobiles
End of Dennard scaling

306

Hardware designers turned to
flexibility for improving efficiency

Fr
eq

uen
cy

Core
 T

yp
e

Core
 T

yp
e

M
em

ory

M
em

ory

307

Event counters became the key to
help OS configure hardware

Understand the behaviour of
individual threads and adapt

308

Multithreading

Language runtimes

What about software evolution?

309

Prior Work in making software
aware of hardware heterogeneity

² Mostly for native applications

² No input from language runtime or user

310

The 2015 Top Ten Programming Languages,
spectrum.ieee.org.

Managed languages are popular due
to their productivity advantage

311

Research activity # 1: Behavior of
managed multithreaded environs

User Services

² Scheduling user vs. service threads
² Understanding the impact of synchronization

312

Research activity #2: Include the
runtime for better policy making

Managed Language Runtime Layer

² Is any service thread critical to performance?
² Is it better to allocate object X in memory

type T?

313

Research activity #2: Include the
runtime for better policy making

Managed Language Runtime Layer

² Is any service thread critical to performance?
² Is it better to allocate object X in memory

type T?

Bridge the application-OS gap

314

Agenda

1. Scheduling concurrent collection on
heterogeneous multicores

2. Predicting the performance impact of
DVFS for managed multithreaded
applications

3. Using the garbage collector to guide
object placement in hybrid memory

Shoaib Akram, Jennifer B. Sartor, Kenzo Van Craeynest,
Wim Heirman, Lieven Eeckhout

Ghent University, Belgium
Shoaib.Akram@UGent.be

ACM Transactions on Architecture and Code Optimization (TACO), 2016

316

CPU usage is not negligible
Concurrent collectors fit for multicores

Garbage collector automatically
reclaims memory for reuse

317

600 Series
4x ARM Cortex A72
4x ARM Cortex A53

Exynox 8890
4x ARM Cortex A53

4x Exynos M1

big

LITTLE

Power

Pe
rf

or
m

an
ce

Out-of-Order

In-Order

Heterogeneous multicores consist
of different core types

318

LITTLE

Power

Pe
rf

or
m

an
ce Application

Which core type to run application
versus the collector threads?

Out-of-Order

In-Order

GC(?)

big

319

bigApplication

Collector LITTLE

Allocates new objects

1. Identifies live objects
2. Reclaims memory

What is the performance impact of
running collector on LITTLE core?

big

320

Running GC on LITTLE degrades
performance of some applications

0

10

20

fo
p

an
tlr

lu
in

de
x

bl
oa

t
av

ro
ra

lu
se

ar
ch

.fi
x2

su
nf

lo
w2

su
nf

lo
w4

xa
la

n2

pm
d2

lu
se

ar
ch

2
lu

se
ar

ch
.fi

x4
xa

la
n4

pm
d4

lu
se

ar
ch

4

%
 in

cr
ea

se
 in

ex

ec
ut

io
n

tim
e

321

Running GC on LITTLE degrades
performance of some applications

GC-Uncritical

0

10

20

fo
p

an
tlr

lu
in

de
x

bl
oa

t
av

ro
ra

lu
se

ar
ch

.fi
x2

su
nf

lo
w2

su
nf

lo
w4

xa
la

n2

pm
d2

lu
se

ar
ch

2
lu

se
ar

ch
.fi

x4
xa

la
n4

pm
d4

lu
se

ar
ch

4

%
 in

cr
ea

se
 in

ex

ec
ut

io
n

tim
e

322

Running GC on LITTLE degrades
performance of some applications

GC-Critical

GC-Uncritical

0

10

20

fo
p

an
tlr

lu
in

de
x

bl
oa

t
av

ro
ra

lu
se

ar
ch

.fi
x2

su
nf

lo
w2

su
nf

lo
w4

xa
la

n2

pm
d2

lu
se

ar
ch

2
lu

se
ar

ch
.fi

x4
xa

la
n4

pm
d4

lu
se

ar
ch

4

%
 in

cr
ea

se
 in

ex

ec
ut

io
n

tim
e

323

Why does the execution time of
GC critical applications increase?

Application

Collector

Allocates new objects

1. Identifies live objects
2. Reclaims memory

Serial collection

Paused!!!

Out of Memory

(slow)

324

-15

5

25
fo

p
an

tlr
lu

in
de

x
bl

oa
t

av
ro

ra
6

lu
se

ar
ch

.fi
x2

su
nf

lo
w2

su
nf

lo
w4

xa
la

n2

pm
d2

lu
se

ar
ch

2
lu

se
ar

ch
.fi

x4
xa

la
n4

pm
d4

lu
se

ar
ch

4

%
 e

xe
cu

tio
n

tim
e

 re
du

ct
io

n

What happens if we give GC a fair
share of the big core?

GC-Uncritical

2 LITTLE
3 LITTLE

1 LITTLE

325

-15

5

25
fo

p
an

tlr
lu

in
de

x
bl

oa
t

av
ro

ra
6

lu
se

ar
ch

.fi
x2

su
nf

lo
w2

su
nf

lo
w4

xa
la

n2

pm
d2

lu
se

ar
ch

2
lu

se
ar

ch
.fi

x4
xa

la
n4

pm
d4

lu
se

ar
ch

4

%
 e

xe
cu

tio
n

tim
e

 re
du

ct
io

n

What happens if we give GC a fair
share of the big core?

GC-Uncritical

2 LITTLE
3 LITTLE

1 LITTLE

326

-15

5

25
fo

p
an

tlr
lu

in
de

x
bl

oa
t

av
ro

ra
6

lu
se

ar
ch

.fi
x2

su
nf

lo
w2

su
nf

lo
w4

xa
la

n2

pm
d2

lu
se

ar
ch

2
lu

se
ar

ch
.fi

x4
xa

la
n4

pm
d4

lu
se

ar
ch

4

%
 e

xe
cu

tio
n

tim
e

 re
du

ct
io

n

What happens if we give GC a fair
share of the big core?

GC-Uncritical

2 LITTLE
3 LITTLE

1 LITTLE

327

-15

5

25
fo

p
an

tlr
lu

in
de

x
bl

oa
t

av
ro

ra
6

lu
se

ar
ch

.fi
x2

su
nf

lo
w2

su
nf

lo
w4

xa
la

n2

pm
d2

lu
se

ar
ch

2
lu

se
ar

ch
.fi

x4
xa

la
n4

pm
d4

lu
se

ar
ch

4

%
 e

xe
cu

tio
n

tim
e

 re
du

ct
io

n

What happens if we give GC a fair
share of the big core?

GC-Uncritical

GC-Critical2 LITTLE
3 LITTLE

1 LITTLE

328

-15

5

25
fo

p
an

tlr
lu

in
de

x
bl

oa
t

av
ro

ra
6

lu
se

ar
ch

.fi
x2

su
nf

lo
w2

su
nf

lo
w4

xa
la

n2

pm
d2

lu
se

ar
ch

2
lu

se
ar

ch
.fi

x4
xa

la
n4

pm
d4

lu
se

ar
ch

4

%
 e

xe
cu

tio
n

tim
e

 re
du

ct
io

n

What happens if we give GC a fair
share of the big core?

GC-Uncritical

GC-Critical2 LITTLE
3 LITTLE

1 LITTLE

329

-15

5

25
fo

p
an

tlr
lu

in
de

x
bl

oa
t

av
ro

ra
6

lu
se

ar
ch

.fi
x2

su
nf

lo
w2

su
nf

lo
w4

xa
la

n2

pm
d2

lu
se

ar
ch

2
lu

se
ar

ch
.fi

x4
xa

la
n4

pm
d4

lu
se

ar
ch

4

%
 e

xe
cu

tio
n

tim
e

 re
du

ct
io

n

What happens if we give GC a fair
share of the big core?

GC-Critical

GC-Uncritical

2 LITTLE
3 LITTLE

1 LITTLE

330

-15

5

25
fo

p
an

tlr
lu

in
de

x
bl

oa
t

av
ro

ra
6

lu
se

ar
ch

.fi
x2

su
nf

lo
w2

su
nf

lo
w4

xa
la

n2

pm
d2

lu
se

ar
ch

2
lu

se
ar

ch
.fi

x4
xa

la
n4

pm
d4

lu
se

ar
ch

4

%
 e

xe
cu

tio
n

tim
e

 re
du

ct
io

n

2 LITTLE
3 LITTLE

1 LITTLE

What happens if we give GC a fair
share of the big core?

Application

GC-Uncritical

GC-Critical

Heap size
System load …

Architecture

331

GC-Criticality-Aware
Scheduler

Dynamically adjusts # big core cycles
given to application versus GC

Our Contribution

332

app
gc

App alone

gc-on-LITTLESchd

time

GC-Criticality-Aware Scheduler
Starting point is gc-on-LITTLE

333

app
gc

App alone

gc-on-LITTLESchd

time

GC-Criticality-Aware Scheduler
gc-on-LITTLE to gc-fair

334

app
gc

App alone

gc-on-LITTLESchd

time

GC-Criticality-Aware Scheduler
gc-on-LITTLE to gc-fair

Stop Concurrent Scan

gc-fair

JVM signals the scheduler

Stop pause to do book-keeping ignored
Scan stop pause: JVM signals scheduler
gc-fair gives equal priority to GC and app

335

GC-Criticality-Aware Scheduler
Boost States

Scheduler State How many quanta scheduled on the BIG core?

gc-boost P0 First GC thread = 1, Second GC thread = 1

gc-boost P1 First GC thread = 1, Second GC thread = 2

…

Stop scan pauses observed even with gc-fair
Scheduler How many quanta scheduled on the BIG core?

gc-on-LITTLE First GC thread = 0, Second GC thread = 0

gc-fair First GC thread = 1, Second GC thread = 1

Boost the priority of garbage
Give GC more consecutive quanta on big

Degrade boost state when no longer critical

336

app
gc

App alone

gc-boost:P0Schd

time

GC-Criticality-Aware Scheduler
gc-boost:P0 to gc-on-LITTLE

Stop Concurrent

gc-on-LITTLE

JVM signals the scheduler

App alone

If no scan pause in state P0, go to gc-on-LITTLE
Can configure # zero stop scan intervals before
returning to gc-on-LITTLE

337

Summary of gc-criticality-aware
scheduling

1. JVM detects GC Criticality during
execution

2. JVM communicates gc criticality to the
scheduler

3. Scheduler adapts # big core cycles given to
GC

338

Experimental Setup

²How to tackle non-determinism?

²CMS with heap 2x of minimum

²Model different architectures

339

-20
-10

0
10
20
fo

p
an

tlr
lu

in
de

x
bl

oa
t

av
ro

ra
6

lu
se

ar
ch

.fi
x2

su
nf

lo
w2

su
nf

lo
w4

xa
la

n2
av

g-
un

cr
itic

al

pm
d2

lu
se

ar
ch

2
lu

se
ar

ch
.fi

x4
xa

la
n4

pm
d4

lu
se

ar
ch

4
av

g-
cr

itic
al

%
 e

xe
cu

tio
n

tim
e

re
du

ct
io

n

GC-Criticality-Aware scheduler is
better performing vis-à-vis gc-fair

gc-boost
gc-fair

340

-20
-10

0
10
20
fo

p
an

tlr
lu

in
de

x
bl

oa
t

av
ro

ra
6

lu
se

ar
ch

.fi
x2

su
nf

lo
w2

su
nf

lo
w4

xa
la

n2
av

g-
un

cr
itic

al

pm
d2

lu
se

ar
ch

2
lu

se
ar

ch
.fi

x4
xa

la
n4

pm
d4

lu
se

ar
ch

4
av

g-
cr

itic
al

%
 e

xe
cu

tio
n

tim
e

re
du

ct
io

n

GC-Criticality-Aware scheduler is
better performing vis-à-vis gc-fair

gc-boost
gc-fair

341

-20
-10

0
10
20
fo

p
an

tlr
lu

in
de

x
bl

oa
t

av
ro

ra
6

lu
se

ar
ch

.fi
x2

su
nf

lo
w2

su
nf

lo
w4

xa
la

n2
av

g-
un

cr
itic

al

pm
d2

lu
se

ar
ch

2
lu

se
ar

ch
.fi

x4
xa

la
n4

pm
d4

lu
se

ar
ch

4
av

g-
cr

itic
al

%
 e

xe
cu

tio
n

tim
e

re
du

ct
io

n

GC-Criticality-Aware scheduler is
better performing vis-à-vis gc-fair

gc-boost
gc-fair

342

0

0.4

0.8

1.2

C
yc

le
s

pe
r i

ns
tru

ct
io

n L3 Miss

L2 Miss

L1-D Miss

L1-I

Base

Where does the performance
advantage of big core comes from?

Application Collector

343

0

0.4

0.8

1.2

C
yc

le
s

pe
r i

ns
tru

ct
io

n L3 Miss

L2 Miss

L1-D Miss

L1-I

Base

LITTLE

Where does the performance
advantage of big core comes from?

Application Collector

344

0

0.4

0.8

1.2

C
yc

le
s

pe
r i

ns
tru

ct
io

n L3 Miss

L2 Miss

L1-D Miss

L1-I

Base

Application Collector

LITTLE

big

Where does the performance
advantage of big core comes from?

345

0

0.4

0.8

1.2

C
yc

le
s

pe
r i

ns
tru

ct
io

n L3 Miss

L2 Miss

L1-D Miss

L1-I

Base

Instruction-level parallelism J
Memory-level parallelism L

LITTLE

big

Where does the performance
advantage of big core comes from?

Application Collector

346

-5

5

15

25

fo
p

an
tlr

lu
in

de
x

bl
oa

t
av

ro
ra

6
lu

se
ar

ch
.fi

x2
su

nf
lo

w2
su

nf
lo

w4
xa

la
n2

av
g-

un
cr

itic
al

pm
d2

lu
se

ar
ch

2
lu

se
ar

ch
.fi

x4
xa

la
n4

pm
d4

lu
se

ar
ch

4
av

g-
cr

itic
al

%
 e

xe
cu

tio
n

tim
e

 re
du

ct
io

n

Lowering the frequency of LITTLE
core makes GC even more critical

Similar freq
1 GHz slower

347

-5

5

15

25

fo
p

an
tlr

lu
in

de
x

bl
oa

t
av

ro
ra

6
lu

se
ar

ch
.fi

x2
su

nf
lo

w2
su

nf
lo

w4
xa

la
n2

av
g-

un
cr

itic
al

pm
d2

lu
se

ar
ch

2
lu

se
ar

ch
.fi

x4
xa

la
n4

pm
d4

lu
se

ar
ch

4
av

g-
cr

itic
al

%
 e

xe
cu

tio
n

tim
e

 re
du

ct
io

n

Lowering the frequency of LITTLE
core makes GC even more critical

Similar freq
1 GHz slower

348

-5

5

15

25

fo
p

an
tlr

lu
in

de
x

bl
oa

t
av

ro
ra

6
lu

se
ar

ch
.fi

x2
su

nf
lo

w2
su

nf
lo

w4
xa

la
n2

av
g-

un
cr

itic
al

pm
d2

lu
se

ar
ch

2
lu

se
ar

ch
.fi

x4
xa

la
n4

pm
d4

lu
se

ar
ch

4
av

g-
cr

itic
al

%
 e

xe
cu

tio
n

tim
e

 re
du

ct
io

n

Lowering the frequency of LITTLE
core makes GC even more critical

Similar freq
1 GHz slower

349

0

8

16
%

 e
xe

cu
tio

n
tim

e
re

du
ct

io
n

1B 2B 3B

gc-boost provides greater gains for
architectures with more big cores

Average EDP reduction of 20% for
GC-Critical applications

-10

0

10

20
fo

p
an

tlr
lu

in
de

x
bl

oa
t

av
ro

ra
6

lu
se

ar
ch

.fi
x2

su
nf

lo
w2

su
nf

lo
w4

xa
la

n2
av

g-
un

cr
itic

al

pm
d2

lu
se

ar
ch

2
lu

se
ar

ch
.fi

x4
xa

la
n4

pm
d4

lu
se

ar
ch

4
av

g-
cr

itic
al%

 re
du

ct
io

n
in

 E
D

P

350

GC-Uncritical

GC-Critical

351

allo
cat

ion rat
e

cores

A few takeaway messages

User App

JVM

OS

big

(1)Multithreaded applications could be GC critical

(2)GC benefits from big core features

(3) JVM support for scheduling GC improves efficiency

