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▪ Analytics frameworks use managed runtimes

▪ To process large amounts of data  they need large heaps 

▪ Large heaps are expensive (DRAM) and increase GC cost!
▪ DRAM is expensive in dollar cost, energy, and power
▪ GC requires expensive scans over large heaps

▪ For these reasons analytics frameworks avoid large heaps
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Analytics frameworks need large heaps 

ASPLOS 2023



▪ Off-heap storage in this context means
▪ Off DRAM → on fast storage
▪ Unmanaged → no GC scans

▪ Off-heap demands serialization/deserialization (S/D)
▪ Transform object closure into byte streams

▪ S/D is significant problem!
▪ Takes up to 47% in Spark workloads
▪ Not everything is serializable!
▪ Off-heap can be unsafe
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Common practice: Move objects off-heap
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Eliminate S/D: Extend the heap over storage
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Framework
JVM

Managed Heap

DRAM (OS Page Cache)

File-backed mmap()

☹ GC cost increases dramatically!
▪ Random accesses over storage
▪ Object compaction over storage 
▪ High I/O traffic

▪ Today OpenJDK naively uses mmap()



TeraHeap: Eliminate S/D without increasing GC cost
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Framework
JVM

▪ Provides the illusion of a single heap

▪ Avoid GC scans over the device heap

▪ Custom management for the device heap
▪ Lazy GC due to high storage capacity
▪ Minimizing I/O traffic

DRAM

Regular Heap (H1)

OS Page Cache

File-backed mmap()

Second Heap (H2)



Outline
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▪ Motivation

▪ Design
▪ Identify objects for moving to H2
▪ Reclaim objects in H2 without GC scans
▪ Update cross-heap references with low I/O cost

▪ Evaluation

▪ Conclusions



� Goal: Find large clusters of objects with similar lifetime

▪ Frameworks move partitions off-heap

▪ Frameworks have eventually immutable objects

▪ TeraHeap provides two hints
▪ h2_mark_root(): Mark key object with a label
▪ h2_move(): Advice when to move objects to H2

▪ Move objects to H2 during GC

▪ GC propagates the label from key object to all reachable objects

Move off-heap objects to H2
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Framework
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� Goal: Reduce memory pressure in H1

▪ Increased memory pressure before transfer hint?

▪ Eager transfers to H2 → decrease memory pressure in H1

▪ Use a high threshold to identify memory pressure

▪ Bypass transfer hint

▪ Move only a few marked objects to H2
▪ Reduce read-modify-write operations in storage

Can move objects to H2 eagerly
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Framework
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Leverage storage capacity to free objects lazily
� Goal: Reclaim dead objects without GC scans

▪ TeraHeap organizes H2 in fixed-sized regions
▪ Objects with same label in the same region
▪ Reclaim whole regions (bulk free)

▪ Per region DRAM metadata (avoid object access)
▪ Live bit → region liveness
▪ Dependency list → cross-region references

▪ GC identifies H2 live regions
▪ Free regions by zeroing regions metadata
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JVM
Regular Heap (H1) Second Heap (H2)
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JVM Metadata (DRAM)

Region 1

Live List Live List Live List

Region 0 Region 2Region 1

Live

Region 1

Live



Preserve correctness of object liveness
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JVM
Regular Heap (H1) Second Heap (H2)

Region 0 Region 2Region 1

JVM Metadata (DRAM)

� Goal: Track H2 to H1 references with low I/O cost

▪ Card table (byte array in DRAM)
▪ One byte per fixed-size H2 segments
▪ Large segments to reduce card table size

▪ Categorize cards to scan less segments

▪ Based on GC type, we scan specific segments

H2 Card Table
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Testbed
▪ We implement TeraHeap in OpenJDK 8 (we now support OpenJDK 17)

▪ Extend Parallel Scavenge garbage collector
▪ Extend interpreter, C1 and C2 (JIT) compilers to support updates in H2

▪ We use one servers with 2 TB NVMe SSD and 256 GB DRAM
▪ Also, we evaluate TeraHeap with NVM

▪  Real world applications
▪ Spark with SparkBench suite
▪ Giraph with Graphalytics benchmark suite

▪ Limit DRAM capacity using cgroups
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TeraHeap outperforms native Spark by up to 54%
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▪ Teraheap reduces S/D overhead

▪ S/D in TeraHeap is due to shuffling
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TeraHeap outperforms native Giraph by up to 28%
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▪ Main performance improvement
▪ Reduction of major GC (up to 50%)

▪ Off-heap reduces heap pressure temporarily
▪ Giraph  processes objects only on-heap
▪ Increases heap pressure → Increased GC!
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TeraHeap reduces DRAM requirements

Spark - PageRank
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▪ Provide direct access to H2 objects

▪ Outperforms native Spark using 4.6x less DRAM

▪ Outperforms native Giraph using 1.2x less DRAM
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▪ Analytics frameworks deal with large datasets using S/D

▪ TeraHeap provides the illusion of single managed heap
▪ No S/D and no GC scans in the device heap for freeing space

▪ Improves native Spark and Giraph performance by up to 54% and 28%

▪ TeraHeap requires up to 4.6x less DRAM

Future work
▪ Eliminate hints by dynamically determining which objects to move to H2
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Key Takeaways
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