
TeraHeap: Reducing Memory Pressure in
Managed Big Data Frameworks

Iacovos G. Kolokasis
kolokasis@ics.forth.gr

Giannos Evdorou
evdorou@ics.forth.gr

Foivos Zakkak
fzakkak@redhat.com

Christos Kozanitis
kozanitis@ics.forth.gr

Shoaib Akram
shoaib.akram@anu.edu.au

Polyvios Pratikakis
polyvios@ics.forth.gr

Angelos Bilas
bilas@ics.forth.gr

Anastasios Papagiannis
anastasios@isovalent.com

UNIVERSITY
OF CRETE

▪ Analytics frameworks use managed runtimes

▪ To process large amounts of data they need large heaps

▪ Large heaps are expensive (DRAM) and increase GC cost!
▪ DRAM is expensive in dollar cost, energy, and power
▪ GC requires expensive scans over large heaps

▪ For these reasons analytics frameworks avoid large heaps

2

Analytics frameworks need large heaps

ASPLOS 2023

▪ Off-heap storage in this context means
▪ Off DRAM → on fast storage
▪ Unmanaged → no GC scans

▪ Off-heap demands serialization/deserialization (S/D)
▪ Transform object closure into byte streams

▪ S/D is significant problem!
▪ Takes up to 47% in Spark workloads
▪ Not everything is serializable!
▪ Off-heap can be unsafe

3

Common practice: Move objects off-heap

ASPLOS 2023

Spark Workloads

PageRank Linear
Regression

Logistic
Regression

0

2000

4000

6000

8000

Ex
ec

ut
io

n
Ti

m
e

(s
)

Other S/D

Eliminate S/D: Extend the heap over storage

ASPLOS 2023 4

Framework
JVM

Managed Heap

DRAM (OS Page Cache)

File-backed mmap()

☹ GC cost increases dramatically!
▪ Random accesses over storage
▪ Object compaction over storage
▪ High I/O traffic

▪ Today OpenJDK naively uses mmap()

TeraHeap: Eliminate S/D without increasing GC cost

ASPLOS 2023 5

Framework
JVM

▪ Provides the illusion of a single heap

▪ Avoid GC scans over the device heap

▪ Custom management for the device heap
▪ Lazy GC due to high storage capacity
▪ Minimizing I/O traffic

DRAM

Regular Heap (H1)

OS Page Cache

File-backed mmap()

Second Heap (H2)

Outline

6ASPLOS 2023

▪ Motivation

▪ Design
▪ Identify objects for moving to H2
▪ Reclaim objects in H2 without GC scans
▪ Update cross-heap references with low I/O cost

▪ Evaluation

▪ Conclusions

� Goal: Find large clusters of objects with similar lifetime

▪ Frameworks move partitions off-heap

▪ Frameworks have eventually immutable objects

▪ TeraHeap provides two hints
▪ h2_mark_root(): Mark key object with a label
▪ h2_move(): Advice when to move objects to H2

▪ Move objects to H2 during GC

▪ GC propagates the label from key object to all reachable objects

Move off-heap objects to H2

7ASPLOS 2023

Framework

JVM
Regular Heap (H1)

Partition Ah2_mark_root(A, label)h2_move(label)

� Goal: Reduce memory pressure in H1

▪ Increased memory pressure before transfer hint?

▪ Eager transfers to H2 → decrease memory pressure in H1

▪ Use a high threshold to identify memory pressure

▪ Bypass transfer hint

▪ Move only a few marked objects to H2
▪ Reduce read-modify-write operations in storage

Can move objects to H2 eagerly

8ASPLOS 2023

Framework

JVM
Regular Heap (H1)

Leverage storage capacity to free objects lazily
� Goal: Reclaim dead objects without GC scans

▪ TeraHeap organizes H2 in fixed-sized regions
▪ Objects with same label in the same region
▪ Reclaim whole regions (bulk free)

▪ Per region DRAM metadata (avoid object access)
▪ Live bit → region liveness
▪ Dependency list → cross-region references

▪ GC identifies H2 live regions
▪ Free regions by zeroing regions metadata

9ASPLOS 2023

JVM
Regular Heap (H1) Second Heap (H2)

Region 0 Region 2Region 1

JVM Metadata (DRAM)

Region 1

Live List Live List Live List

Region 0 Region 2Region 1

Live

Region 1

Live

Preserve correctness of object liveness

10ASPLOS 2023

JVM
Regular Heap (H1) Second Heap (H2)

Region 0 Region 2Region 1

JVM Metadata (DRAM)

� Goal: Track H2 to H1 references with low I/O cost

▪ Card table (byte array in DRAM)
▪ One byte per fixed-size H2 segments
▪ Large segments to reduce card table size

▪ Categorize cards to scan less segments

▪ Based on GC type, we scan specific segments

H2 Card Table

11ASPLOS 2023

Testbed
▪ We implement TeraHeap in OpenJDK 8 (we now support OpenJDK 17)

▪ Extend Parallel Scavenge garbage collector
▪ Extend interpreter, C1 and C2 (JIT) compilers to support updates in H2

▪ We use one servers with 2 TB NVMe SSD and 256 GB DRAM
▪ Also, we evaluate TeraHeap with NVM

▪ Real world applications
▪ Spark with SparkBench suite
▪ Giraph with Graphalytics benchmark suite

▪ Limit DRAM capacity using cgroups

12ASPLOS 2023

TeraHeap outperforms native Spark by up to 54%

PageRank
Native TH

Linear
Regression

Native TH
0

0.25

0.50

0.75

1.0
Other Minor GC Major GC S/D + I/O

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Native TH
Logistic

Regression

40% 50% 54%

▪ Teraheap reduces S/D overhead

▪ S/D in TeraHeap is due to shuffling

13ASPLOS 2023

TeraHeap outperforms native Giraph by up to 28%

PageRank
Native TH

Connected
Components

Native TH
0

0.25

0.50

0.75

1.0
Other Minor GC Major GC

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Native TH
Shortest

Path

▪ Main performance improvement
▪ Reduction of major GC (up to 50%)

▪ Off-heap reduces heap pressure temporarily
▪ Giraph processes objects only on-heap
▪ Increases heap pressure → Increased GC!

28% 24% 26%

60%

14ASPLOS 2023

TeraHeap reduces DRAM requirements

Spark - PageRank

48

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Native

0

0.25

0.50

0.75

1

TeraHeap

80 144 32 85 74

Giraph PageRank

4.6x 1.2x

▪ Provide direct access to H2 objects

▪ Outperforms native Spark using 4.6x less DRAM

▪ Outperforms native Giraph using 1.2x less DRAM

DRAM (GB)

▪ Analytics frameworks deal with large datasets using S/D

▪ TeraHeap provides the illusion of single managed heap
▪ No S/D and no GC scans in the device heap for freeing space

▪ Improves native Spark and Giraph performance by up to 54% and 28%

▪ TeraHeap requires up to 4.6x less DRAM

Future work
▪ Eliminate hints by dynamically determining which objects to move to H2

15ASPLOS 2023

Key Takeaways

TeraHeap: Reducing Memory Pressure
for Managed Big Data Frameworks

We thankfully acknowledge the support of the European Commision projects
EVOLVE (GA No 825061) and Eupex (GA No 101033975)

Iacovos G. Kolokasis is supported by the Meta Research PhD Fellowship (2022 – 2024)

github.com/CARV-ICS-FORTH/teraheap

