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What is considered systems 
research?
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The Transformation Hierarchy
§ We use a systematic transformation 

hierarchy to solve complex problems
§ From English to movement of electrons

§ The “system of transformations” is built to 
satisfy “user constraints”
§ Device size, cost, energy, reliability

§ What is systems research?
§ How to enable the transformation?
§ Qualified answer: How best to enable an 

optimal design point in a complex space
§ Show by building a real system

Problem
Algorithm, PL

Compilers and runtimes
Operating systems

ISAs
Microarchitecture

VLSI circuits
Physics



What is a computer system?
§ Sequence of transformations

§ Hardware + software

§ Compute + storage

§ CPU, memory, and disk à computer

§ Network of computers à Datacenter

§ Network of datacenters à Cloud

§ Network of CPU and accelerators à system on a chip

Problem
Algorithm, PL

Compilers and runtimes
Operating systems

ISAs
Microarchitecture

VLSI circuits
Physics



Two Historical Examples
§ Two examples

§ Storage and file systems

§ Processor microarchitecture



Fast File System (FFS)
§ Unix OS is introduced.  Ken Thompson wrote the first filesystem
§ Simple and elegant (?)
§ Unfortunately, performance was terrible
§ Kirk McKusick measured it could utilize only 2% of disk bandwidth
§ Problem: Filesystem was written as if the underlying device was a random 

access memory (like physical memory)

§ But, disk is not a random access device
§ It has mechanical components. Arm movement. Rotational disk
§ Sequential accesses are faster than random access
§ A group at Berkeley wrote the fast “disk-aware” filesystem
§ Key constraint: Not enough details of the device are exposed to the system 
§ Key realization: Exploit device organization/physics whatever is known about it. 

“Keep related stuff together”

Superblock Inodes Data



§ 1960s and 70s: It is established that the programming model of a Von Neuman 
machine is intuitive for the programmers

§ And that such machines are practical to build on large scale
§ Problem: One operation per clock cycle in program order (as specified by the 

Von Neuman model) is very restrictive
§ Need to concurrently execute many instructions in one clock cycle to gain 

higher performance
§ Solution: (a marvel of human ingenuity)

§ Key constraint: Instructions have dependences, so how can one find conc.
§ Key realization: With some effort one can find independent insts. in programs
§ Dynamic scheduling: Fetch instruction in order, but execute instructions 

whenever their operands are ready (dataflow machine with seq. model)
§ Control Data and IBM the early innovators
§ Improved over many decades (branch prediction, precise interrupts)

Out of Order Execution



Lessons
§ FFS was possible because the team that built it realized that it is critical to 

look one layer below the OS abstraction layer
§ They realized early on that device physics shapes the system 
§ They also realized the need for good abstraction, so they did not change 

what was exposed to the users of FFS
§ Modern file systems still use the same file system API

§ OOO was possible because early systems researchers at CDC and IBM 
studied program behavior and program interaction with machines
§ They were innovating at many layers: ISA, OS, microarchitecture, 

compilers, design, PL, algorithms, management
§ In this specific instance, a different debate emerged. OOO in hardware is 

too complex. Why can’t compiler do it? Compiler/uARCH both innovated.



§ Venues
§ ISCA, MICRO, ASPLOS, HPCA

§ Not much in traditional OOO processor microarchitecture
§ Memory systems: caching, coherence, consistency, multicore 
§ DRAM reliability
§ Mitigating security vulnerabilities
§ Processing in memory
§ New storage technologies
§ ML accelerators
§ ML for systems

Computer Architecture Ideas



§ Venues
§ ASPLOS, OSDI, SOSP

§ True OS papers: Very hard to find

§ Garbage collection
§ Data-intensive systems
§ NoSQL stores
§ Persistent memory programming models
§ Compute in NICs
§ Computational storage

Operating Systems Ideas



Why should you consider it?
§ Key enabler of new and “emerging” applications

§ Millisecond-scale real-time analytics over social media 

§ Broad applicability
§ 1% improvement in GPU throughput for ML

§ Building systems is fun although “challenging”

§  Lots of room to work at different abstraction layers
§ Same problem can have a variety of solutions: Compiler vs. managed 

runtime vs. OS vs. hardware

§ Can help produce better algorithms, think new problems, move technology



Ongoing Research
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Motivation
§ Lot of pressure on physical memory (DRAM)

§ Technology is not scaling as fast as it used to

§ But applications demand more memory

§ Key realization 

§ Data is expensive to cache and store for fast delivery

§ Meta-data is more expensive

§ Counter-intuitive.  Why?



Example 1: Search Engines
§ Key data structure that enable fast search

§ Inverted index

§ Think of a massive hash table

§ Every time we create a new website or tweet, 
something gets added to the hash table

§ Hash table placement and query response 
time

m
illi

se
co

nd
s SSD: 1.5 s

DRAM: 70 ms

2-term AND,
99% tail latency



Example 2: ML Analytics
§ Iterative computation until a condition is met

§ Each iteration produces a transformation of a massive dataset

§ Two options
§ Recompute the transformation whenever needed (possibly in 

every transformation)
§ Cache it in memory or disk

§ Cache capacity to avoid recomputation 10X of actual dataset!



Some Ongoing Projects
§ Huge heaps without increasing GC overhead

§ Rethinking software stacks for emerging memories
§ Search engines, databases, caches

§ Accelerators for proteomics discovery

§ Secure and practical memory systems

§ Storing and querying very large indices in memory



Aim of a research project
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§ I will give you five keywords to post in your workspace  
§ Remember them like the stages of instruction processing in a basic CPU pipeline

§ Aim of a research project 

§ Ask a question worth answering
§ Find an answer that you can support with good reasons
§ Find good data that you can use as reliable evidence to support your reasons
§ Draft an argument that makes a good case for your answers
§ Revise the draft until reader would think you meet the first four goals
§ It is important to realize how best to utilize your mentor for each step

§ Hindsight: Wished had engaged mentor more for Question, Argument, Revise

What is the aim of a research project?

WritebackMemoryExecuteDecodeFetch

ReviseArgumentDataAnswerQuestion



§ Three step process

1)  Topic: I am working on X (history of ANU school of computing)
 2)  Question:  because I want to find out Y  (why students love it so much)
  3)  Significance:  so I can help others understand Z (how can ANU SOCO 
        practices help other schools in the region attract more students)

1)  Topic: I am working on machine learning analytics
 2)  Question:  because I want to find out how it performs on modern GPUs
  3)  Significance:  so I can help others understand how to architect GPUs to 

       accelerate ML analytics

Formula for Questions

Why is the question worth asking?

• In systems research, we build artifacts, so typically, we use the understanding to build stuff (there is an additional step)
• We cannot build stuff without “understanding.” That is ANTI-RESEARCH

• So, if you sit in a talk where someone begins with, “I built X.” Ask: “What informs the design and architecture of X?” 
Do we understand the behavior of existing systems that do X? Why did you built X? Who benefits? Why does X work?



§ Three step process

1)  Topic: I am working on memory management
 2)  Question:  because I want to find out the overhead of malloc() on Linux
  3)  Significance:  so I can help others understand how to build high-  
        performance memory allocators 
        4) Finally, I use the understanding to build kangaroomalloc()

1)  Topic: I am working on branch prediction
 2)  Question:  because I want to find out how it behaves for Java workloads
  3)  Significance:  so I can help others understand how to build new branch 

       predictors for object-oriented languages like Java
        4) Finally, I use the understanding to build kangaroopredictor()

More Example Questions



§ I propose kangaroopredictor
§ It exhibits 2% more accuracy for Java workloads
§ It uses state of the art machine learning
§ Trust me: It beats everything else!

Wrong

“The purpose of computing is insight, not numbers.”
 - Richard Hamming (Turing Award)

https://www.youtube.com/watch?v=a1zDuOPkMSw&t=1086s&ab_channel=securitylectures

Hamming, “You and Your Research”



§ I propose kangaroopredictor
§ It exhibits 2% more accuracy for Java workloads
§ It uses state of the art machine learning
§ Trust me: It beats everything else

Wrong

“What transfers is insight, not academic design, not 
performance numbers.”
 - Bill Dally § In January 2009 he was appointed chief scientist of Nvidia. He worked full-time 

at Nvidia, while supervising about 12 of his graduate students at Stanford.

§ In 2009, he was elected to the National Academy of Engineering for 
contributions to the design of high-performance interconnect networks and 
parallel computer architectures.

§ He received the 2010 ACM/IEEE Eckert–Mauchly Award for "outstanding 
contributions to the architecture of interconnection networks and parallel 
computers."

https://en.wikipedia.org/wiki/Nvidia
https://en.wikipedia.org/wiki/National_Academy_of_Engineering
https://en.wikipedia.org/wiki/Eckert%E2%80%93Mauchly_Award


§ We find that frequent jumps in object-oriented code due to
§ X, Y, Z, ...

§ result in high misprediction rates
§ 20% of all mispredictions are due to X
§ 30% due to Y
§ 10% due to Z

§ One could rewrite code to eliminate X, Y, Z, but that requires extra 
programming effort. One could add a compiler optimization pass

§ We propose kangaroopredictor that tackles X, Y, and Z to do better 
prediction in hardware

§ Note: The excitement is NO LONGER in kangaroopredictor (it’s now the 
last bullet) but in “understanding” the behavior of existing predictors and 
more importantly, interaction b/w OO programs and hardware

Right!

Good systems problems can be solved in 
different ways. At different layers. Ok to do 
it based on your philosophy. But don’t 
dismiss other approaches. Sometimes there 
is no precedent to solve problem at a 
specific layer. Good research community 
enables a variety of solutions.   



§ Instruction set architectures
§ RISC had clear advantages.  MIPS a great ISA. MIPS R10K a great microarchitecture
§ CISC (Intel x86) became the de facto in high performance computing (some history)
§ Technology (physics) trends eventually betrayed.  CISC decoding consumes too much 

power.  (Even hardware speculation is being questioned (Meltdown). VLIW return?)
§ Today: RISC-V emerged as a popular open-source alternative

§ Memory management
§ Predominant opinion as late as early 2000s: Programmers should manually manage 

memory for high-performance and memory-efficient code
§ C vs. languages with automatic memory managers (aka garbage collection)
§  Memory became cheaper.  Technology scaling lead to high density
§ Programs became too complex (programming burden)
§ Java became the standard for developing major data processing applications

§ Search engines, analytics, graph processing, 90% of Apache software

Good ideas cannot be dismissed



§ You  should have a theory to answer the question
§ Current predictors are inaccurate because of large # methods
§ Current allocators incur high latency because applications 

allocate objects with variable sizes leading to fragmentation
§ Current CPUs are memory-bound for ML workloads

§ Testing the hypothesis
§ Representative applications (benchmarks)
§ Real machine or simulator 
§ Gain insight into program-machine interaction

Importance of Hypothesis



Testing Hypothesis
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§ CPI stack: Breaks down execution 
time into different components 
at the microarchitectural level



nursery mature
GC

22%
to 2% of objects

70%
of writes

27

Another Example



§ Must pick important problems. Ask Why frequently

§ Questions that someone cares about

§ Hopefully, an entire community

§ Enable new applications

§ Keep an eye on where technology will go

§ Aim high! 

Picking Problems



§ Try to contribute something novel as an undergrad
§ You learn a lot.  Research could lead to impact.

Aim High

Best paper candidate, honors project
under review at VLDB, research project, top conference



§ Good abstractions are powerful. In fact, this is why computer systems work. (And why I start every semester with: Alice 
has an idea to save the world. How can she orchestrate the movement of electrons with English. She cannot. She uses?)

§ Yet, many great ideas come from understanding the interaction between abstraction layers

§ Insight is key.  Go to class for insight.  Read (critically) for insight.  Do research for insight.  Communicate to gain and give 
insight.  If something “just works,” and you do not understand WHY, it’s useless.  (When it breaks, you can’t fix it.)

§ Good engineering in systems research is necessary, but the goal of research is to communicate new insights. No one is 
interested in how you fixed bugs in your code. (Analogy: Fertilizer is critical for growing pretty roses, but we don’t 
decorate our house with fertilizer. Try it and no guests will come again. Same with research, tell people about “boring” 
engineering details, and they won’t listen to you again. YET must decide how much they need to know.)

§ Designing new systems is somewhat of an art. (Technology “pull,” and application “push.”) Must learn from prior 
art/design, i.e., precedents (COMP2300/COMP2310/Microarch.). Must use creativity to adapt to new changing 
technology trends and new workloads. Two things systems researcher must live with: physics (speed of light, how small 
a transistor can me made, and still be used reliably, yield of an X mm2 chip) and society (big data due to microblogging, 
social media, and online payments; use of AI/ML; purchasing power; Netflix vs. renting video; cloud vs. in-house)

§ Device physics shapes the system
§ Early filesystem research.  Moore’s law and its impact on systems.  Persistent memory.  Distributed systems. What 

enabled multi-layer software stacks (think Scala)?  What threatens them now? Shift to multicore. Disk vs. Flash

Some Tenets of Systems Research



§ Know the precedents (what techniques worked in prior systems)?
§ Caching, prediction, ISA additions, speculation, write batching, sequential log, tracing 

collector, write barrier, spin lock, interrupt, MMU

§  Know the “key” tradeoffs
§ Compression saves storage capacity but decompression incurs high latency
§ RISC ISA simplifies circuit complexity, but results in more instructions per C/C++ 

statement (pressure on instruction memory)
§ Disk is cheap but its latency is high
§ SRAM is fast but consumes more power

§ Know the “critical” metrics
§ Performance, power, energy, reliability, security, extendibility, observability, 

manageability, cost, scalability, throughput, tail latency

Systems Architect’s Toolbox: Design Side



§ Holistic view of system
§ Good comprehension of CPU, memory, and disk datapath.  Byte-addressable vs. block 

addressable. Virtual memory.  Virtualizing CPU.  

§ Good programming skills in one or more languages and ability to pick a new language 
quickly

§ Good systems building skills (compiling the Linux kernel, using GCC/GDB, writing Makefile, 
hacking OpenJDK)

§ Data structures and algorithms

§ Performance debugging
§ Monitoring low-level processor performance
§ I/O traffic monitoring tools

Engineering Side



Writing and Presentation
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Advice on Writing 👍 👍

👎
Advice by “prescription”
“Trust me.” Do X. Do Y

§ Advice based on “insight”
§ What is the purpose of writing?
§ What do humans consider good writing?
§ Why one writing style is more powerful than other? 
§ How “attention mechanics” work? Invoking stress



Advice on Writing
§ Passive voice is best avoided
§ Don’t end a sentence with preposition
§ And many more prescriptions

§ Analogy: temporary relief, no pinpointing the real 
source of pain, no diagnosis

§ Reality
§ Passive serves an important role
§ OK to end with prep.

§ Key realization in style community: Passive and preps. 
alone don’t put people off. There are more fundamental 
issues to be dealt with. And they relate to a system of 
style that must be understood



Advice on Writing
👍

Advice based on “insight”



Advice on Writing
👍

Advice based on “insight”

The First Two Principles of Clear Writing
Readers are likely to feel that they are reading prose that is
dear and direct when

(1) the subjects of the sentences name the cast of characters, 
and

(2) the verbs that go with those subjects name the crucial actions 
those characters are part of.



Presenting Research Outcomes
👍

Advice based on “insight”

One main idea per slide

Few bullets 

Good titles (some examples later)

Figures clearly annotated

One slide to the next (story telling)

My students create a slide deck.  I can write an entire 
paper without bugging them too much by just following the 
slide deck



Latex and Overleaf
Learn Latex

Start collaborating with your advisor on 
Overleaf

He will help you stay focused 



Systems Papers
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§ Architecture

§ Runtimes for PL

§ Memory management

§ Distributed databases

§ Graph analytics

§ Compilers 

§ Many more areas ...

Systems Papers: One Classification



Systems Papers: Another Classification
§ New “systems idea” 

§ New mechanism
§ New policy 

§ Performance analysis and evaluation
§ Evaluate existing/emerging hardware

§ Specific features
§ Full system (holistic)

§ Evaluate existing/emerging workloads
§ Specific phases
§ Full workload

§ Analytical and mechanistic modeling
§ Enable new insights (by fast exploration)
§ Enable new policies that are rigorously understood (contrast with “ML magic”) 



Mechanism vs. Policy
§ Sharing a CPU among many users

§ Mechanism: Changing PCuser1 to PCuser2 and other actions to switch to executing process 
from user 2

§ Policy: When to switch from one user to the next, which user to give priority, cloud vs. 
desktop

§ Using disk as an extension of main memory (swapping)
§ Mechanism: Copying data from memory to disk, physical hardware changes, pins, wires, 

interrupts, system calls, all that jazz
§ Policy: When to initiate a transfer from memory to disk (when memory is critically low, 

when memory is 80% of capacity, ...)

§ Offloading computation to a GPU
§ Mechanism: Introducing GPU in the system, setting up CPU-GPU communication, etc
§ Policy: What to offload? When to offload? If the GPU is busy, what is the policy to 

offload another waiting task?



Importance of Performance Evaluation
§ Why do we evaluate performance?

§ To understand if we can build better systems for a specific workload
§ To understand if we are enabling needless features
§ To understand how can we improve the system

§  Hardware is available
§ Do a real system study

§ Hardware is not available
§ Use simulation (e.g., model the behavior of the system in C++)

§ Cycle accurate (very time consuming) vs. mechanistic model (fast but not 
very accurate)

§ Use emulation
§ Emulate the “unavailable system” using an existing system



Example of Emulation
§ NUMA to model a hybrid DRAM-PCM system

§ Frequency scaling to model a big.LITTLE system

CPU CPU

App
OS



Example of Simulation
§ Sniper multicore simulator we use in Microarchitecture Course



Importance of Modeling 
§ Gain insight 

§ How does a system work?
§ A high-level model of an out-of-order processor



Importance of Modeling 
§ Quickly explore large design space in early stage of design

§ Simulators are extremely slow

§ In early stages, only need to know relative performance 

§ To filter out parameter settings (for example, cache size) that do not 
show good trends



New Idea Papers
§ Let’s look at some top-tier idea papers from my recent work 

§ TeraHeap: Reducing Memory Pressure in Managed Big Data Frameworks
§ ASPLOS 2023

§ Write-Rationing Garbage Collection for Hybrid Memories
§ PLDI 2019

§ SPIRIT: Scalable and Persistent On-Heap Indices in Hybrid Memory for Real-Time Search
§ Under Review



What’s in a title?
§ Succinct.  To the point.  Stress the key contribution.  Good verbs.  Good adjectives.  
§ Typically include software aspect and a hardware aspect 
§ Find a “decent” & memorable name. But if you can’t, don’t force a name, or have one 

that is pointless

§ TeraHeap: Reducing Memory Pressure in Managed Big Data Frameworks
§ ASPLOS 2023

§ Write-Rationing Garbage Collection for Hybrid Memories
§ PLDI 2019

§ SPIRIT: Scalable and Persistent On-Heap Indices in Hybrid Memory for Real-Time Search
§ Under Review



Other Papers & Presentations
§ Let’s see some other papers

§ Let’s see some presentations





Shoaib Akram (Ghent), Jennifer B. Sartor (Ghent and VUB), 
Kathryn S. Mckinley (Google), and Lieven Eeckhout (Ghent)

Shoaib.Akram@UGent.be
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DRAM is facing challenges

Scalability
Cost
Energy
Reliability
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Phase change memory
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time

Persistent
Byte addressable
High latency
Low endurance
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32 GB PCM with hardware wear-levelling
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Hybrid DRAM-PCM memory

Challenges
 Bridging the DRAM-PCM latency gap
 Mitigating PCM wear-out  

Speed 
Endurance

Energy 
Capacity

DRAM PCM
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Prior art in mitigating PCM wear-out

OS write partitioning
 Keep highly written pages in DRAM
 Coarse granularity 
 Costly page migrations

Hardware wear-leveling
 Spread writes out across PCM
 32 GB PCM lasts only two years!
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Garbage collection for hybrid memory

This work uses GC to keep highly written 
objects in DRAM 

nursery mature

observer

PCM

DRAM mature



nursery mature
GC

70%
of writes

60

Distribution of writes in GC heaps



nursery mature
GC

22%
to 2% of objects

70%
of writes
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Distribution of writes in GC heaps



mature
GC

Write-Rationing Garbage Collectors
Contribution

DRAM PCM
62



Kingsguard-
Nursery

Kingsguard-
Writers
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Two write-rationing garbage collectors



64

Heap organization in DRAM
nursery mature largeGC

DRAM
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mature largeGC

DRAM PCM

KG-N Kingsguard-Nursery
nursery
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KG-W Kingsguard-Writers

mature large

observer

PCM

mature largeDRAM

nursery
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Monitoring writes

On a write to an object
 Write barrier sets a bit in header

Write barrier configurations
 Monitor references 
 Monitor references and primitives 

References PrimitivesHeader
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Two additional optimizations

Large object optimization
 Selectively allocate large objects in DRAM
Metadata optimization
 Place mark bits of PCM objects in DRAM



nursery 

½ of remaining 
nursery

large

Monitor PCM write rate 
to turn opt on/off

69

Large object optimization
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Results
(1) Measurements on real hardware
(2) Simulation
 

Java applications 

Jikes research virtual machine



71

Real hardware methodology
Use write barriers to count object writes

Configurations
 KG-N : 4 MB nursery
 KG-W: 4 MB nursery, 8 MB observer
 KG-N : 12 MB nursery

Applications: 12 DaCapo, 3 GraphChi, and Pjbb 
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Reduction in PCM writes

KG-W reduces 95% of writes to PCM

Baseline: PCM-Only
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Simulation methodology

Measure lifetime, energy, and
execution time in simulator

7 DaCapo applications



Memory systems
Homogeneous

32 GB DRAM
32 GB PCM

PCM parameters
4X read latency
4X write energy
10 M writes/cellHybrid 

1 GB DRAM
32 GB PCM

74
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PCM lifetimes
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PCM write rates
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EDP reduction compared to DRAM
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EDP : Energy Delay Product
KG-W has 35% better EDP than DRAM-Only 

Higher is better
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In the paper
Execution time results 

Breakdown of KG-W overheads

Object demographics

Comparison with OS approach



Monitor fine grained write behavior
of objects 
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Write rationing garbage collection

Exploit managed runtimes to organize 
objects in hybrid memory 

Kingsguard collectors improve 
PCM lifetime
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DRAM → Charge storage a scaling limitation

Source: WSTS, IC Insights
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Manufacturing 
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DRAM pricing 
volatile
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More Gb/$
Byte addressable
Latency → DRAM 
🙁 Write endurance

Phase change memory (PCM)
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DRAM PCM
PCM alone can wear out in a few months time

Speed 
Endurance

Capacity

Hybrid DRAM-PCM memory

This work → Use DRAM to limit PCM writes
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Write-Rationing Garbage Collection for Hybrid Memories, PLDI, 2018

GC understands memory semantics
A GC approach is finer grained 
than OS approaches

Managed 
Runtime

Operating
System

Hardware

Application

Garbage Collection to limit 
PCM writes
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mature large

observer

PCM

mature largeDRAM

nursery

KG-W Kingsguard-Writers
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KG-W drawbacks

Overhead of dynamic monitoring

Limited time window to predict write intensity 
→ mispredictions

Excessive & fixed DRAM consumption
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Crystal Gazer

Predicting highly written objects 
without a DRAM observer 
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a = new Object()
b = new Object()
c = new Object()
d = new Object()

Allocation site as a write predictor
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a = new Object()
b = new Object()
c = new Object()
d = new Object()

Uniform distribution 🙁 

Allocation site as a write predictor
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Uniform distribution 🙁 

a = new Object()
b = new Object()
c = new Object()
d = new Object()

Skewed distribution 🙂 

a = new Object()
b = new Object()
c = new Object()
d = new_dram Object()

Allocation site as a write predictor
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Application
Profiling 

Advice 
Generation

Bytecode 
Compilation

a = new Object()
…
b = new_dram Object()

a = new Object()
…
b = new Object()

Object
Placement

Crystal Gazer overview
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Application profiling (offline)
Goal: Generate a write intensity trace  

Object
Identifier # Writes # Bytes

Allocation 
site

O1 0 4 A() + 10
O2 0 4 A() + 10
O3 2048 4 A() + 10
O4 2048 4096 B() + 4
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Tracking alloc sites and # writes

Compiler inserts code to compute allocation sites

payloadheader

Object layout

# writes
alloc site

Write barrier tracks # writes to each object
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Application Profiling

Minimize full-heap collections → 3 GB heap

Nursery size a balance b/w size of trace 
and mature object coverage

2.4X slowdown across 15+ applications
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Advice generation
Goal: Generate <alloc-site, advice> pairs 

advice → DRAM or PCM
   input is a write-intensity trace

Two heuristics to classify allocation sites as 
DRAM or PCM
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Alloc site classification heuristics
Freq: A threshold % of objects from a site get more 
than a threshold # writes → DRAM 

🙂 Aggressively limits PCM writes

 🙁 No distinction based on object size



17

Alloc site classification heuristics

Dens: A threshold % of objects from a site have 
more than a threshold write density → DRAM 

Write density → Ratio of # writes to object size
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Classification thresholds 
Homogeneity threshold → 1%

Frequency threshold → 1

Density threshold → 1
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Classification examples

Object
Identifier # Writes # Bytes

Allocation 
site

O1 0 4 A() + 10
O2 0 4 A() + 10
O3 128 4 A() + 10
O4 128 4096 B() + 4

Frequency threshold = 1
PCM writes = ?, DRAM bytes = ?
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Classification examples

Object
Identifier # Writes # Bytes

Allocation 
site

O1 0 4 A() + 10
O2 0 4 A() + 10
O3 128 4 A() + 10
O4 128 4096 B() + 4

Frequency threshold = 1
PCM writes = ?, DRAM bytes = ?

→ 
→ 
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Classification examples

Object
Identifier # Writes # Bytes

Allocation 
site

O1 0 4 A() + 10
O2 0 4 A() + 10
O3 128 4 A() + 10
O4 128 4096 B() + 4

Frequency threshold = 1
PCM writes = 0/256, DRAM bytes = 5008

→ 
→ 
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Classification examples

Object
Identifier # Writes # Bytes

Allocation 
site

O1 0 4 A() + 10
O2 0 4 A() + 10
O3 128 4 A() + 10
O4 128 4096 B() + 4

Density threshold = 1
PCM writes = ?, DRAM bytes = ?
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Classification examples

Object
Identifier # Writes # Bytes

Allocation 
site

O1 0 4 A() + 10
O2 0 4 A() + 10
O3 128 4 A() + 10
O4 128 4096 B() + 4

Density threshold = 1
PCM writes = ?, DRAM bytes = ?

→ 32
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Classification examples

Object
Identifier # Writes # Bytes

Allocation 
site

O1 0 4 A() + 10
O2 0 4 A() + 10
O3 128 4 A() + 10
O4 128 4096 B() + 4

Density threshold = 1
PCM writes = ?, DRAM bytes = ?

→ 32
→ < 1
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Classification examples

Object
Identifier # Writes # Bytes

Allocation 
site

O1 0 4 A() + 10
O2 0 4 A() + 10
O3 128 4 A() + 10
O4 128 4096 B() + 4

Density threshold = 1
PCM writes = 128/256, DRAM bytes = 12

→ 32
→ < 1
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Bytecode compilation

Introduce a new bytecode → new_dram() 

Bytecode rewriter modifies DRAM sites to use 
new_dram() 
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Object placement

new_dram() → Set a bit in the object header  

GC → Inspect the bit on nursery collection to 
copy object in DRAM or PCM
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Object placement

mature large

PCM

mature largeDRAM

nursery
🧐

Is marked 
highly written? ✓



7

Key features of Crystal Gazer

Eliminate overheads of dynamic monitoring

Proactive → less mispredictions

Reduces DRAM usage & opens up pareto-optimal
tradeoffs b/w capacity and lifetime
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Evaluation methodology

15 Applications → DaCapo, GraphChi, SpecJBB

Medium-end server platform

Different inputs for production and advice

Jikes RVM
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Emulation on NUMA hardware

CPU CPU

16 hardware threads and 20 MB L3
Use Intel pcm-memory.x to get per-socket write rate 

✗

Jikes RVM
App

OS
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Profile-driven write-rationing GC
Hybrid memory is inevitable

Allocation site a good predictor of writes

Static approach beats dynamic
  → Better performance
  → Reduced DRAM capacity
  → Better PCM lifetime

DRAM PCM



4

Coarse-grained data movement is inefficient
Page migrations hurt performance and lifetime

DRAM PCM

OS to limit PCM writes
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Object placement

mature large

observer

PCM

mature largeDRAM

nursery
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Object placement

mature large

PCM

mature largeDRAM

nursery
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Proteus: Workload-adaptive 
write-rationing GC

Proteus: encode advice for different scenarios in 
object headers

Writer

Problem: continuous workload

Writer

PC
M

 w
rit

es
 

Aggressively limit 
writes 

Limit writes
Limit DRAM use 

Minimize 
DRAM use
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Hybrid DRAM-PCM memory

Speed 
Endurance

Capacity

DRAM PCM

🙂 More GB/$ with Phase Change Memory
🙁 Higher latency and low endurance



Mitigate PCM wear-out 
Bridge the DRAM-PCM latency gap 
 

126

Managing DRAM-PCM memory

Speed 
Endurance

Capacity

DRAM PCM
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Operating System 
   Coarse-grained
       pages KB

Garbage collection
    Proactive J 
    Fine-grained 
     objects

KB KB KB

Write-Rationing 
Garbage Collection 
for Hybrid Memory 

Managing DRAM-PCM memory

GC manages DRAM-PCM hybrid better than OS
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Operating System 
   Coarse-grained
       pages KB

Garbage collection
    Proactive J 
    Fine-grained 
     objects

KB KB KB

Write-Rationing 
Garbage Collection 
for Hybrid Memory 

Managing DRAM-PCM memory

GC manages DRAM-PCM hybrid better than OS
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Study parameter sensitivity 

Gain insight 
 What triggered the writeback to memory?

Slow process 
 Page Rank over twitter à hours versus months!

Pros/cons of simulating DRAM-PCM

Incomplete model 
 Missing OS or proprietary hardware features
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Multi-socket NUMA for emulating 
DRAM-PCM hybrid memory

Emulation for hybrid memory

Fast evaluation of emerging workloads
 Several co-running BIG graph analytic
 applications written in Java
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Focus is to model the latency of PCM

Focus is to evaluate explicit memory 
management in C/C++

Existing emulation platforms
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Contribution: Emulation platform
DRAM-PCM emulation for managed 
applications  

Comparison with Sniper using 
write-rationing garbage collectors
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Contribution: Analysis of PCM writes
PCM writes and write rates

C++ versus Java
Impact of multiprogramming
Classic versus emerging applications

Is PCM practical as main memory?
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Outline
Heap management
Kingsguard collectors
Comparison with simulation
Write analysis 



Outline
Heap management
Kingsguard collectors
Comparison with simulation
Write analysis 

10



DRAM heap management 
Heap Tracker 

HEAP_BEGIN HEAP_END

Heap Organization
nursery mature

11

available occupied



DRAM heap management 
Heap Tracker 

HEAP_BEGIN HEAP_END

Heap Organization
nursery mature

Physical Memory 

11

available occupied



DRAM-PCM heap management 
JVM uses mbind() to inform the OS to map 
a space in DRAM or PCM

12

Anything else the JVM should do? 

Next: Sanity check with a DRAM nursery 
and PCM mature
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DRAM-PCM heap management 
Heap Tracker 

Heap Organization
nursery mature

Physical Memory 

HEAP_BEGIN HEAP_ENDPCM_BEGIN

available occupied
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DRAM-PCM heap management 
Heap Tracker 

Heap Organization
nursery mature

Physical Memory 

HEAP_BEGIN HEAP_ENDPCM_BEGIN

available occupied
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DRAM-PCM heap management 
Heap Tracker 

Heap Organization
nursery mature

Physical Memory 

HEAP_BEGIN HEAP_ENDPCM_BEGIN

available occupied

✗



DRAM-PCM heap management 
Options

✔

14

Map/unmap pages in physical memory
 whenever space grows/shrinks

Two free lists
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DRAM-PCM heap management 
Heap Tracker 

Heap Organization
nursery mature

Physical Memory 

DRAM_BEGIN PCM_ENDPCM_BEGIN

available occupied
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Outline
Heap management
Kingsguard collectors
Comparison with simulation
Write analysis 
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nursery mature

Kingsguard-Nursery (KG-N)
Write-rationing GC: concentrate writes in DRAM

70%
of writes

22%
to 2% of objects
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nursery mature

Kingsguard-Writers (KG-W)

mature

KG-W monitors writes in a DRAM observer space
Trades off performance for better endurance
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CPU CPU
8 cores
SMT ✔
20MB  

Emulation setup

Jikes RVM
App/Monitor

OS

Monitor: Intel pcm-memory.x 
to get per-socket write rate

✗
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Emulation versus simulation
PCM write reduction with KG-N and KG-W
versus PCM-Only   

Execution time increase with KG-W versus KG-N

No OS in simulation
Faithfully model emulator 



KG-N
KG-W

Simulation Emulation

4% 8%
62% 64%

21

Reduction in PCM writes with KG-N 
and KG-W versus PCM-Only
Kingsguard collectors limit PCM writes
KG-W much better than KG-N
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Increase in execution time with 
KG-W versus KG-N

Simulation Emulation

+7% +10%KG-W

KG-W is slower than KG-N because it monitors
writes to objects



Graph workload evaluation
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Page Rank and Connected Components
 LiveJournal social network 
ALS Factorization
 Netflix challenge 

GraphChi: Analyze BIG graphs on a single machine
 Both Java and C++ implementations 



Graph apps write more than DaCapo
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Java writes more to PCM than C++

C++
PCM-Only   



Java writes more to PCM than C++
Reasons

Higher allocation volume
Copying between heap spaces
Zeroing to provide memory safety

à

26
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Java writes more to PCM than C++

Allocation 
higher by 
1.34X

1.6X
2X

C++

Page 
Rank

Connected
Components 

ALS
Factorization

Page 
Rank

Connected
Components 

ALS
Factorization

PCM-Only   

DRAM-PCM
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Conclusions
Across the stack emulation of
hybrid memory 

Similar outcomes with different
evaluation methods  

More research to make PCM
practical as main memory 140 MB/s
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Shoaib Akram (Ghent), Jennifer B. Sartor (Ghent and VUB), 
Kathryn S. Mckinley (Google), and Lieven Eeckhout (Ghent)

Shoaib.Akram@UGent.be



162

DRAM is facing challenges

Scalability
Reliability



Phase change memory
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GB/$ J

Endurance L

163
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time
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Hybrid DRAM-PCM memory

Mitigate PCM wear-out 
Bridge the DRAM-PCM latency gap 
 

Speed 
Endurance

Energy 
Capacity

DRAM PCM
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Abstractions for hybrid memory
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Abstractions for hybrid memory

DRAM Cache 
Wear Level

Garbage Collection

Virtual Memory
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Hybrid memory evaluation
PageRank over Twitter network graph 
GraphChi on commodity hardware 

30 minutes J

User-level simulation with 
mechanistic models 20 days L

Emulation on NUMA machine
Prior art: latency ✔ C/C++ ✔
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DRAM heap management 

MegaCity m = new MegaCity(“Madison”)

Heap Tracking (Chunks)

HEAP_BEGIN HEAP_END
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DRAM heap management 
Heap Tracking (Chunks)

HEAP_BEGIN HEAP_END
Heap Organization (Spaces)

OS Memory (pages)

Physical Memory (frames) 

m
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DRAM heap management 

HEAP_BEGIN
Heap Organization (Spaces)

HEAP_END

Heap Tracking (Chunks)

OS Memory (pages)

Physical Memory (frames) 

m
nursery

m m m m
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DRAM heap management 

HEAP_BEGIN
Heap Organization (Spaces)

HEAP_END

Heap Tracking (Chunks)

OS Memory (pages)

Physical Memory (frames) 

m
nursery

m m m m
GC

mature
m m m
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DRAM heap management 

HEAP_BEGIN
Heap Organization (Spaces)

HEAP_END

Heap Tracking (Chunks)

OS Memory (pages)

Physical Memory (frames) 

nursery

GC

mature
m m mm m m m m
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DRAM heap management 

HEAP_BEGIN
Heap Organization (Spaces)

HEAP_END

Heap Tracking (Chunks)

OS Memory (pages)

Physical Memory (frames) 

nursery

GC

mature
m m mm m m m m m m
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DRAM heap management 

HEAP_BEGIN
Heap Organization (Spaces)

HEAP_END

Heap Tracking (Chunks)

OS Memory (pages)

Physical Memory (frames) 

nursery

GC

mature
m m mm m m m m
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DRAM heap management 

HEAP_BEGIN
Heap Organization (Spaces)

HEAP_END

Heap Tracking (Chunks)

OS Memory (pages)

Physical Memory (frames) 

nursery

GC

mature
m m mm m m m m
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DRAM heap management 

HEAP_BEGIN
Heap Organization (Spaces)

HEAP_END

Heap Tracking (Chunks)

OS Memory (pages)

Physical Memory (frames) 

m
DRAM

m m m m
PCM

m m
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DRAM heap management 

Virtual Memory (pages)

Physical Memory (frames)

Free List (Chunks)

HEAP_BEGIN

m
Heap Spaces

HEAP_END

m
m m
m m

nursery mature



NUMA platform for emulation



Validation against Sniper



More PCM writes with Java than C++



Co-running apps increase PCM writes



Graph apps write more than DaCapo



PCM-Only is impractical



KG-N and KG-W limit PCM writes 



Monitoring heaps at a fine granularity 
is promising 

185

Takeaways

Write-rationing garbage collection makes 
PCM practical as main memory  

Similar conclusion with 3 distinct
methods
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Heap management in DRAM-Only 

DRAM PCM

Virtual Memory (pages)

Physical Memory (frames)

Free List (Chunks)
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Hardware platform
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Simulation Emulation
Speed Slow Native
Diversity Low High
Full System ✗ ✔

Realistic ✗ ✔

How to evaluate hybrid memory?
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Simulation Emulation
Speed Slow Native
Diversity Low High
Full System ✗ ✔

Realistic ✗ ✔

How to evaluate hybrid memory?
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OS to limit PCM writes 

Drawbacks 
 Coarse granularity 
 Costly page migrations

DRAM PCM
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Managed runtime to limit PCM writes

Our work uses garbage collection to keep highly 
written objects in DRAM 

nursery mature

observer

PCM

DRAM mature



nursery mature
GC

70%
of writes

192

Distribution of writes in GC runtime



nursery mature
GC

22%
to 2% of objects

70%
of writes

193

Distribution of writes in GC runtime



mature
GC

Write-Rationing Garbage Collectors
Contribution

DRAM PCM
194



Kingsguard-
Nursery

Kingsguard-
Writers

195

Two write-rationing garbage collectors
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Heap organization in DRAM
nursery mature largeGC

DRAM
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mature largeGC

DRAM PCM

KG-N Kingsguard-Nursery
nursery
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KG-W Kingsguard-Writers

mature large

observer

PCM

mature largeDRAM

nursery
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Observing writes

Write barrier configurations
 Observe references 
 Observe references and primitives 

Write barrier sets a header bit on object writes

references primitivesheaderObject
format
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Two extra optimizations in KG-W

Large object optimization
 Allocate selected large objects in DRAM
Metadata optimization
 Allocate PCM metadata in DRAM



nursery 

½ of remaining 
nursery

large

Monitor PCM write rate 
to turn opt on/off

201

Large object optimization
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Metadata optimization
Mature Meta 

Full-heap GC: Mark live PCM objects
KG-W: Keep mark bits of PCM objects in DRAM
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Metadata optimization
Mature Meta 

Full-heap GC: Mark live PCM objects
KG-W: Keep mark bits of PCM objects in DRAM
address_mark_bit = start_meta + idx_pcm_obj
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DRAM metadata overhead
Mature Meta 

Smallest object size is 4 B: 25% overhead
Common case size is > 16 B: 6.25% overhead
KG-W: Only use side meta for objects > 16 B
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Evaluation Methodology

(1) Simulator
(2) Real hardware

Java applications 

Jikes research
virtual machine

Hardware Software
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Use write barriers to count object writes

Configurations
 KG-N : 4 MB nursery
 KG-W: 4 MB nursery, 8 MB observer
 KG-N : 12 MB nursery

Applications: 12 DaCapo, 3 GraphChi, and Pjbb 

Real hardware measurements
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Reduction in PCM writes

KG-W reduces 95% of writes to PCM

Baseline: PCM-Only
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Simulation with Sniper

7 DaCapo applications

4 cores, 1 MB per core LLC

Scale simulated rates to a 32 core machine
using trends from real hw



Memory systems
Homogeneous

32 GB DRAM
32 GB PCM

PCM parameters
4X read latency
4X write energy
10 M writes/cellHybrid 

1 GB DRAM
32 GB PCM

209
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PCM lifetimes
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PCM alone is not practical
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PCM write rates
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EDP reduction compared to DRAM
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EDP : Energy Delay Product
KG-W has 35% better EDP than DRAM-Only 

Higher is better4 cores
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Emulation on NUMA hardware

D
R
A
M

D
R
A
M

DRAM: Socket 0

CPU CPU

PCM: Socket 1

Modify JVM to divide heap in DRAM or PCM
Use Intel perf monitor to measure writes

D
R
A
M

D
R
A
M
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PCM write rates on NUMA hardware

KG-N reduces write rate by 3.8X over PCM-Only
KG-W reduces write rate by 1.9X over KG-N
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Crystal Gazer: Profile-Driven 
Write-Rationing Garbage Collection for 

Hybrid Memories



Monitoring heaps at a fine granularity 
is promising 

216

Takeaways

Write-rationing garbage collection makes 
PCM practical as main memory  

Similar conclusion with 3 distinct
methods





Shoaib Akram 
ANU, Canberra

shoaib.akram@anu.edu.au



219

Full text search is ubiquitous
Web search

Retail

Social media
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Search = Indexing + Query eval
Indexing builds an 
inverted index

Query evaluation 
searches for words

Indexing speed increasingly critical

word1 → document-list
word2 → document-list
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Challenge: I/O intensity
Writing & merging partial indices on 
storage takes up 40% of exec time 

syscall → copy → access
DRAM
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Challenge: DRAM capacity
NVMe SSD violates real 
time response constraint

🙁 Data growth outpaces DRAM scaling
Data volume → 2X 

  DRAM GB/$ → 20%
m

illi
se

co
nd

s SSD: 1.5 s

DRAM: 70 ms

2-term AND,
99% tail latency
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Looking forward
 Reduce I/O overhead
 Find a fresh memory scaling roadmap

Today: Give up real time, or give 
up cost efficiency



Persistent memory (PM)

6

4X denser than DRAM
Load/store access
Non-volatile 

DRAM
Optane
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Contribution: PM Search Engine 
Exploiting PM for building/storing indices 
→ Memory, storage, universal roles

 → Fine-grained crash consistent recovery
Extensive PM evaluation vs DRAM/SSD
 → Indexing perf, scalability, bottlenecks 
 → Tail latency of query workloads
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Rest of the talk
Building an index
Exploiting PM
Evaluation
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Step 1:  Building the hash table

the
anu

bl

bla

blah

terms posting lists

Each box is a posting. It contains 
the document id plus meta-data, 
e.g., frequency and position of 
terms

When the table 
is full → Step 2



Step 2:  Sorting the hash table

anu
bl

bla

blah

the

terms posting lists

11
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Step 3:  Flushing the hash table

anu
bl

bla

blah

the

terms posting lists Partial 
segment

Flushing results in large amounts of sequentail I/O



Step 4: Merging segments

anu bl bla
blah the

anu bl bla
blah the

Merging segments is crucial for fast query evaluation

Merging results in large amounts of read/write I/O

13
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Index = Segment + Dictionary

anu bl
blah the

Segment: Sequentially sorted postings on storage

Dictionary: To find posting lists in segments, indexers use a 
key-value store, such as, Berkeley DB 

term offset
anu
bl

0
6
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Different ways to exploit PM
Hash table, DRAM → PM   
Partial segments, SSD → PM 
Merged segments, SSD → PM
Dictionary, SSD → PM



16

PM configurations for indexing

Name of Placement of Table, Postings, and Dictionary Role of 
Configuration H Table Partial St Merged St Dict Optane PM
stock DRAM SSD SSD SSD none
table-pm PM SSD SSD SSD main memory
pm-only PM PM PM PM universal
hybrid DRAM PM PM PM storage
hybrid+ DRAM PM PM SSD storage



PM configurations for indexing

Name of Placement of Table, Postings, and Dictionary Role of 
Configuration H Table Partial St Merged St Dict Optane PM
stock DRAM SSD SSD SSD none
table-pm PM SSD SSD SSD main memory
pm-only PM PM PM PM universal
hybrid DRAM PM PM PM storage
hybrid+ DRAM PM PM SSD storage
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PM configurations for indexing

Name of Placement of Table, Postings, and Dictionary Role of 
Configuration H Table Partial St Merged St Dict Optane PM
stock DRAM SSD SSD SSD none
table-pm PM SSD SSD SSD main memory
pm-only PM PM PM PM universal
hybrid DRAM PM PM PM storage
hybrid+ DRAM PM PM SSD storage

16
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Crash consistent indexing
Crash consistent segment flushing
 → Use pmem_persist(segment)
 → Track progress (docIds)

Crash consistent merging
 → Tracking progress is tricky
→ Details of “logging” in the paper 
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Baseline Engine
Psearchy

Native, fast, and flexible 
Easily integrated with Intel PMDK
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Indexing Methodology
Dataset and measurement
 → Wikipedia English (DRAM)
 → Execution time
 → 1 GB HT per core, up to 32 cores

PM setup
 → Interleaved, local, EXT4+DAX 
 → pmemkv dictionarygithub.com/pmem/pmemkv
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Experimental Platform

2 TB PM 
0.5 TB DRAM
1.5 TB NVMe Optane SSD

Our in-house server with DRAM, PM, & SSD
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Indexing perf with one core 
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PM as main/only is 30% slower
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Hybrid is 8% slower than stock
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Hybrid+ is best, 20% over stock
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Hybrid+ is best, pmkv costs 28%
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Crash consistency costs 10%
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syscall → mmap is mainly why 
hybrid+ beats stock
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Indexing scalability
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Hybrid+ incurs an increase in 
memory stalls (32 cores)
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Crash consistent indexing with 32 
cores improves perf
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cache lines become 
replacement candidates, 
improving LLC hit rate
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Query Evaluation Methodology
Tail latency of 100K concurrent queries 
  → 1 term 
  → AND 2 terms

See paper for details
 → Term selection, variation, ranking
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Tail latency of single-term queries 
DRAM = PM = SSD
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posting list results in a 
sequential access 
pattern
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Tail latency of 2-term AND 
Region 1: DRAM < SSD < PM
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Tail latency of 2-term AND 
Region 2: DRAM < PM < SSD
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3X
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More analysis in the paper
Indexing: updates
Query eval: access patterns
Breakdowns: sort vs merge, load vs store
pmemkv: volatile map, binding

Other: OS caching impacts 
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Key Takeaways
PM does not scale well for write I/O bound 
indexing

PM shines for the latency-critical
query evaluation
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Contribution: PM Search Engine 
Exploiting PM for building/storing indices 
→ Memory, storage, universal roles

 → Fine-grained crash consistent recovery
Extensive PM evaluation vs DRAM/SSD
 → Indexing perf, scalability, bottlenecks 
 → Tail latency of query workloads
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Analytics frameworks use managed runtimes

To process large amounts of data they need large heaps 

Large heaps are expensive (DRAM) and increase GC cost!
DRAM is expensive in dollar cost, energy, and power
GC requires expensive scans over large heaps

For these reasons analytics frameworks avoid large heaps

259

Analytics frameworks need large heaps 

ASPLOS 2023



Off-heap storage in this context means
Off DRAM → on fast storage
Unmanaged → no GC scans

Off-heap demands serialization/deserialization (S/D)
Transform object closure into byte streams

S/D is significant problem!
Takes up to 47% in Spark workloads
Not everything is serializable!
Off-heap can be unsafe
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Common practice: Move objects off-heap

ASPLOS 2023

Spark Workloads

PageRank Linear 
Regression

Logistic 
Regression

0

2000

4000

6000

8000

Ex
ec

ut
io

n 
Ti

m
e 

(s
)

Other S/D



Eliminate S/D: Extend the heap over storage

ASPLOS 2023 261

Framework
JVM

Managed Heap

DRAM (OS Page Cache)

File-backed mmap()

GC cost increases dramatically!
Random accesses over storage
Object compaction over storage 
High I/O traffic

Today OpenJDK naively uses mmap()



TeraHeap: Eliminate S/D without increasing GC cost

ASPLOS 2023 262

Framework
JVM

Provides the illusion of a single heap

Avoid GC scans over the device heap

Custom management for the device heap
Lazy GC due to high storage capacity
Minimizing I/O traffic

DRAM

Regular Heap (H1)

OS Page Cache

File-backed mmap()

Second Heap (H2)



Outline

263ASPLOS 2023

Motivation

Design
Identify objects for moving to H2
Reclaim objects in H2 without GC scans
Update cross-heap references with low I/O cost

Evaluation

Conclusions



🗹 Goal: Find large clusters of objects with similar lifetime

Frameworks move partitions off-heap

Frameworks have eventually immutable objects

TeraHeap provides two hints
h2_mark_root(): Mark key object with a label
h2_move(): Advice when to move objects to H2

Move objects to H2 during GC

GC propagates the label from key object to all reachable 
objects

Move off-heap objects to H2

264ASPLOS 2023

Framework

JVM
Regular Heap (H1)

Partition Ah2_mark_root(A, label)h2_move(label)



🗹 Goal: Reduce memory pressure in H1

Increased memory pressure before transfer hint?

Eager transfers to H2 → decrease memory pressure in H1

Use a high threshold to identify memory pressure

Bypass transfer hint

Move only a few marked objects to H2
Reduce read-modify-write operations in storage

Can move objects to H2 eagerly

265ASPLOS 2023

Framework

JVM
Regular Heap (H1)



Leverage storage capacity to free objects lazily
🗹 Goal: Reclaim dead objects without GC scans

TeraHeap organizes H2 in fixed-sized regions
Objects with same label in the same region
Reclaim whole regions (bulk free)

Per region DRAM metadata (avoid object access)
Live bit → region liveness
Dependency list → cross-region references

GC identifies H2 live regions
Free regions by zeroing regions metadata

266ASPLOS 2023

JVM
Regular Heap (H1) Second Heap (H2)

Region 0 Region 2Region 1

JVM Metadata (DRAM)

Region 1

Live List Live List Live List

Region 0 Region 2Region 1

Live

Region 1

Live



Preserve correctness of object liveness
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JVM
Regular Heap (H1) Second Heap (H2)

Region 0 Region 2Region 1

JVM Metadata (DRAM)

🗹 Goal: Track H2 to H1 references with low I/O cost

Card table (byte array in DRAM)
One byte per fixed-size H2 segments
Large segments to reduce card table size

Categorize cards to scan less segments

Based on GC type, we scan specific segments

H2 Card Table
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Testbed

We implement TeraHeap in OpenJDK 8 (we now support OpenJDK 17)
Extend Parallel Scavenge garbage collector
Extend interpreter, C1 and C2 (JIT) compilers to support updates in H2

We use one servers with 2 TB NVMe SSD and 256 GB DRAM
Also, we evaluate TeraHeap with NVM

▪  Real world applications
Spark with SparkBench suite
Giraph with Graphalytics benchmark suite

Limit DRAM capacity using cgroups
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TeraHeap outperforms native Spark by up to 54%

PageRank
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40% 50% 54%

Teraheap reduces S/D overhead

S/D in TeraHeap is due to shuffling
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TeraHeap outperforms native Giraph by up to 28%

PageRank
Native TH
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Components
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Main performance improvement
Reduction of major GC (up to 50%)

Off-heap reduces heap pressure temporarily
Giraph  processes objects only on-heap
Increases heap pressure → Increased 
GC!

28% 24% 26%

60%
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TeraHeap reduces DRAM requirements

Spark - PageRank
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Giraph PageRank

4.6x 1.2x

Provide direct access to H2 objects

Outperforms native Spark using 4.6x less DRAM

Outperforms native Giraph using 1.2x less DRAM

DRAM (GB)



Analytics frameworks deal with large datasets using S/D

TeraHeap provides the illusion of single managed heap
No S/D and no GC scans in the device heap for freeing space

Improves native Spark and Giraph performance by up to 54% and 28%

TeraHeap requires up to 4.6x less DRAM

Future work
Eliminate hints by dynamically determining which objects to move to H2

272ASPLOS 2023

Key Takeaways



TeraHeap: Reducing Memory Pressure
for Managed Big Data Frameworks
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DVFS Performance Prediction

276

Sample at all DVFS states L
Estimate performance J

frequency à

pe
rf

or
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ce

 à

memory bound

many 
applications here

compute bound
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re Burst

s

Managed Multithreaded Applications
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Background
Base Frequency Target Frequency

CPU
DRAM

time à

• tbase sum of
–Scaling (S)
–Non-Scaling (NS)

• r = Base/Target
• S à S * r
• NS à No change
• ttarget = (S*r) + NS

• Not simple
• OOO+MLP

tbase



• CRIT estimates non-scaling by
–Measuring critical path through loads
–Ignoring store operations

279

R. Miftakhutdinov, E. Ebrahimi, and Y. N. Patt. Predicting 
performance impact of DVFS for realistic memory 
systems. MICRO, 2012.

State of the Art
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High error for multithreaded Java!

Multithreaded CRIT (M+CRIT)
Base Frequency Target Frequency

time à

T0

T1

time à

T0

T1

ttargettbase

Use CRIT to identify each thread’s non-scaling

2X

0 1 0 0.5 1

critical
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app0

Application Collection

busy wait store burst

Scaling or non-scaling?

Sources of Inaccuracy in M+CRIT

Application

app1

gc0
gc1



282

app0

Application Collection

busy wait store burst

Scaling or non-scaling?

Sources of Inaccuracy in M+CRIT

Application

app1

gc0
gc1

BURST

DEP

DEP

DEP

DEP

DEP
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app0

Application Collection

busy wait store burst

Scaling or non-scaling?

Our Contribution

Application

app1

gc0
gc1

BURST

DEP

DEP

DEP

DEP

DEPDEP+BURST
A New DVFS Performance Predictor
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Our Contribution

DEP+BURST
A New DVFS Performance Predictor
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while (cond0)
{
 …
}
Acquire(lock)
 crit_sec() …
Release(lock)
...

while (cond1)
{
 …
}
Acquire(lock)
 crit_sec() …
Release(lock)
...

T0 T1

Example: Inter-thread Dependences

21

3

• Intercept synchronization activity
• Reconstruct execution at target frequency

wait ---

wake 4
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T0 T1
lo

op

w
ai

t

Identifying Synchronization Epochs

cr
it_

se
c(

)
lo

op

cr
it_

se
c(

)
Base Frequency Target Frequency

time

wait()

wake()

Epoch 
# 1

Epoch 
# 2

Epoch 
# 3
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T0 T1

Identifying Synchronization Epochs
Base Frequency Target Frequency

time

Epoch 
# 1

Epoch 
# 2

Epoch 
# 3
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T0 T1

Identifying Synchronization Epochs
Base Frequency Target Frequency

time

Epoch 
# 1

Epoch 
# 2

Epoch 
# 3

10 10

10

10 10
= 30 units
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T0 T1

Reconstruction at Target Frequency
Base Frequency Target Frequency

time

Epoch 
# 1

Epoch 
# 2

Epoch 
# 3

2X

10 10

10

10 10

T0 T1

5 7

5

5

CRIT

5

# 1

# 2

# 3
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T0 T1

Reconstruction at Target Frequency
Base Frequency Target Frequency

time

Epoch 
# 1

Epoch 
# 2

Epoch 
# 3

2X

10 10

10

10 10

T0 T1

5 7

5

3

5

# 1

# 2

# 3

Longest running in an epoch
+ Zero book-keeping
-  Not accurate 

= 17 units

5
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T0 T1

Reconstruction at Target Frequency
Base Frequency Target Frequency

time

Epoch 
# 1

Epoch 
# 2

Epoch 
# 3

2X

10 10

10

10 10

T0 T1

5 7

5

5 5

# 1

# 2

# 3

Critical thread across epochs
+ Accurate
-  Book-keeping

= 15 units

= 30 units

3
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Decompose

Reconstruct

Aggregate

Sync Activity

• Sync Epochs
• Perf Counters

Epochs @ Tgt.

Predicted Total Time

DEP: Summary
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Our Contribution

DEP+BURST
A New DVFS Performance Predictor
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Our Contribution

DEP+BURST
A New DVFS Performance Predictor



• Reasons
–Zero initialization 
–Copying collectors

• Modeling Steps
–Track how long the store queue is full
–Add to the non-scaling component

295

Store Bursts
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• Jikes RVM 3.1.2
• Production collector (Immix)
• # GC threads = 2
•  2x min. heap

• Seven multithreaded benchmarks
• Four application threads

• 4 cores, 1.0 GHz à 4.0 GHz
• 3-level cache hierarchy
• LLC fixed to 1.5 GHz
• DVFS settings for 22 nm Haswell

Version 6.0

Methodology
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Quantum
5 ms

4 GHz New Freq1

tolerable_performance_degradation

New Freq2

Energy Manager
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• DEP+BURST: First predictor that accounts for
– Application and service threads
– Synchronization à inter-thread dependencies
– Store bursts

• High accuracy
– Less than 10% estimation error for seven Java bmarks.

• Negligible hardware cost
– One extra performance counter
– Minor book-keeping across epochs

• Demonstrated energy savings 
– 20 % avg. for a 10% slowdown (mem-intensive Java apps.)
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Conclusions



Thank You !
Shoaib.Akram@elis.UGent.be



302



Programming Across the Stack Workshop
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Shoaib Akram, Ghent University
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Circa 2000, hardware features were 
fixed at design time

One GHz
Big Core
DRAM
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As time passed, efficiency became a 
first order concern 

Billions of watts in data centre power
More search queries on mobiles
End of Dennard scaling 
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Hardware designers turned to 
flexibility for improving efficiency 
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Event counters became the key to 
help OS configure hardware 

Understand the behaviour of 
individual threads and adapt
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Multithreading

Language runtimes

What about software evolution?
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Prior Work in making software 
aware of hardware heterogeneity

² Mostly for native applications

² No input from language runtime or user
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The 2015 Top Ten Programming Languages, 
spectrum.ieee.org.

Managed languages are popular due 
to their productivity advantage 
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Research activity # 1: Behavior of 
managed multithreaded environs  

User Services

² Scheduling user vs. service threads
² Understanding the impact of synchronization 
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Research activity #2:  Include the 
runtime for better policy making

Managed Language Runtime Layer

² Is any service thread critical to performance?
² Is it better to allocate object X in memory 

type T?
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Research activity #2:  Include the 
runtime for better policy making

Managed Language Runtime Layer

² Is any service thread critical to performance?
² Is it better to allocate object X in memory 

type T?

Bridge the application-OS gap
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Agenda

1. Scheduling concurrent collection on 
heterogeneous multicores

2. Predicting the performance impact of  
DVFS for managed multithreaded    
applications

3. Using the garbage collector to guide
object placement in hybrid memory



Shoaib Akram, Jennifer B. Sartor, Kenzo Van Craeynest, 
Wim Heirman, Lieven Eeckhout

Ghent University, Belgium
Shoaib.Akram@UGent.be

ACM Transactions on Architecture and Code Optimization (TACO), 2016
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CPU usage is not negligible
Concurrent collectors fit for multicores 

Garbage collector automatically 
reclaims memory for reuse 
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600 Series 
4x ARM Cortex A72
4x ARM Cortex A53

Exynox 8890
4x ARM Cortex A53

4x Exynos M1

big

LITTLE

Power

Pe
rf

or
m

an
ce

Out-of-Order

In-Order

Heterogeneous multicores consist 
of different core types
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LITTLE

Power

Pe
rf

or
m

an
ce Application 

Which core type to run application 
versus the collector threads? 

Out-of-Order

In-Order

GC(?)

big
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bigApplication

Collector LITTLE

Allocates new objects  

1. Identifies live objects
2. Reclaims memory

What is the performance impact of
running collector on LITTLE core?

big
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Running GC on LITTLE degrades 
performance of some applications  

0

10

20

fo
p

an
tlr

lu
in

de
x

bl
oa

t
av

ro
ra

lu
se

ar
ch

.fi
x2

su
nf

lo
w2

su
nf

lo
w4

xa
la

n2

pm
d2

lu
se

ar
ch

2
lu

se
ar

ch
.fi

x4
xa

la
n4

pm
d4

lu
se

ar
ch

4

%
 in

cr
ea

se
 in

 
ex

ec
ut

io
n 

tim
e



321

Running GC on LITTLE degrades 
performance of some applications  

GC-Uncritical
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Running GC on LITTLE degrades 
performance of some applications  

GC-Critical

GC-Uncritical
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Why does the execution time of 
GC critical applications increase?

Application

Collector

Allocates new objects  

1. Identifies live objects
2. Reclaims memory

Serial collection

Paused!!!

Out of Memory

(slow)
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1 LITTLE
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2 LITTLE
3 LITTLE

1 LITTLE

What happens if we give GC a fair 
share of the big core?

Application

GC-Uncritical

GC-Critical

Heap size
System load …

Architecture
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GC-Criticality-Aware
Scheduler

Dynamically adjusts # big core cycles
given to application versus GC

Our Contribution
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app
gc

App alone

gc-on-LITTLESchd

time

GC-Criticality-Aware Scheduler
Starting point is gc-on-LITTLE
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app
gc

App alone

gc-on-LITTLESchd

time

GC-Criticality-Aware Scheduler
gc-on-LITTLE to gc-fair
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app
gc

App alone

gc-on-LITTLESchd

time

GC-Criticality-Aware Scheduler
gc-on-LITTLE to gc-fair

Stop Concurrent Scan

gc-fair

JVM signals the scheduler

Stop pause to do book-keeping ignored
Scan stop pause: JVM signals scheduler 
gc-fair gives equal priority to GC and app
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GC-Criticality-Aware Scheduler
Boost States

Scheduler State How many quanta scheduled on the BIG core? 

gc-boost P0 First GC thread = 1, Second GC thread = 1 

gc-boost P1 First GC thread = 1, Second GC thread = 2 

…

Stop scan pauses observed even with gc-fair
Scheduler How many quanta scheduled on the BIG core?

gc-on-LITTLE First GC thread = 0, Second GC thread = 0 

gc-fair First GC thread = 1, Second GC thread = 1 

Boost the priority of garbage
Give GC more consecutive quanta on big

Degrade boost state when no longer critical
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app
gc

App alone

gc-boost:P0Schd

time

GC-Criticality-Aware Scheduler
gc-boost:P0 to gc-on-LITTLE

Stop Concurrent

gc-on-LITTLE

JVM signals the scheduler

App alone

If no scan pause in state P0, go to gc-on-LITTLE
Can configure # zero stop scan intervals before 
returning to gc-on-LITTLE
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Summary of gc-criticality-aware 
scheduling

1. JVM detects GC Criticality during 
execution 

2. JVM communicates gc criticality to the 
scheduler

3. Scheduler adapts # big core cycles given to 
GC
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Experimental Setup

²How to tackle non-determinism?

²CMS with heap 2x of minimum

²Model different architectures
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GC-Criticality-Aware scheduler is 
better performing vis-à-vis gc-fair

gc-boost
gc-fair
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better performing vis-à-vis gc-fair

gc-boost
gc-fair
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GC-Criticality-Aware scheduler is 
better performing vis-à-vis gc-fair

gc-boost
gc-fair
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Where does the performance 
advantage of big core comes from?

Application Collector
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Instruction-level parallelism J 
Memory-level parallelism L

LITTLE

big

Where does the performance 
advantage of big core comes from?

Application Collector
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Lowering the frequency of LITTLE 
core makes GC even more critical

Similar freq
1 GHz slower
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core makes GC even more critical

Similar freq
1 GHz slower



349

0

8

16
%

 e
xe

cu
tio

n 
tim

e 
re

du
ct

io
n

1B 2B 3B

gc-boost provides greater gains for 
architectures with more big cores



Average EDP reduction of 20% for 
GC-Critical applications 
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GC-Uncritical

GC-Critical
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allo
cat

ion rat
e

# cores

A few takeaway messages

User App

JVM

OS

big

(1)Multithreaded applications could be GC critical

(2)GC benefits from big core features 

(3) JVM support for scheduling GC improves efficiency


